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Abstract
In this paper, we address the problem of speech enhancement by adaptive filtering algorithms. A particular attention has 
been paid to the backward blind source separation (BBSS) algorithm and its use in crosstalk resistant speech enhancement 
applications. In this paper, we propose to implement the BBSS algorithm in the wavelet-domain. The proposed backward 
wavelet BBSS (WBBSS) algorithm is then used in speech enhancement application when important crosstalk interferences 
are presents. The new WBBSS algorithm shows better performances in terms of convergence speed and steady state in 
comparison with the classical BBSS one. The performances properties of the proposed algorithm are evaluated in term of 
segmental SNR (SegSNR), segmental mean square error (SegMSE), and cepstral distance (CD) criteria. The obtained results 
have confirmed the best performance of the proposed WBBSS algorithm in a lot of situations when blind noisy observations 
are available.
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Abbreviations
BSS	� Blind source separation
BBSS	� Backward blind source separation
DFT	� Discrete Fourier transform
DWT	� Discrete wavelet transform
WBBSS	� Wavelet transform of BBSS
ANC	� Adaptive noise cancellation
LMS	� Least mean square
NLMS	� Normalized LMS
TSNR	� Two-step noise reduction
MSE	� Mean square error
SNR	� Signal to noise ratio
SegSNR	� Segmental signal to noise ratio
MSE	� Mean square error
SegMSE	� Segmental mean square error
CD	� Cepstral distance
dB	� Decibel
VAD	� Voice activity detector
E	� Expectation operator
H	� Mixing matrix

W	� Unmixing matrix
m	� Delay index
n	� Discrete time index
J	� DWT scale index
L	� Real and adaptive impulse responses 

length
M	� Mean averaging value of CD, Seg-

SNR, SegMSE
fs	� Sampling frequency

Parameters
s(n)	� Speech signal
b(n)	� Punctual noise
m1(n)	� First noisy observation
m2(n)	� Second noisy observation
h11(n) and h22(n)	� Direct impulse responses
h12(n) and h21(n)	� Cross-coupling impulse responses
�(n)	� Dirac impulse
v1(n)	� Estimated speech by forward structure
v2(n)	� Estimated noise by forward structure
w12(n) and w21(n)	� Adaptive coefficients
�12(n) and �21(n)	� Adaptive filter vectors
�
(1)

J, K
(n)	� Discrete wavelet transform of m1(n)

�
(2)

J, K
(n)	� Discrete wavelet transform of m2(n)

rv1v2 (m)	� Cross-correlation between v1(n) and 
v2(n)
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rv2v1 (m)	� Cross-correlation between v2(n) and 
v1(n)

θ1 and θ2	� Fixed step-sizes of BBSS
μ12 and μ21	� Fixed step-sizes of WBBSS
�1 and �2	� Small positive constant
ϕ(n)	� Discret wavelet function

1  Introduction

Various speech enhancement and acoustic noise reduction 
techniques have been developed in the previous years as 
speech enhancement is a core target in many challenging 
areas such as telecommunications, speech and speaker rec-
ognitions, teleconferencing and hand-free telephony (Loizou 
2007). In such applications, we aim to recover a speech sig-
nal from observations corrupted by different noises com-
ponents. The unusual noise components can be of various 
classes that are often present in the environment (Djendi 
et al. 2013).

Numerous algorithms and techniques were proposed 
to resolve the problem of corrupted speech signals (Dixit 
et al. 2014; Bactor and Garg 2012; Scalart and Filho 1996). 
Moreover, techniques of single or multi-microphones are 
proposed to improve the behavior of the speech enhance-
ment algorithms and also to reduce the acoustic noise com-
ponents even in very noisy conditions. The most popular 
single channel techniques that are widely known in speech 
enhancement application is the spectrum subtraction (SS) 
that needs only one channel signal (Boll 1979). It has been 
embedded in some high-quality mobile phones for the same 
application. However, the SS technique is only suitable for 
stationary noise environments. Moreover, it certainly intro-
duces music noise problem. In fact, the higher the noise is 
reduced, the greater the distortion is brought to the speech 
signal and accordingly the poorer the intelligibility of the 
enhanced speech is obtained (Zhang and Zhao 2012; Cappé 
1994). As a result, ideal enhancement can hardly be achieved 
when the signal-to-noise-ratio (SNR) of the noisy speech 
is relatively low; below 5 dB. In contrast, it has quite good 
result when the noisy speech SNR is relatively high; above 
15 dB.

The SS and others speech enhancement techniques that 
are based on SS principal have improved the decision 
directed (DD) techniques in reducing the musical noise 
components (Ephraim and Malah 1984, 1985; Ephraim 
et al. 2014; Selva Nidhyananthan et al. 2014). Several and 
recent algorithms that improve the DD techniques are pro-
posed in (Wolfe and Godsill 2003). In Dong et al. (2009), a 
speech enhancement algorithm based on high-order cumu-
lant parameter estimation is proposed. In (Davila 1984; 
Doclo and Moonen 2002), a subspace method, which is 
based on well-known singular value decomposition (SVD) 

techniques is proposed; the signal is enhanced when the 
noise subspace is removed, and accordingly, the clean 
speech signal is estimated from the noisy speech subspace.

Another approach that has been largely studied in speech 
enhancement application is the adaptive noise cancella-
tion (ANC) approach that was firstly proposed in (Wid-
row and Goodlin 1975; Widrow 1985). Furthermore, most 
important speech enhancement techniques and algorithm 
use adaptive approaches to get the tracking ability of non-
stationary noise properties (Lee and Gan 2004; Weinstein 
et al. 1993). Several adaptive algorithms have been pro-
posed for speech enhancement application, we can find 
time domain algorithm (21), frequency domain adaptive 
algorithms (Plapous et  al. 2004; Al-Kindi and Dunlop 
1989; Plapous et al. 2005; Djendi et al. 2015, 2016) or 
adaptive spatial filtering techniques (Tong et  al.2015; 
Goldsworthy 2014) that often use adaptive SVD techniques 
to separates the speech signal space from the noisy one.

Another direction of research combines the blind source 
separation techniques with adaptive filtering algorithms 
to enhance the speech signal and to cancel efficiently the 
acoustic echo components (Van Gerven and Compernolle 
1992; Djendi et al. 2006; Zoulikha and Djendi 2016; Jin 
et al. 2014). This approach uses at least two microphones 
configuration to update the adaptive filtering algorithms. 
Also, a multi-microphone speech enhancement approach 
has been proposed for the same purpose and have improves 
the existing one-channel and two-channel speech enhance-
ment and noise reduction adaptive algorithms (Benesty and 
Cohen 2017; Lee and Dae Na 2016). We can also find sev-
eral papers that highlighted the problem of speech enhance-
ment on a simple problem of mixing and unmixing signals 
with convolutive and instantaneous noisy observations (Jut-
ten and Herrault 1991; Nguyen Thi and Jutten 1995; Man-
sour et al. 1996).

In last ten years, a new direction of research have proven 
the efficiency of the wavelet domain as a new efficient mean 
that can improves the techniques of speech enhancement, 
and several techniques and algorithms have been proposed 
for the same purpose (Bouzid and Ellouze 2016; Ghribi et al. 
2016). In this paper, we propose a new implementation of 
the backward blind source separation (BBSS) algorithm in 
the wavelet domain.

The presentation of this paper is given as follows: after 
the introduction, we present, in Sect. 2, the noisy observa-
tions generation process that we use in this paper. Section 3 
is reserved to describe the classical and original backward 
blind source separation (BBSS) algorithm. Section 4 pre-
sents the proposed wavelet transform domain of the BBSS 
(WBBSS) algorithm that works in the wavelet domain and 
its mathematical formulation and derivation. In Sect. 5, the 
obtained results of the proposed WBBSS algorithm are 
presented, and finally we conclude our work in Sect. 6.
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2 � Noisy observations

In this work, we consider two noisy observations m1(n) 
and m2(n) available at the output of two sources and two 
sensors configuration mixing model. The mixing model 
uses two uncorrelated sources s(n) and b(n) that are the 
speech signal and the noise respectively. These two sig-
nals are considered real and statistically independent, i.e. 
E[s(n) b(n − m)] = 0 . The two mixing signals m1(n) and 
m2(n) at the sensor outputs of this model are given as fol-
lows (Djendi et al. 2013):

where ‘*’ is the convolution operator. �
12
(n) =

[

h
[1]

12
(n) ... h

[L]

12
(n)

]T

 

and �
21
(n) =

[

h
[1]

21
(n) ... h

[L]

21
(n)

]T

 represent the cross-coupling 

effects between the channels, and L is their length. The vectors 
�(n) = [b(n)...b(n − L + 1)]T and �(n) = [s(n) ... s(n − L + 1)]T 
are the punctual noise and the speech source signals. This 
mixing model allows to say the the first microphone is close 
to the speech signal, and the punctual noise is close to the 
second microphone. This configuration is very realistic as in 
a car or in an office (Djendi et al. 2013).

3 � Description of the BBSS algorithm

The general block diagram configuration of the multi-inputs 
multi-outputs (MIMO) and simplified two-inputs two-outputs 
(TITO) backward blind source separation (BBSS) algorithm 

(1)m1(n) = s(n) + �
T
21
(n) � (n)

(2)m2(n) = b(n) + �
T
12
(n) � (n)

is given in Fig. 1. The aim of this approach is to recover the 
original sources estimates by using only noisy observations.

In this paper, we study a particular two-inputs two-outputs 
(TITO or 2 × 2) BBSS algorithm that aims to separate the 
original sources estimates of one source signal s(n) and one 
punctual noise b(n) by using only two available noisy observed 
signals m1(n) and m2(n) at the input as given by Fig. 2.

The TITO BBSS algorithm is mainly based on the assump-
tions that the source signals, s(n) and b(n) , are statistically 
independents, and the mixing and unmixing models H and 
W respectively, are linear systems (Plapous et al. 2004). In a 
previous work, we have published a work on the implementa-
tion of the forward blind source separation (FBSS) algorithm 
in the wavelet-domain (Djendi et al. 2006; Mansour et al. 
1996). However, in this paper, we will focus our interest on 
the BBSS algorithm of Fig. 3 and its implementation in the 
wavelet-domain.

In the blind source separation model of Fig. 2, the output 
signals v1(n) and v2(n) of the BBSS algorithm are given by the 
following relations (Djendi et al. 2006; Zoulikha et al. 2014):

where �
1
(n) =

[

v
1
(n)...v

1
(n − L + 1)

]T  and �
2
(n) =

[

v
2
(n)

...v
2
(n − L + 1)

]T are the two outputs vectors of the BBSS 
algorithm. The vectors �

12
(n) =

[

w
[1]

12
(n) ... w

[L]

12
(n)

]T

 and 

�
21
(n) =

[

w
[1]

21
(n) ... w

[L]

21
(n)

]T

 are the adaptive cross-filters 

of the BBSS algorithm. The output signals v1(n) and v2(n) 
of Fig. 2 are obtained by inserting relations (1) and (2) into 
(3) and (4), respectively. In order to get the original speech 

(3)v1(n) = m1(n) − �
T
21
(n) �

2
(n − 1)

(4)v2(n) = m2(n) − �
T
12
(n) �

1
(n − 1)

Fig. 1   Block diagram of the 
BBSS algorithm in the case of 
MIMO configuration
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signal s(n) at the output v1(n) and the noise component b(n) 
at the output v2(n) without distortions, we have to use a voice 
activity detector (VAD) that updates alternatively the cross-
filters w21(n) and w12(n) . We recall here that the optimal 
solutions of the adaptive filters are obtained when 
w12(n) = h12(n) and w21(n) = h21(n) and we get:

According to Fig. 2, and by using a vector notation, the 
BBSS algorithm updates the cross-filters w21(n) and w12(n) 
by the following relations:

where the scalar �1 and �2 are the step sizes of the BBSS 
algorithm and selected as follows: 0<�1<1 , 0<�2<1 . The 
scalar �1 and �2 are small constants used to avoid division 
by zeros. In this paper, we propose to use automatic VAD 
technique that is inspired from (Zoulikha and Djendi 2016). 
We recall here that we can alternate the obtained original 
source signals by inverting the control of the adaptive filters. 
In Table 1, we summarize the BBSS algorithm.

(5)v1(n) = s(n)

(6)v2(n) = b(n)

(7)�12(n + 1) = �12(n) + 2�1
v2(n) �1(n)

�
T
1
(n) �1(n) + �1

(8)�21(n + 1) = �21(n) + 2�2
v1(n) �2(n)

�
T
2
(n) �2(n) + �2

4 � Proposed WBBSS algorithm

The proposed Wavelet-domain implementation of the BBSS 
(WBBSS) algorithm is given in Fig. 4. We use the discrete 
wavelet transform (DWT) to convert the mixing signals m1(n) 
and m2(n) into wavelet domain with several number of scales 
then we apply the BBSS structure. The proposed WBBSS 
algorithm uses approximations and details that are generated 
by DWT of m1(n) and m2(n) to update two cross-adaptive 
filters, w12(n) and w21(n). The two cross-filters are therefore 
used to enhances the speech signal at the output v1(n). To 
reconstruct the temporal version of the enhanced speech sig-
nal, we apply the inverse DWT at the output. We recall here 
that we propose to use a new voice activity detector (VAD) 
system to control the adaptive filter w21(n) to get the speech 
signal at the output v1(n) because we focus only on the speech 
enhancement signal recovered at the first output v1(n).

4.1 � Derivation of the proposed WBBSS algorithm

A detailed scheme of the proposed WBBSS algorithm is 
given in Fig. 5. The formulation of the proposed WBBSS 
algorithm is done in several steps.

In the first, we apply discrete wavelet transform (DWT) 
of scale N to the two mixing signal vectors m1(n) and 
m2(n). If the scale DWT number is denoted N, we can write 
for{J, K} = 0, 1, 2, 3, ..., N-1.:

(9)M
(1)

J, K
(n) =

∑

J, k

m1(n)ϕ
Θ
J,K
(n),

Fig. 3   Backward blind source 
separation (BBSS) algorithm. 
Two inputs and two output 
(TITO) configuration

Table 1   The BBSS algorithm (Djendi et al. 2006)

Intialisation 0<�1<1 , 0<�2<1 , �1 = 0.001 , �2 = 0.001 , �
1
(n) = [�]T , �

2
(n) = [�]T , �

12
(n) = [�]T , �

21
(n) = [�]T.

Filtering errors v1(n) = m1(n) − �
T

21
(n) �

2
(n − 1)

v2(n) = m2(n) − �
T

12
(n) �

1
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�
1
(n) =

[

v
1
(n) ... v

1
(n − L + 1)

]T ; �
2
(n) =

[

v
2
(n) ... v

2
(n − L + 1)

]T

Cross-filters update of BBSS �12(n + 1) = �12(n) + 2�1
v2(n) �1(n)

�
T

1
(n) �1(n)+�1

�21(n + 1) = �21(n) + 2�2
v1(n) �2(n)

�
T

2
(n) �2(n)+�1
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where ϕ
J, k
(n) = 2−J∕ 2ϕ

(

2−Jn-k
)

 is the wavelet basis func-
tion, and ‘ Θ ’ symbolizes complex conjugate. J and k indicate 
scale and translation respectively of the mother wavelet 
function ϕ . The two mixing signals m1(n) and m2(n) of 
length L are given by m1(n) =

[

m1(n), m1(n − 1),…m1

(n − L + 1)]T  ,  a n d  m2(n) =
[

m2(n), m2(n − 1),…m2

(n − L + 1)]T . The two (N x L) DWT matrices (where L is 
the length of the DWT vector for J scales) M(1)

J, K
(n) and 

M
(2)

J, K
(n) of the mixing signals m1(n) and m2(n), respectively, 

are defined as follows: M(1)

J, K
(n)=

[

m
(1)

0, K
(n),m

(1)

1, K
(n − 1),…

m
(1)

N-1, K
(n − L + 1)

]T

 and M(2)

J, K
(n)=

[

m
(2)

0, K
(n),m

(2)

1, K
(n − 1),

(10)M
(2)

J, K
(n) =

∑

J, k

m2(n) ϕ
Θ
J,K
(n), …m

(2)

N-1, K
(n − L + 1)

]T

 , where N is the DWT number scale, 

i.e., {J, K} = 0, 1, 2, 3, ..., N-1.

In the second step we apply the FBSS structure to the two 
converted DWT mixing signals M(1)

J, K
(n) and M(2)

J, K
(n).This pro-

cedure generates the approximations and the detail parts of the 
two mixing DWT observations, M(1)

J, K
(n) and M(2)

J, K
(n) , then 

we use them to estimate, at each iteration, the filtering errors 
vectors which are given as follows:

(11)�1 (n)=�1(n) −
∑

J

�
21, J

(n)�
(1)

J, K
(n)

(12)�2 (n)=�2(n) −
∑

J

�
12, J

(n)�
(2)

J, K
(n)

Fig. 4   Bloc diagram of the pro-
posed WBBSS algorithm. DWT 
discrete wavelet transform, 
IDWT the inverse of DWT, VAD 
a voice activity detector
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After the filtering errors vector computation, then we 
apply the BBSS algorithm to the two wavelets-domain mix-
ing signals �(1)

J, K
(n) and �(2)

J, K
(n) . We use approximations 

and details information of noisy observations, �(1)

J, K
(n) and 

�
(2)

J, K
(n) , to update the cross-adaptive filters �12,J(n) , and 

�21,J(n) at each sub-scale J:

The step-sizes �12 and �21 are used to control the adapta-
tion process of the convergence of the cross adaptive fil-
ters�12,J(n) , and �21,J(n) in each DWT scale, respectively. 
The two-step-sizes �12 and �21 must verify the following 
relations: 0 < 𝜇12 < 1 and 0 < 𝜇21 < 1 . The parameter � is 
a small scalar used to avoid division by zero. In last step, 
and in order to extract the speech signal at the output v1(n) 
and the noise component at the output v2(n), we propose 
to do a modification in relations (13) and (14) by applying 
an automatic VAD system that is proposed recently in (Jin 
et al. 2014). We normalized each relations (13) and (14) of 
the cross adaptive filters �12,J(n) , and �21,J(n) by the norm of 
the corresponding error vectors �2(n) and �1(n) , respectively. 
The new update formulas of the cross adaptive filter �12,J(n) 
and �21,J(n) at each wavelet scale are given as follows:

where the �12(n) and �21(n) are given by the following 
relations:

(13)

�12,J(n + 1) = �12,J(n) + 2�12�2(n)
M

(1)

J, K
(n)

�1 +M
(1)

J, K
(n)M

T(1)

J, K
(n)

(14)

�21,J(n + 1) = �21,J(n) + 2�21�1(n)
M

(2)

J, K
(n)

�2 +M
(2)

J, K
(n)M

T(2)

J, K
(n)

(15)�12,J(n + 1) = �12,J(n) + 2�12�2(n)�12(n)

(16)�21,J(n + 1) = �21,J(n) + 2�21�1(n)�21(n)

where ‖.‖2
2
 is the mathematical squared norm operator. 

�
j
(n) =

[

v
j
(n) ...v

j
(n − L + 1)

]T

 with j = {1, 2} are the out-

put BBSS signal vectors. The scalar �1 and �2 are small con-
stants used to avoid division by zeros. In Table 2, we sum-
marize the proposed WBBSS algorithm.

5 � Analysis of simulation results

We have done intensive experiments on the proposed 
WBBSS algorithm in comparison with the original version 
[i.e. BBSS (Djendi et al. 2006)], and the two-step noise 
reduction (that is called TSNR) algorithm (Plapous et al. 
2004) that use only one microphone to enhance the cor-
rupted speech signal, also this TSNR algorithm is mainly 
based on the use of the Wiener function gain to estimate in 
two times the correcting gain of the corrupted speech signal, 
this algorithm I well explained in (Plapous et al. 2004). The 
comparison of the proposed algorithm with BBSS (Djendi 
et al. 2006) and TSNR (Weinstein et al. 1993) is based on 
the evaluation of the convergence speed performance and the 
segmental mean square error of the output speech signals of 
each algorithm. The comparison is based on the following 
criteria: (i) the segmental mean square error (SegMSE), (ii) 
the segmental signal-to-noise-ratio (SegSNR), and (iii) the 
cepstral distance (CD) (Hu and Loizou 2007, 2008). All of 
the simulations are used the same parameters as given in 

(17)�12(n)
M

(1)

J, K
(n)

�1 +
‖

‖

v2(n)
‖

‖

2

2
+M

(1)

J, K
(n)M
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J, K
(n)

(18)�21(n)
M

(2)

J, K
(n)

�2 +
‖

‖

v1(n)
‖

‖

2

2
+M

(2)

J, K
(n)M

T(2)

J, K
(n)

Table 2   The proposed WBBSS 
algorithm [In this paper] Initialization 0 < 𝜇12 < 1 , 0 < 𝜇21 < 1 , �1 = 0.001 , �2 = 0.001 , �

1
(n) = [�]T , 

and �
2
(n) = [�]T , �

1
(n) = [�]T , and �

2
(n) = [�]T

�
12,J

(n) = [�]T , �
21,J

(n) = [�]T . Selection of ϕΘ
J,K
(n).

Noisy inputs DWT transformations M
(1)

J,K
(n) =

∑

J, k

m1(n) ϕ
Θ
J,K

(n)
 , 
M

(2)

J, K
(n) =

∑
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m2(n) ϕ
Θ
J,K
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Output filtering errors �1 (n)=�1(n) −
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�
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Intermediate automatic parameters
�12(n)
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�1+‖v2(n)‖
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2
+M

(1)

J, K
(n)M
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Cross-filters updates �12,J(n + 1) = �12,J(n) + 2�12�2(n) �12(n)
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Table 3 for the algorithms, i.e. the TSNR, the BBSS and the 
proposed WBBSS.

5.1 � Description of the signals used in simulation

In Fig. 6 we show the original speech signal and the USASI 
(United State of America Standard Institute, now ISI) noise 
signals that are used in simulation. On Fig. 7, we show 
an example of real impulse responses that we used in our 
experiments. These source signals are sampled at 16 kHz 
and coded on 16 bit. The speech signals are taken from the 
AURORA database. These signals are measured in real situ-
ations and often used in the domain of adaptive filtering and 
speech enhancement to test the performance of algorithms. 
We recall here that the used voice activity detector in the 
BBSS algorithm is manual.

In order to show the performance of the proposed 
WBBSS algorithm in comparison with the classical BBSS 
(Djendi et al. 2006), and the TSNR (Plapous et al. 2004), 
we have reported on Figs. 8 and 9 the output speech sig-
nal v1(n) obtained by the two algorithms (i.e. the classical 
BBSS, TSNR, and the proposed WBBSS). In the proposed 
WBBSS algorithm, the DWT scale is N = 2 (the results 
are shown on Fig. 8) and N = 4 (the results are shown on 
Fig. 9). The simulation parameters for each algorithm are 
given in Table 3.

According to Figs. 8 and 9, we can well see that the 
estimated speech signal v1(n) is quickly denoised by the 
proposed WBBSS algorithm in comparison with TSNR 
and BBSS algorithms that take more times to converge 
especially in the case of N = 4. This experiment leads to 
say that the three algorithms (BBSS, TSNR, and proposed 
WBBSS) are good enough, to reduce acoustic noise com-
ponents at the output. To give insight of the proposed 

Table 3   Simulation parameters 
of BBSS (Djendi et al. 2006), 
TSNR (Plapous et al. 2004), and 
proposed WBBSS algorithms

Parameters

Input signals Speech signal: Aurora data base
Noise: USASI noise
Sampling frequency rate: fs = 16 kHz

Mixing signals Real filters length: L = 128
Input SNR= − 6, 0, 6 dB

BBSS algorithm (Djendi et al. 2006) Adaptive filter length: L = 128
Fixed step-sizes: �1 = 0.8, �1 = 0.8
�1 = �2 = 10− 6

TSNR (Plapous et al. 2004) Frame length = 256; overlapping 
length = 50%, Wiener filter is used as a 
gain function

Proposed WBBSS algorithm [In this paper] Adaptive filter length: L = 128
Fixed step-sizes: �12 = 0. 8, �21 = 0.8
�1 = �2 =10− 6

Adaptive filters: relations (15) and (16)
DWT scale, N = 2 and 4
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Fig. 6   Simulated impulse responses in the spaced microphones case; [Left]: h12(n) , [Right]: h21(n) . The real filters length is L = 128. fs = 8 kHz
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WBBSS algorithm, we present in the next sections inten-
sive simulations that are carried out with other objective 
criteria.

5.2 � Segmental MSE (SegMSE) evaluation

In order to quantify the convergence speed performance of 
the adaptive filters of the proposed algorithm and its original 
version, i.e. the BBSS (Djendi et al. 2006), we have used 
the SegMSE criterion. As the output speech signal v1(n) is 

controlled by the adaptive filters w21(n), we concentrate on 
the evaluation of the SegMSE criterion calculated on the 
output of this filter, i.e. w21(n). This SegMSE criterion is 
evaluated by the following relation (Hu and Loizou 2007, 
2008):

(19)SegMSEdB =
10

M

M−1
∑
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log10

(

1

Z
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Fig. 7   Original speech signal taken from Aurora data-base [In left], and the USASI (United State of America Standard Institute now ANSI) 
noise [In right]
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Fig. 8   Outputs of BBSS [in black], TSNR [in blue] and proposed WBBSS [in green] for N = 2. (Color figure online)
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Fig. 9   Outputs of BBSS [in black], TSNR [in blue] and proposed WBBSS [in green] for N = 4. (Color figure online)
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where ‘Z’ is the time averaging frame length of the out-
put v1(n) or the segment length, and ‘M’ is the number of 
segments when speech signal is absent. We note that the 
SegMSE criterion is estimated in noise-only presence peri-
ods. This good property is achieved thanks to the speech sig-
nal intermittence property. All the simulation parameters of 
both algorithms are summarized in Table 3. The used noise 
types are White, Babble, USASI (United Sate of America 
Signal Institute now ANSI), and street. All the noises that we 
use in all the simulation of this paper are real and sampled 
at 8 kHz.

The obtained results of the SegMSE for four noises 
types are reported on Fig. 8. According to this experiment 
of Fig. 10, we can say that the proposed WBBSS algorithm 
behaves more efficiently than the BBSS, especially when the 
DWT scale is selected high (N = 4). This is true for all of the 
other DWT scales and for all noise types.

5.3 � SegSNR evaluation

We have evaluated the performance of the two-step noise 
reduction (TSNR) algorithm (Plapous et al. 2004), BBSS 

(Djendi et al. 2006) and the proposed WBBSS algorithm in 
terms of output segmental signal-to-noise ratio (SegSNR) 
criterion. The SegSNR allows quantifying the acoustic noise 
reduction amounts at the output. As we are interested on 
speech enhancement signal, we focus only on the SegSNR 
output of the output v1(n). The SegSNR criterion is evalu-
ated according to the following relation (Hu and Loizou 
2007, 2008):

where s(n) and v1(n) are the original and the enhanced speech 
signals, respectively. The parameters ‘M’ and ‘Z’ are the 
number of segments and the segment length, respectively. 
We note that at the output, we get ‘M’ values of the SegSNR 
criterion, each one is mean averaged on ‘N’ samples. The 
symbol | . | represents the magnitude operator. We recall here 
that all the ‘M’ segments correspond to only speech signal 
presence periods. The log10 symbol is the base 10 logarithm 
of a given number. The same parameters of each algorithm 
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Fig. 10   SegMSE of BBSS (Djendi et al. 2006) and proposed WBBSS algorithms for DWT scales N = 2 and 4. [Top left]: white; [Top right]: 
USASI; [Bottom left]: Babble; [Bottom right]: Street
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that are summarized in Table 3 are used in the simulation. 
The obtained results of the SegSNR are given in Fig. 11 for 
three input SNR values, i.e. -6 dB, 0 dB, and 6 dB.

According to Fig. 11, we note the best performances of the 
proposed WBBSS algorithm when the DWT scale is selected 
equal to N = 2. However, the SegSNR values decrease when 
the DWT scale increases. We have also noted that in low and 
high DWT scales, the general order values of the output Seg-
SNR are superior to 40 dB, which means that the proposed 
algorithms (with different DWT scales) and both of TSNR 
(Plapous et al. 2004) and BBSS (Djendi et al. 2006) algorithms 
lead to a good reduction of the acoustic noise components. 
The important advantage of the proposed WBBSS algorithm 
is the speech convergence property that was highlighted in the 
SegSNR and well shown in the SegMSE criterion of Sect. 5.2 
for each input SNR.

5.4 � CD evaluation

In order to quantify the distortion amount introduced in the 
output speech signal by the proposed WBBSS algorithm in 
comparison with the BBSS (Djendi et al. 2006) and the TSNR 
(Plapous et al. 2004) ones, we have evaluated the cepstral 
distance criterion. The CD criterion is computed by the log-
spectrum distance between the original speech signal s(n)and 

the output of the proposed WBBSS and BBSS algorithms, i.e. 
v1(n) . The CD criterion is evaluated by the following relation 
(Hu and Loizou 2007, 2008):

where  cs(n) =
1

2�

�

∫
−�

log |S(�)|ej�nd�  and cv1(n) =
1

2�

�

∫
−�

log|
|

V1(�)
|

|

ej�nd� are the nth real cepstral coefficients  

of the signals s(n) and v1(n), respectively. We recall here that 
S(�) and V1(�) present the short Fourier transform of the 
original speech signal s(n) and the enhanced onev1(n) , 
respectively. The parameter ‘Z’ is the mean averaging value 
of the CD criterion and ‘M’ represents the number of seg-
ment where only speech is present. The simulations param-
eters of this experiment are the same as given in Table 3. In 
order to well see the output speech signal distortion evolu-
tion of the proposed WBBSS algorithm, we have selected 
the DWT scale to be equal to N = 2 and then to N = 4. The 
simulation results of this experiment for three input SNR 
values, i.e. − 6, 0, and 6 dB are shown on Fig. 12.

From this experiment and according to Fig. 12, we con-
clude that the proposed WBBSS algorithm has almost the 
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Fig. 11   SegSNR evaluation of the BBSS (Djendi et al. 2006), TSNR (Plapous et al. 2004), and the proposed WBBSS algorithms for WDT scale 
N = 2 and 4. [Top left]: white; [Top right]: USASI; [Bottom left]: Babble; [Bottom right]: Street
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lower CD values for different scale of the DWT, with a slight 
superiority in the case when the DWT scale is selected 
N = 2. These results show that the proposed WBBSS algo-
rithm outperforms the conventional BBSS (Djendi et al. 
2006) and TSNR (Plapous et al. 2004) for each DWT scale. 
However, we observe a decrease of the CD values when the 
number of DWT scale is chosen low, i.e. N = 2. We have also 
noted that for high input SNR situations, the CD values are 
low thus signifying a superior intelligibility performance of 
the output speech signal of the proposed WBBSS algorithm. 
We have also observed that the enhanced speech signals of 
the proposed WBBSS algorithm sound much clearer with 
much less speech distortion than the BBSS (Djendi et al. 
2006) and TSNR (Plapous et al. 2004) algorithms.

6 � Conclusion

In this paper, we have proposed a new wavelet based BSS 
(WBBSS) algorithm that is based on a wavelet implemen-
tation of the backward blind source separation (BBSS) 
algorithm. The theoretical derivation and intensive experi-
mental validation of the proposed WBBSS algorithm have 

been presented along this paper. The proposed WBBSS 
algorithm has shown best performances in terms of seg-
mental signal-to-noise ratio, segmental mean square error 
and cepstral distance criteria. We have also shown the best 
convergence speed performance property of the WBBSS 
algorithm through the evaluation of the system mismatch 
criterion. This new work allows improving the convergence 
speed of the WBBSS algorithm even when very noisy obser-
vations are available. The drawback of the proposed WBBSS 
algorithm is a degradation of the criterion CD, SegMSE, 
SegSNR when the discrete wavelet transform (DWT) scale 
is selected high. Also, we have noted that the proposed 
WBBSS outperforms the BBSS and the TSNR algorithms 
with low DWT scales, and comparable performances when 
high DWT scales are selected. We have also noted that both 
of BBSS and TSNR algorithms use a manual VAD to give 
such performances, however, the proposed WBBSS algo-
rithm detect activity and silence periods of the speech sig-
nal automatically thanks to the modifications that we have 
reported on the update relation of the cross-filters (See rela-
tions 15, 16). This means that the new WBBSS algorithm 
can be used directly in practice as its work automatically 
without need of any VAD systems. In order to improve the 
behavior of the proposed WBBSS algorithm when the DWT 

Fig. 12   CD evaluation of the BBSS (Djendi et  al. 2006), the TSNR (Plapous et  al. 2004), and the proposed WBBSS algorithms. [Top left]: 
white; [Top right]: USASI; [Bottom left]: Babble; [Bottom right]: Street
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scales are selected high, we can envisage using a variable 
step-size to correct this problem in our future works.
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