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Abstract
This paper explores common speech signal representations along with a brief description of their corresponding analysis–
synthesis stages. The main focus is on adaptive sinusoidal representations where a refined model of speech is suggested. 
This model is referred to as Refined adaptive Sinusoidal Representation (R_aSR). Based on the performance of the recently 
suggested adaptive Sinusoidal Models of speech, significant refinements are proposed at both the analysis and adaptive stages. 
First, a quasi-harmonic representation of speech is used in the analysis stage in order to obtain an initial estimation of the 
instantaneous model parameters. Next, in the adaptive stage, an adaptive scheme combined with an iterative frequency cor-
rection mechanism is used to allow a robust estimation of model parameters (amplitudes, frequencies, and phases). Finally, 
the speech signal is reconstructed as a sum of its estimated time-varying instantaneous components after an interpolation 
scheme. Objective evaluation tests prove that the suggested R_aSR achieves high quality reconstruction when applied in 
modeling voiced speech signals compared to state-of-the-art models. Moreover, transparent perceived quality was attained 
using the R_aSR according to results obtained from listening evaluation tests.

Keywords Speech representation · Speech analysis · Speech synthesis · Adaptive sinusoidal modeling

1 Introduction

Speech signal representation and modeling play an impor-
tant role in several speech processing applications including 
speech coding, speech analysis/synthesis, and speech recog-
nition. In speech analysis/synthesis systems, for example, a 
set of model parameters are extracted at the analysis stage, 
and then these parameters are used at the synthesis stage 
to reconstruct the synthetic signal. Hence, an appropriate 
choice of the model and an accurate estimate of the model 
parameters are two key elements for success in all speech 
processing applications (Quatieri 2002).

A wide variety of representations and models of speech 
signal have been discussed in literature (Quatieri 2002; 

Rabiner and Schafer 1978). Among them: temporal repre-
sentation (i.e., speech waveform); spectral representation 
(i.e., Fourier magnitudes and phases); linear predictive 
representation, cepstral or homomorphic representation, 
sinusoidal representation, etc. Due to space limitation, the 
discussion concentrates only on prominent speech signal 
representations namely, Linear prediction, sinusoidal and 
adaptive sinusoidal representations.

In the 1970s, linear prediction (LP) representation was 
one of the most powerful models of speech and has been 
successfully applied in speech analysis and synthesis (Atal 
and Hanauer 1971). The main advantage of LP approach is 
that is simple, fast and has a limited number of parameters 
(Rabiner and Schafer 1978). However, due to the paramet-
ric nature of the LP representation, the speech quality of 
LP analysis-synthesis systems is degraded and is inherently 
buzzy. LP models has been the predominant representation 
of speech until the end of the 1980s, after which it gave way 
to more complex models which offered a better signal qual-
ity, e.g., sinusoidal models (Hedlin 1981; Almeida and Silva 
1984; McAulay and Quatieri 1984; McAulay and Quatieri 
1986; Quatieri and McAuley 2002). The famous sinusoidal 
model (SM) suggested in McAulay and Quatieri (1986) for 
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example, is a quite general representation of speech that can 
be used in a wide range of sounds and has been success-
fully applied in speech analysis and synthesis. Because SM 
is well suited for modeling the quasi periodic phenomena 
that typically occur in voiced sounds, the unvoiced counter-
part are poorly represented by this model. To cope with this 
problem, it was proposed to decompose the representation 
of the speech signal into two separate components (sinusoi-
dal and noise component). A number of models based on 
this principle have been appeared (Griffin and Lim 1988; 
Abrantes et al. 1991; Oomen and den 1999; Laroche et al. 
1993; Stylianou 1996, 2001). The most important hybrid SM 
is the harmonic plus noise model (HNM) (Stylianou 1996) 
which has been successfully used in speech analysis and 
synthesis (Stylianou 2001). However, the HNM approach is 
complex compared to LP and SM approaches.

A major drawback of standard speech signal representa-
tions (i.e., LP, SM and HNM) is frequency estimation sen-
sitivity. Poor estimation of frequencies results in high recon-
struction errors. To address this issue, it was suggested to 
represent speech signals by a Quasi-harmonic model (QHM) 
(Pantazis et al. 2008) whose major advantage is its ability 
to correct frequency mismatches in a straightforward way. 
Moreover, QHM and standard speech signal representations 
do consider local stationarity of the speech signal in their 
representations. To address the non-stationary characteris-
tics of speech signals, advanced speech signal representa-
tions based on adaptive Sinusoidal Models (aSMs) have 
gained attention due to their ability to adapt their param-
eters to the local characteristics (phase/or amplitude) of the 
analyzed speech signal (Pantazis et al. 2011; Kafentzis et al. 
2012; Degottex and Stylianou 2012, 2013; Kafentzis et al. 
2014). It was shown that the speech signal in these models 
is represented in a highly accurate and compact way and the 
quality of the synthesized speech is widely improved with 
increased robustness compared to state-of-the-art models. 
Also, in the last few years, numerous successful applications 
of aSMs to speech have been developed (Kafentzis et al. 
2013a, b, 2014a, b; Kafentzis and Stylianou 2016).

Motivated by the performance of aSMs, a Refined adap-
tive Sinusoidal Representation (R_aSR) of the speech signal 
is proposed in this paper. This novel representation is based 
on the recently developed Adaptive Iterative Refinement 
(AIR) algorithm suggested in Degottex and Stylianou (2012, 
2013) and the extended adaptive Quasi Harmonic Model 
(eaQHM) (Kafentzis et al. 2012, 2014). Significant improve-
ments over previous models are suggested at both the analy-
sis and the adaptive stage, yielding to a higher modeling 
accuracy and the resulting speech is globally intelligible and 
has acceptable perceived quality.

The rest of the paper is structured as follows: a short 
overview of popular speech signal representations used for 
speech analysis and synthesis is given in Sect. 2. Section 3, 

provides a brief description of the recently suggested aSMs. 
Section 4 details the formalism of the proposed representa-
tion and its performance is evaluated objectively and subjec-
tively in Sect. 5. Results are discussed in Sect. 6 and finally, 
Sect. 7 provides conclusions and future directions.

2  Prominent speech signal representations: 
short overview

Various representations of speech signal for speech analysis/
synthesis have already been proposed in the literature (Qua-
tieri 2002; Tabet et al. 2015). A brief description of the most 
important representations will be discussed in this section.

Modeling speech signal by LP representation is generally 
based on a linear speech source-system production model 
(Fant 1960). The term LP refers to the mechanism of using 
a linear combination of the past time-domain samples, to 
approximate or to predict the current time-domain sample 
of the speech signal (Rabiner and Schafer 1978). Hence, 
the main problem of LP analysis thus becomes the estima-
tion of a set of predictor coefficients so that the prediction 
error between the original and the predicted speech sig-
nal is minimized under some criterion referred to as mean 
squared error. Two major approaches to the computation of 
the LP coefficients have been developed: the autocorrelation 
method and the covariance method (Makhoul 1975; Markel 
and Gray 1976). The LP analysis is applied on a frame-by-
frame basis to the speech signal. Hence, for each frame a LP 
filter is generated. This filter models the glottal excitation 
pulse shape, vocal tract and lip radiations effects. The LP 
synthesis is performed as follow: during voiced speech, a 
simple pulse train excites the linear predictive filter, and for 
unvoiced speech the filter is excited by a white noise.

The popular SM suggested in McAulay and Quatieri (1986) 
is described here. In this model the binary voiced/unvoiced 
excitation model of the LP representation is replaced by a 
sum of sinusoidal functions evolving over time. The speech 
signal is assumed to be the output of a slowly time varying 
digital filter with an excitation that capture the nature of the 
voiced/unvoiced distinction in speech production (excitation 
expressed as a sum of sinusoids). At the analysis stage, it is 
necessary to estimate the number of sinusoidal components, 
their amplitudes, and frequencies. For this purpose, the short 
time fourier transform (STFT) is used. Then, for each frame, 
the spectral peaks are obtained by searching for all local max-
ima on the amplitude spectrum by eliminating those whose 
amplitude is below a given threshold. The position of the 
peaks provides frequencies and amplitudes of the sinusoidal 
components. Phases of these components are calculated as 
the phase of the STFT for a given frequency. The synthetic 
speech signal can be generated by a method that interpolates 
the sine wave parameters directly. This, is performed in several 
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steps. The first one is the parameter matching (birth, continu-
ation, and death of the sinusoidal components across frames); 
the second one is the parameter interpolation ( the amplitudes 
are linearly interpolated between two successive frames, how-
ever, the phases and frequencies are interpolated using a cubic 
function).

The HNM proposed in Stylianou (1996) divides the speech 
signal into two parts: harmonic and noise part. The harmonic 
part is modeled through a set of harmonically related sinusoids 
with slowly time varying amplitudes and frequencies. How-
ever, the noise part is usually modeled as a white Gaussian 
noise passing through a shaping filter. The speech spectrum is 
divided into two sub bands delimited by a time varying maxi-
mum voiced frequency. The estimation of the pitch is the first 
step in HNM analysis stage. From this initial pitch estima-
tion, a harmonic model (HM) is fitted to each frame and a 
voiced/unvoiced decision is made.For voiced frames, a maxi-
mum voiced frequency is then estimated. Once the maximum 
voiced frequency has been found, accurate pitch re-estimation 
is necessary. The amplitudes and phases of the harmonics are 
found in time domain using a weighted least square (LS) error 
between the real and the synthetic waveform. For the estima-
tion of the parameters of the noise component, in each analysis 
frame, a spectral density of the original signal is modeled by 
an autoregressive filter. This filter will be excited by a white 
noise and the dynamic characteristics are considered by using 
a variance envelope which modulates the excitation. Also, a 
triangular-like time domain energy envelope modulates the 
noise comprising the second part of a voiced spectrum. A high 
pass filter is used to separate the harmonic part from the noise 
one. The harmonic and the noise part are synthesized sepa-
rately and the overall synthesized speech signal is computed 
by an overlap-add scheme in a pitch synchronous way.

3  Brief description of adaptive sinusoidal 
representations

This section provides a brief description of the recently sug-
gested aSMs (Pantazis et al. 2011; Kafentzis et al. 2012; 
Degottex and Stylianou 2012, 2013; Kafentzis et al. 2014) 
along with their corresponding analysis, adaptive, and syn-
thesis schemes

The basis of all aSMs is the QHM (Pantazis et al. 2008) 
which is a revisited version of the HNM, initially proposed by 
Laroche et al. (1993). The model is defined by

where w(t) is the analysis window, L is the number of 
sinusoidal components (i.e., order of the model), al is 
the complex amplitude, bl is the complex slopes, f̂0 is the 

(1)s(t) =

(
L∑

l=−L

(al + tbl) exp j2𝜋lf̂0t

)
w(t)

fundamental frequency and l is the index of the lth com-
ponent. In this model it is assumed that an estimate of the 
true frequencies of the analyzed speech signal is provided a 
priori and the model parameters are estimated via a simple 
LS minimisation. It was shown in Pantazis et al. (2008) that 
the QHM is able to resolve errors in frequency estimation by 
frequency updating, resulting in more accurate amplitudes 
estimations by using an appropriate iterative parameter esti-
mation algorithm. However, it was also shown that QHM is 
not able to represent non stationary signals such as speech 
with higher accuracy.

To cope with this problem, Pantazis et al. (2011) pro-
posed to expand the QHM representation to a novel repre-
sentation referred to as adaptive QHM (aQHM) by project-
ing the signal onto time-varying basis phase functions as

where tk denotes the center of the analysis window and �̂�(t) 
is the instantaneous phase functions defined by

where fl(t) denotes the frequency trajectory of the lth compo-
nent which is obtained from an initial parameter estimation 
using the QHM model.

As we can see from Eq. 2, the aQHM representation 
adapts only the phase to the local characteristics of the 
speech signal. In order to address the highly non-stationary 
nature speech signals, Kafentzis et al. (2012), suggested to 
include local amplitude adaptation in a new model called 
extended aQHM (eaQHM) defined by

where Â(t) and �̂�(t) represent the instantaneous amplitude 
and the instantaneous phase, respectively. It is clear from 
Eq. 4 that the basis functions of the eaQHM are adapted to 
the local amplitude and phase characteristics of the speech 
signal. The analysis parameters al and bl are estimated by 
LS errors. The time-varying parameters Âl(t) and f̂l(t) are 
estimated at an initialization stage using the QHM and via 
linear/spline interpolation, respectively. However, the time-
varying parameter �̂�(t) is estimated via a non-parametric 
approach based on the integration of the instantaneous fre-
quency using Eq. 3 as described in Pantazis et al. (2011). 

(2)s(t) =

(
L∑

l=−L

(al + tbl) exp j(�̂�l(t + tk) − �̂�l(tk))

)
w(t)

(3)�̂�l(t) = 2𝜋 ∫
t+tk

tk

fl(𝜏)d𝜏

(4)s(t) =

(
L∑

l=−L

(al + tbl)Âl(t) exp j�̂�l(t)

)
w(t)

(5)Âl(t) =Âl(t + tk)∕Âl(tk)

(6)�̂�l(t) =�̂�l(t + tk) − �̂�l(tk)
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It was proposed an amplitude and frequency modulations 
(AM–FM) decomposition algorithm (Pantazis et al. 2011; 
Kafentzis et al. 2012) that iteratively updates both the instan-
taneous amplitude and phase. Finally, the reconstructed 
signal can be approximated as a sum of its time-varying 
AM–FM components as

aQHM and eaQHM representations are mainly designed for 
modeling periodic parts of speech. Non-periodic parts of 
these models are often represented with a random compo-
nent (Pantazis et al. 2010). In order to represent voiced and 
unvoiced segments of the speech signal with a unified repre-
sentation, a full-band adaptive Harmonic model (aHM) for 
both parts was suggested in Degottex and Stylianou (2012, 
2013). The later assumes that the speech signal can be rep-
resented as follow

where al(t) is a complex function representing both the 
amplitude and the instantaneous phase and �0(t) denotes a 
real function described by

where f0 represents the fundamental frequency track which 
is assumed to be known and can have a potential error. In 
order to obtain the parameters of the aHM, a sequence of 
analysis instants are created using the provided f0(t) curve. 
Around each analysis instant, a Blackman window of 3 local 
pitch periods long is applied to the speech signal. After that, 
�0(t) is computed by means of linear interpolation of fre-
quencies f0i and numerical integration of Eq. 9. Next, the 
aQHM (Pantazis et al. 2011) is used as an intermediary 
model

where al and bl are complex values and �0(t) is still defined 
by Eq. 9. In order to have estimate of al and bl , a LS mini-
mization is used. These parameters can be used to estimate 
the frequency mismatch error. As it is shown in Degottex 
and Stylianou (2012, 2013), this estimate, can be again used 
to iteratively update the fundamental frequency values f0 
and also the number of components L. AIR algorithm is 

(7)ŝ(t) =

L∑

l=−L

Âl(t) exp j�̂�l(t)

(8)ŝ(t) =

L∑

l=−L

al(t) exp jl𝜙0(t)

(9)�0(t) = 2�

t

∫
0

f0(�)d�

(10)s(t) =

(
L∑

l=−L

(al + tbl) exp jl�0(t)

)
w(t)

then suggested (Degottex and Stylianou 2012, 2013) to deal 
with the localization of the high frequency harmonics up to 
the Nyquist frequency. The instantaneous parameters of the 
aHM model (amplitudes al and fundamental frequency curve 
f0 ) are obtained by linear or spline interpolation of their esti-
mated parameters, at the calculated analysis time instants. 
Finally, in the synthesis stage, the aHM of Eq. 8 is used to 
generate each sinusoidal harmonic from its estimated param-
eters, harmonic after harmonic without using any window.

Inspired by the full-band aHM, the initial eaQHM sug-
gested in Kafentzis et al. (2012) was further improved to a 
new representation referred to as full-band eaQHM Kaf-
entzis et al. (2014). In this model, it is assumed that an 
initial HM converges successively to quasi-harmonicity. 
Hence, a full-band AM–FM decomposition is used to 
model the speech signal as

where Al(t) is the instantaneous amplitude, and �l(t) is the 
instantaneous phase given by

where �l(ti) denotes the instantaneous phase value at the 
analysis time instant  ti. In the analysis stage of this repre-
sentation, it is assumed that an initial and continuous f0 
estimation for all frames is provided. Then, full band har-
monicity is assumed in order to obtain a first estimate of the 
instantaneous amplitudes of all harmonics. Hence, initially, 
a simple HM is used to represent a frame of the analyzed 
speech signal. In order to estimate the model parameters, a 
LS minimization is performed. Finally, the parameters Âl(t) 
and �̂�l(t) can be initially approximated by interpolating their 
estimated parameter values (amplitudes and frequencies) 
over successive analysis instants. In order to converge to an 
adaptive quasi harmonic representation, the eaQHM sug-
gested in Kafentzis et al. (2012) is used

where Âl(t) , �̂�l(t) , and f̂l(t) denote the estimated harmonic 
model parameters from the previous analysis stage. The 
parameters al and bl are estimated via LS. Theses complex 
parameters are used to form a frequency correction term for 
each sinusoidal component. Using this frequency correction 
term, an iterative estimation of frequencies is performed. 
This leads to better re-estimation of instantaneous compo-
nents of the speech signal and the initially used model (i.e., 

(11)s(t) =

L∑

l=−L

Al(t) exp j�l(t)

(12)�l(t) = �l(ti) + 2�∕fs

t

∫
ti

fl(�)d�

(13)s(t) =

(
L∑

l=−L

(al + tbl)Âl(t) exp j�̂�l(t)

)
w(t)
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HM) converge progressively to an adaptive quasi harmonic 
model. Finally, the speech can be reconstructed by using

where Âl(t) is estimated via linear interpolation, f̂l(t) is esti-
mated via spline interpolation, and �̂�l(t) is estimated via a 
non-parametric approach based on the integration of instan-
taneous frequency using Eq. 12 (Pantazis et al. 2011).

4  Description of the R_aSR representation

Motivated by the performance of the parameter refinement 
mechanism suggested in Kafentzis et al. (2012, 2014) and the 
iterative frequency correction algorithm suggested in Degottex 
and Stylianou (2012, 2013), a new representation of speech 
is proposed, and its analysis, adaptive and synthesis steps are 
detailed in this section.

In the analysis stage, it is assumed that the fundamental 
frequency is given for each analysis frame. Hence, a set of 
analysis instants are then calculated, and around each analy-
sis instant, the speech signal is windowed using a Blackman 
window as in Degottex and Stylianou (2012, 2013). After that, 
and in order to obtain a first estimation of the instantaneous 
model parameters, the famous QHM (Pantazis et al. 2008) is 
initially used to represent the analyzed speech using Eq. 1. As 
mentioned in Pantazis et al. 2008), the parameters ( al , bl ) are 
estimated by means LS minimization, and an iterative algo-
rithm is used to obtain the optimal model parameters. Finally, 
an initial reconstruction of the speech signal is then given by

where Âl(t) is estimated by linear interpolation of their esti-
mated amplitudes and the equation

and �̂�0(t) is obtained by spline interpolation of their esti-
mated frequencies and Eq.  9.

The above estimated analysis parameters (instantaneous 
amplitudes and phases) are then used in the following adaptive 
stage as follow: the eaQHM proposed in Kafentzis et al. (2012, 
2014) is used as an intermediary representation of speech

The complex parameters al,and bl are computed via LS crite-
rion. Using these estimated values, a first frequency correc-
tion term is obtained (Pantazis et al. 2008) and used to better 

(14)ŝ(t) =

L∑

l=−L

Âl(t) exp j�̂�l(t)

(15)ŝ(t) =

L∑

l=−L

Âl(t) exp jl�̂�0(t)

(16)Âl(t) = |al|

(17)s(t) =

(
L∑

l=−L

(al + tbl)Âl(t) exp jl�̂�0(t)

)
w(t)

re-estimate the instantaneous amplitudes and frequency mis-
match terms (Kafentzis et al. 2012, 2014). Next, the AIR 
algorithm of the aHM (Degottex and Stylianou 2012, 2013) 
uses the refined frequency mismatch terms obtained from the 
previous step to iteratively update the fundamental frequen-
cies, thus providing better estimates of the instantaneous 
phases using Eq. 9.

Finally, the reconstruction of the synthetic speech is per-
formed as in Degottex and Stylianou (2012, 2013). First, the 
estimated parameters (amplitudes, frequencies, and phases) 
obtained from the adaptive stage are interpolated between 
two successives frames. Second, the speech signal is synthe-
sized as a sum of its time-varying instantaneous components 
( Âl(t) and �̂�0(t) ) using the Eq. 15.

5  Experimental results and evaluation tests

To illustrate the performance of the suggested R_aSR in 
controlled experiments, and for comparison purposes, we 
analyzed and reconstructed speech samples using the pro-
posed model and state-of-the-art models, namely, the SM 
(McAulay and Quatieri 1986), HNM (Stylianou 2001), and 
the recently developed aHM (Degottex and Stylianou 2012, 
2013).

For our purpose, and in order to cover voice variabil-
ity as much as possible, we used several voiced speech 
signals from both the CMU ARCTIC database (Kominek 
and Black 2003, 2004) and the recently developed Arabic 
speech database by Halabi (2016). The sampling frequency 
of the selected utterances is 16 kHZ for English speech cor-
pus and 48 kHz for Arabic speech corpus, respectively. For 
both speech databases the duration of the selected voiced 
utterances is of about 0.30 s.

Two distinct analysis windows were used in the tests: SM 
and HNM used Hanning window, however, aHM and R_aSR 
used Blackman window. For all models, the analysis window 
size was three times the local pitch period. To cover the full 
spectrum up to Nyquist frequency, each analysis window 
used enough components (i.e., 40).

A first estimation of the fundamental frequency was 
given. Next using this initial frequency parameter, HNM, 
aHM, and R_aSR estimated model parameters (amplitudes) 
using LS minimization. For SM, this initial frequency esti-
mate is not necessary because the model uses a peak picking 
analysis with a parabolic interpolation on the spectrum of 
the input signal to determine the model parameters (frequen-
cies, amplitudes, and phases).

All the estimated instantaneous parameters obtained from 
the previous stages, were then used to reconstruct the speech 
signal as follow: for SM and HNM reconstruction, we used 
the techniques described in McAulay and Quatieri (1986) 
and in Stylianou (1996), respectively. However, for aHM 
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and R_aSR reconstruction, the method described in Sect. 4 
was used.

Voiced speech reconstruction example is presented in 
Fig. 1 as follow: an original voiced speech segment is shown 
in panel a and four reconstructed speech signals along with 
their corresponding reconstruction errors are shown in pan-
els b–e.

Next, in order to assess the quality of the reconstructed 
speech signal in terms of intelligibility and natural-
ness, objective and subjective evaluation tests were also 
conducted.

In the objective evaluation test, a mathematical compari-
son of the original and the reconstructed speech signal is 
done by measuring the Signal-to-Reconstruction-Error Ratio 
(SRER) which represents a numerical distance (i.e., distor-
tion measure) between the two compared signals. The latter 
is computed using the following equation

where std is the standard deviation, s(t) is the original signal 
and r(t) represents the residual between the original and the 
reconstructed speech signal. Table 1 summarizes the results 
for the average SRER (in dB) of each representation.

In the subjective evaluation test and according to the rec-
ommendation ITU-R BS (The ITU Radiocommunication 
Assembly 2003), the original and the reconstructed speech 
signals are compared by a group of listeners who are asked 
to rate the synthetic speech quality using the following scale 
(5: excellent, 4: good, 3: fair, 2: poor, 1: bad). The resulting 

(18)SRER = 20 log10 std(s(t))∕std(r(t))

average score obtained from all listeners is referred to as 
Mean Opinion Score (MOS) measures . For our purpose, 
the original voiced speech recording followed by the recon-
structed speech signals from each model, are presented as 
model 1, model 2, model 3, and model 4 in a random order 
and the participants in the listening tests are requested to 
listen and evaluate the perceived quality of each resynthe-
sized speech. Figure presents the results of this subjective 
evaluation in terms of MOS measurements, thus showing the 
quality of the perceived reconstruction for each used model 
compared with the original voiced speech signal.

6  Discussion

The suggested representation was evaluated by making com-
parisons with a recently developed adaptive model dubbed 
aHM and two stationary models, namely, SM and HNM, 
using a subset of voiced recordings of English and Arabic 
speech databases. Some information was first given about 
the analysis–synthesis scheme of each model. Then, each 

Fig. 1  (a) Original speech signal, (b) SM Reconstruction and residual, (c) HNM Reconstruction and residual, (d) aHM Reconstruction and resid-
ual, (e) R_aSR Reconstruction and residual

Table 1  Objective evaluation in 
terms of SRER measures

Model SRER

SM 21.33
HNM 27.75
aHM 39.85
R_aSM 40.01
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selected voiced speech utterance was analyzed and synthe-
sized using all the compared models. Finally, numerical 
evaluations (i.e., metrics) such as SRER and MOS measures 
were calculated in order to evaluate the quality and transpar-
ency of the reconstructed speech signal from each model.

As it can be observed from the speech reconstruction 
example of Fig. 1, that the reconstruction errors are mini-
mized when using the R_aSR and aHM, which confirms the 
robustness of our proposed representation in estimating the 
instantaneous model parameters.

According to the results depicted in Table 1, we can see 
that the R_aSR and aHM provided high SRER measures 
compared to SM and HNM. Hence, high quality reconstruc-
tion of speech was proved using our proposed representation.

Evaluating which reconstructed speech was perceptu-
ally closer to the original voiced speech is the aim of the 
listening evaluation tests, and in general, the participants 
acknowledged the R_aSR reconstruction natural as is shown 
in Fig. 2. Similarly, the aHM provided transparent perceived 
quality compared to the standard SM and HNM.

Globally, R_aSR performs quite close or even better than 
aHM because it uses a robust adaptive scheme with an accu-
rate frequency correction mechanism leading into a more 
accurate modeling of voiced speech signals and an improved 
perceived quality compared with the standard stationary SM 
and HNM.

7  Conclusions and future perspectives

Various popular speech signal representations for speech 
analysis and synthesis are reviewed in this paper. Some of 
the key speech signals representations, we discussed, the 
linear prediction, sinusoidal and adaptive sinusoidal repre-
sentations. Furthermore, taking advantage of the recently 
suggested aSMs of speech, a R_aSR is proposed. This new 
model uses a quasi-harmonic representation at the analysis 
step to obtain a first estimation of its instantaneous parame-
ters and in order to refine the estimation, an adaptive scheme 

combined with an iterative frequency correction mechanism 
is used at the adaptive stage. The sum of the estimated time-
varying instantaneous components yields the final recon-
structed speech signal. Evaluation tests and experimental 
results confirmed the performance of the suggested repre-
sentation in modeling voiced speech signals compared to 
state-of-the-art models. Future perspectives include applying 
the (R_aSR) on modeling unvoiced speech sounds and in 
prosodic (i.e. time and pitch scale) modifications.
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