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Abstract
In this paper, a novel technique has been proposed for the vowel region detection from the continuous speech using an enve-
lope of the derivative of the speech signal, which is a non-negative, frequency-weighted energy operator. The proposed vowel 
region detection method is implemented using a two-stage algorithm. The first stage of vowel region detection consists of 
speech signal analysis to detect vowel onset points (VOP) and vowel end-points (VEP) using an instantaneous energy con-
tour obtained from the envelope of the derivative of a speech signal. The VOPs and VEPs are spotted using the peak-finding 
algorithm based upon the first order Gaussian differentiator. The next stage consists of removal of spurious vowel regions and 
the correction of hypothesized VOP and VEP locations using combined cues obtained from the uniformity of epoch intervals 
and strength of the excitation of the speech signal. Performance of the proposed method for detecting vowel regions from the 
speech signal is evaluated using TIMIT acoustic-phonetic speech corpus. The proposed approach resulted in significantly 
high detection rate and less false alarm rate compared to the state-of-the-art methods in both clean and noisy environments.

Keywords  Vowel onset point · Vowel end-point · Instantaneous energy contour · Envelope-derivative of the speech signal · 
Uniformity of epoch intervals · Strength of the excitation

1  Introduction

Vowels are primary units of the sound system of a lan-
guage  (Johnson 2004). These are produced by periodic 
impulse like excitation and possess high energy, perio-
dicity and longer duration (Deller et al. 1993; Fant 1971; 
Stevens 2000). Vowel region detection is a task of identi-
fying vowel occurrences with precise boundary markings. 
These boundary markings are termed as vowel onset point 
(VOP) and vowel end-point (VEP). VOP is the time instant 
at which vowel region begins and VEP can be considered 
as the time instant at which vowel region ends in a con-
tinuous speech. The vowel regions detection is an important 
step in many speech processing applications. These include 
automatic speech recognition (ASR), speaker verification, 

smart audio filtering, recognition of CV units for emotion 
conversion, determining the duration of vowels in forensic 
applications, speech rate manipulation in speech synthesis, 
cochlear implants, and multimedia synchronization (Hermes 
1990; Donaldson et al. 2013; Juneja and Espy-Wilson 2008; 
Rao and Yegnanarayana 2009; Pradhan and Prasanna 2013; 
Prasanna and Pradhan 2011; Rose 2003).

Modern digital signal processing algorithms have 
been used for detecting acoustic events such as fricative, 
voice onset time for stops, VOPs and VEPs in a continu-
ous speech (Vydana and Vuppala 2016; Dumpala et al. 
2016; Saha et al. 2016; Hansen et al. 2010). The knowl-
edge of crucial acoustic events such as VOP and VEP of 
the speech can be integrated into the automatic statistical 
speech processing systems to improve the overall perfor-
mance. Using these landmarks as speech characteristic 
cues, speech systems are developed to process externally 
degraded speech (Salomon et al. 2004). The landmark 
detection is used as a front-end framework of speech sys-
tems that can supplement existing statistical based speech 
processing systems  (Schutte and Glass 2005; Glass 2003). 
In the literature, the problem of identifying vowel regions 
under the context of landmark detection is studied through 
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the extraction of distinctive features (Liu 1996). The vowel 
regions were marked using VOPs derived from excitation 
source information of speech signal (Prasanna and Yegna-
narayana 2005). VOP detection methods are based on ris-
ing slope of spectral amplitude in the magnitude spectrum 
of the speech signal. An alternative method is proposed 
by combining evidence from the excitation source, spec-
tral peaks and modulation spectrum for the detection of 
VOP (Prasanna et al. 2009). An improved VOP detection 
for vowel region extraction is proposed based on spectral 
energy present in glottal closure regions of speech sig-
nal (Vuppala et al. 2012; Vuppala and Rao 2013). The 
VOPs were corrected using uniformity of epoch inter-
vals (Vuppala et al. 2012). In another attempt, a method 
was proposed to detect VEPs based on falling and rising 
of the slope of spectral energy (Yadav and Rao 2013). The 
region between VOP and VEP is considered as a vowel 
region. Recently a technique was proposed on improve-
ments in detection of VOP and VEP using three-class clas-
sifier with front-end feature extraction technique (Kumar 
et al. 2017). This approach exploits spectral and tempo-
ral characteristics of the excitation source information of 
the speech signal. A vowel detection method is proposed 
based on temporal objective contour generated from the 
speech signal and spectrally processed to obtain vowel 
landmarks (Kashani et al. 2017).

Inspired by the previous works related to the VOP and 
VEP detection and treating a vowel region in between the 
VOP and VEP, an alternative method is presented for the 
detection of vowel regions using an envelope of the deriva-
tive of the speech signal. The proposed method is carried 
out in two stages. In the first stage, the landmarks such as 
VOP and VEPs are detected with a known characteristic 
that vowels exhibit high sonority and loudness. The land-
marks are obtained from the envelope of the derivative of 
the speech signal. This technique produces optimum instan-
taneous energy contour with a good temporal resolution to 
localize the occurrence of the acoustic events. This energy 
measure includes both amplitude and frequency information 
of the speech signal, so that landmarks are detected based on 
spectral content intensity variation around VOPs and VEPs. 
In the second stage, two cues namely uniformity of epochs 
and strength of the excitation (SoE) of the speech signal are 
used to eliminate spurious vowel regions along with the cor-
rection of onset point and end-point locations of the vowels.

Rest of the paper is organized in the following manner: 
Sect. 2 describes the baseline methods for the vowel region 
detection. In Sect. 3, an envelope of the derivative of the 
signal and its properties are discussed. The proposed method 
for vowel region detection is described in Sect. 4. The per-
formance of the proposed method evaluated using TIMIT 
acoustic-phonetic speech corpus is discussed in Sect. 5. Sec-
tion 6 describes the summary and conclusions of this work.

2 � Baseline methods

Significant research has been carried out on detection of 
VOPs and VEPs from the continuous speech and a few stud-
ies are targeted towards detecting vowel regions. Among 
these, two state-of-the-art methods for vowel region detec-
tion schemes have been considered for comparing the per-
formance of the proposed method. The recent works (Kumar 
et al. 2017; Kashani et al. 2017) with a range of performance 
scores for vowel region detection on TIMIT speech corpus 
have been used for the evaluation of the proposed method. 
These methods are referred as method I and method II in 
this paper. In method I, vowel region detection was carried 
using different acoustic modeling approaches using the com-
bination of mel-frequency cepstral coefficients and excita-
tion source features. Among these approaches, it is reported 
that the subspace GMM–HMM with discriminative training 
using boosted maximum mutual information produced supe-
rior performance. In method II, vowels are detected using 
a perceptually-enhanced spectrum matching. It explores a 
new model based on proposed components called matched 
filters. Matched filters are extracted by applying a series 
of perceptually-based processing operations to the speech 
spectra of the voiced frames. MFs are subjected to different 
factors leading to the variation in the speech spectra. An 
acoustic space representing two effective factors, namely 
phonetic context and speaker identity is modeled. Then, 
vowel and consonant MFs are conditioned to this context-
speaker acoustic space.

In addition to these methods, the state-of-the-art tech-
niques for the detection of VOPs and VEPs have been 
selected to formulate vowel region detection methods. 
Therefore, these methods are also considered as a baseline 
methods of this work. The experimental results obtained by 
the proposed method were used to compare with the base-
line methods based on vowel region overlap criteria with 
the ground truth. In this paper, the formulated baseline 
methods are referred as COMB method and FGCI method 
respectively. In this regard, two VOP and a VEP detection 
techniques  (Prasanna et al. 2009; Vuppala and Rao 2013; 
Yadav and Rao 2013) were selected to implement these 
baseline vowel region detection methods. In COMB method, 
vowel regions are detected from the cues obtained using 
the combination of the excitation source, spectral peaks, 
and modulation spectrum of the speech signal. The spectral 
energy contour around the glottal closure instants (GCIs) is 
used as an evidence for detecting VOPs and VEPs in FGCI 
method. These methods have been described in the follow-
ing subsections.
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2.1 � Vowel region detection using COMB method

In this method, the combined evidence for the detection 
of boundary markings of a vowel region is derived from 
the three shreds of evidence derived from the excitation 
source, spectral peaks and modulation spectrum. Speech is 
produced by the excitation of the time-varying vocal tract 
system with a quasi-periodic signal. The time-varying exci-
tation information is context-dependent in terms of voicing, 
level of voiced energy, and associated periodicity. Linear 
prediction (LP) residual corresponds to the excitation source 
information useful in voice analysis of a speech signal. It is 
extracted using LP analysis (Makhoul 1975). The time-vary-
ing dynamics in the excitation characteristics are overspread 
in the LP residual due to its bipolar nature (Ananthapad-
manabha and Yegnanarayana 1979). So, Hilbert envelope 
of LP residual is estimated, which is unipolar. The smooth-
ened Hilbert envelope of the LP residual is obtained by con-
volving with Hamming window of 50 ms. This evidence is 
considered for the VOP and VEP detection and enhanced 
using first-order difference operator. These acoustic events 
are detected based on the nature of the gradient of the output 
signal.

This method also seeks to characterize the periodic and 
high-intensity variation of acoustic amplitude as a function 
of time during vowel production in a speech signal. A 256-
point DFT of the speech signal with 20 ms duration with 
50% overlap produces amplitude spectrum. The sum of ten 
largest spectral peaks is selected from the first 128 points 
and plotted as a function of a time. It represents the spectral 
energy contour of the speech signal. The reason for select-
ing ten largest peaks is that, they characterize gross level 
information of the vocal-tract shape (Prasanna et al. 2009). 
The VOP and VEP can be observed as a significant changes 
in a complementary manner in this time-varying signal. The 
locations of the VOPs and VEPs are enhanced in the spec-
tral energy signal using first order difference. Thus obtained 
spectral energy is used to supplement the first evidence in 
the process.

A slowly varying temporal envelope of a speech signal 
can be represented by using amplitude modulation spectrum 
or simply modulation spectrum. The modulation spectrum 
of speech is dominated by the low-frequency components. 
VOP and VEP detection using modulation spectrum energy 
is carried out in the following sequence of steps. The speech 
signal is passed through approximately 18 trapezoidal criti-
cal bandpass filters between 0 and 4 kHz. An amplitude 
envelope of the signal is computed using half wave rectifica-
tion and low pass filtering on all bands. Amplitude envelope 
signals are down-sampled to 80 and normalized by the aver-
age envelope of that channel, measured over entire utterance. 
The modulations of the normalized envelope signals are ana-
lyzed by computing DFT over 250 ms with an overlap of 5% 

in order to capture dynamic properties of the signal. The 
4–16 Hz components are added together across all critical 
bands to derive modulation spectrum energy. Thus obtained 
signal is enhanced and processed to obtain third evidence for 
detecting VOPs and VEPs. The combined method uses three 
independent and complementary evidence to derive a sin-
gle combined evidence by adding three shreds of evidence 
sample by sample. The combined evidence is convolved 
with first-order Gaussian difference operator having 100 ms 
length and 25 ms standard deviation. Spurious peaks are 
eliminated by thresholding. The VOPs and VEPs are marked 
at peaks and valleys of the convolved output (Prasanna et al. 
2009; Yadav and Rao 2013). The regions between a VOP 
and a VEP is hypothesized as a vowel region. Experimental 
result for the COMB method is shown in Fig. 1. From the 
Fig. 1f, it is noted that spurious vowel regions are detected 
producing higher false alarm (FA) rate in this method.

2.2 � Vowel region detection using FGCI method

The time instants at which glottal signal produce high energy 
during the production of voiced speech are referred as GCIs. 
The vocal tract is completely isolated from trachea and lungs 
during glottal closure phase. Spectrum estimation during 
glottal closure phase will be more accurate as true vocal 
tract resonances are present during this period. The spectral 
energy is computed around the GCIs has been used as an evi-
dence to detect VOP and VEP. Firstly, the GCIs are detected 
using zero frequency filtering (ZFF) technique (Yegnana-
rayana and Murty 2009). Around these GCIs, formants are 
computed for 30% of speech samples using group delay 
function. This formant energy of speech signal is computed 
as the sum of first three formants, and it is plotted as a func-
tion of time. This formant energy contour is smoothed using 
mean smoothing window of 50 ms and enhanced using first-
order difference operator. Significant changes in the spectral 
characteristics, present in the enhanced signal are detected 
by convolving the same with first-order Gaussian differen-
tiator operator having 100 ms length and 25 ms standard 
deviation. After eliminating the spurious peaks, positive and 
negative peaks of this signal represent locations of VOP and 
VEP respectively (Vuppala and Rao 2013; Yadav and Rao 
2013). The region between VOP and VEP is considered as a 
vowel region. Figure 2 demonstrates the experimental result 
for a test utterance using FGCI method. Figure 2a–f refers to 
a continuous speech utterance, sum of the first three formant 
peaks, mean smoothed evidence contour, enhanced evidence 
using first-order difference operator, VOP and VEP mark-
ings using FOGD operator and prediction respectively. From 
the Fig. 2, it is noted that the result produced in this method 
is closely comparable with the COMB method.
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3 � Non‑negative frequency‑weighted energy 
measure

Most of the natural signals change with time. Speech is 
also natural signal and the source of changes in speech sig-
nal is due to the change in the shape of a vocal tract that 
enhances or attenuates individual spectral components. The 
most important phonetic information is embedded in these 
changes and it reflects in the instantaneous energy variation 
of the speech signal. The energy in a speech signal is the 
average of the sum of the squares of the magnitude of the 
speech signal either in a time domain or frequency domain. 
It is given by |x(t)|2 or the envelope of the signal as:

where S[.] is the envelope operator and H[.] is the Hilbert 
transform operator. It produces energy as a function of 
amplitude of the signal. From the physics perspective, it has 
understood that the system requires more energy to generate 

(1)S[x(t)] = |x(t) + jH[x(t)]|2

a high-frequency signal than a low-frequency signal with the 
same amplitude. In this context, Kaiser proposed an energy 
measure based on Teagers work which includes not only 
amplitude but also the frequency of the signal (Teager and 
Teager 1990; Kaiser 1993). This non-linear energy measure 
has been referred as Teager–Kaiser energy operator. It is an 
instantaneous energy measure that differs from the signal 
processing perspective. The Teager–Kaiser energy measure 
for the continuous signal x(t) is defined as a second order 
differential equation:

where ẋ(t) = dx(t)∕dt and ẍ(t) = d2x(t)∕dt2. The discrete 
counter part of Teager–Kaiser energy operator is given by:

It is noted that this instantaneous energy measure is esti-
mated from the three current samples and depends on both 
amplitude and frequency of the speech signal. Typical value 

(2)𝜓[x(t)] = ẋ2(t) − x(t)ẍ(t)

(3)�[x[n]] = x2[n] − x[n − 1]x[n + 1]
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Fig. 1   Detection of vowel region using COMB method for a speech 
utterance /“Personal predispositions tend to blunt”/. a Speech sig-
nal with vowel boundaries marked as per TIMIT acoustic-phonetic 
speech corpus. b Combined evidence. c Mean smoothed evidence 

contour. d Enhanced evidence using first order difference operator. e 
Hypothesized VOPs and VEPs for the speech signal. f Prediction and 
the speech signal with ground truth (dashed line)
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of S
[
Acos

(
�0t

)]
 is equal to A2 . A non-negative frequency-

weighted energy operator was used to assess instantaneous 
energy in EEG signal (O’Toole et al. 2014). Inspired by 
the success of non-negative, frequency-weighted energy 
operator to compute instantaneous energy in biomedical sig-
nal processing, and a similar idea is used in the context of 
speech signal processing  (Kaiser 1990; Palmu et al. 2010). 
This energy measure is proposed based on the derivative of 
envelope of the signal, which includes frequency informa-
tion. It is formulated by applying a weighting filter with 
frequency response |H(�)|2 = �2 to the signal. The deriva-
tive function is selected as a filter to maintain similarity with 
Teager–Kaiser operator and this operator is defined as

This energy operator is termed as an envelope of the 
derivative of a signal  (O’Toole et al. 2014). It satisfies all 
important properties of Teager–Kaiser operator and it dif-
fers to Teager–Kaiser operator, which includes additional 

(4)𝛤 [x(t)] = |ẋ(t) + jH[ẋ(t)]|2 = ẋ2(t) + H[ẋ(t)]2

modulation term. In addition, this energy measure does 
not create negative values in multi-component signals 
like speech signal and exhibits the non-negative property. 
For comparison, the instantaneous energy contours of 
Teager–Kaiser operator and an envelope-derivative opera-
tor are shown in the Fig. 3.

4 � Proposed method for the detection 
of vowel regions

An alternative method has been proposed to detect vowel 
regions from the speech signal using a non-negative, fre-
quency-weighted energy operator. It is based on the energy 
transitions in the instantaneous energy contour of the speech 
signal. The motivation for the proposed vowel region detec-
tion is that the levels of energy in speech signal is distributed 
across a range of frequencies and change with time, A signal 
processing tool to track the dynamic energy transitions can 
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Fig. 2   Detection of vowel region using FGCI method for a speech 
utterance /“Personal predispositions tend to blunt”/. a Speech sig-
nal with vowel boundaries marked as per TIMIT acoustic-phonetic 
speech corpus. b Formant energy contour. c Mean smoothed formant 

energy contour. d Enhanced evidence using first order difference 
operator. e Hypothesized VOPs and VEPs for the speech signal. f Pre-
diction and the speech signal with ground truth (dashed line)



284	 International Journal of Speech Technology (2018) 21:279–291

1 3

be used as cues to detect landmarks using frequency depend-
ent non-negative energy operator. In spectral energy based 
landmark detection methods, a spectrum for the speech sig-
nal is estimated using a frame size of 20 ms with a frame 
shift of 10 ms. The spectral energy around the regions of 
GCIs is computed and used as an evidence in other methods. 
In these GCI synchronous methods, the speech segment con-
sidered for estimating spectrum is 30 % of the pitch period 
with an assumption that speech signal during glottal closure 
phase has a high signal to noise ratio compared to the other 
regions. The non-negative, frequency-weighted energy oper-
ator serves as a tool, which produces instantaneous energy 
contour of the speech signal eliminating the block process-
ing of the speech signal. It produces better time localization 
pertaining to the energy contour. The sharp rise and fall of 
energies around GCIs can be visualized as VOPs and VEPs. 
This vowel region detection method has been implemented 
in two stages. In the first stage, onset and end-points of the 
vowel are detected using the instantaneous energy contour of 
the speech signal. In the second stage, the positions of VOPs 
and VEPs have been corrected along with the removal of 
spurious vowel regions. This is carried out based on the uni-
formity of epochs and the SoE profile. These regions can be 
considered as linguistically relevant information possessing 
regions, that can be used in the front-end of the automatic 
speaker recognition system.

4.1 � Stage 1 : VOP and VEP detection using 
non‑negative frequency dependent energy 
measure

As a part of the first step in vowel region detection, the 
VOPs and VEPs are detected from the continuous speech 
signal in the following manner: an envelope of the deriva-
tive of the signal, which is non-negative frequency depend-
ent energy operator is applied to the speech signal x[n], to 

produce instantaneous energy contour. It is computed from 
the discrete counterpart of the Eq. 4 and given by:

The Hilber t  t ransform of  the s ignal  x[n] i s 
denoted  a s  h[n] = H[x[n]] .  I t  i s  de f ined  a s 
IDFT{−jsgn[N∕2 − k]sgn[k]X[k]} , and X[k] = DFT{x[n]} , 
where N is length of the speech signal, DFT is discrete Fou-
rier transform and IDFT is the inverse DFT. This energy 
operator is nearly instantaneous in discrete time as energy 
computation of a speech signal is done with three samples 
at each time instant. It provides good time resolution to cap-
ture energy fluctuations of a speech signal within a glot-
tal cycle. The fluctuations produced in the energy contour 
are smoothed by using mean smoothing with 50 ms win-
dow. The change at the acoustic landmarks present in the 
smoothed instantaneous energy contour of the speech signal 
is enhanced by computing it’s slope using the first order dif-
ference of the resulting signal is given by:

where y�[n] is the mean smoothed instantaneous energy 
contour. The regions associated with zero crossing points 
from both positive to negative and negative to positive are 
enhanced by normalization process given by:

where yN[n] is the normalized value of the yd[n] . The min 
and max are the local minimum and maximum respectively. 
The predominant energy changes present in the enhanced 
instantaneous energy contour associated to the vowel land-
marks are detected by convolving with the first order Gauss-
ian differentiator operator of 100 ms. A Gaussian window 
g[n] of length L is given by:

where � is the standard deviation and L corresponds to the 
length of the Gaussian window. The first order Gaussian 
window is termed as gd[n] and given by:

First order Gaussian differentiator provides a mechanism to 
compute slope at each sample. Considering the enhanced 
energy contour yN[n] as weighted sum of unit sample 
sequence and given by:

(5)

y[n] = Γ[x[n]] =
1

4

[
x2[n + 1] + x2[n − 1] + h2[n + 1]

+h2[n − 1]
]
+

1

2
[x[n + 1]x[n − 1] + h[n + 1]h[n − 1]]

(6)yd[n] = y�[n] − y�[n − 1]

(7)yN[n] =
yd[n] − min

max − min

(8)g[n] =
1

√
2��2

e−
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Fig. 3   Comparative analysis of Teager–Kaiser energy measure and 
energy measure using derivative of envelope of the signal
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Here ak corresponds to the weights and �[n] is the unit sam-
ple sequence. The convolved output of the enhanced energy 
contour yN[n] and FOGD operator gd[n] is p[n] given by:

It produces zero at the output for the constant slope region, 
a positive peak to the energy transition on the rising note, 
a negative peak to the energy transition on the falling note 
respectively. The positive peaks and negative peaks from 
the evidence plot correspond to the VOP and VEP loca-
tions. The region between a VOP and VEP is considered 
as a vowel region. The result for vowel region detection 
using envelope of the derivative of a speech signal shown 

(10)yN[n] =

N∑

k=1

ak�[n − k]

(11)p[n] = yN[n] ∗ gd[n] =

N∑

k=1

ak⋅gd[n]⋅�[n − k]

in Fig. 4. A speech utterance /”Personal predispositions 
tend to blunt“/ with vowel boundaries marked as per TIMIT 
acoustic-phonetic speech corpus is shown in Fig. 4a. In 
this work, ground truth containing a cluster of vowels that 
appear in a sequence are treated as a single unit. The enve-
lope of the derivative of the speech signal, mean smoothed 
energy contour and the enhanced energy contour are shown 
in Fig. 4b, c and d respectively. The output signal obtained 
by convolving energy contour with the FOGD operator and 
the detected vowel boundaries are given in Fig. 4e. The pre-
dicted vowel regions using the proposed method and the 
ground truth (dashed line) are shown in Fig. 4f. The vowel 
regions detected by the proposed method (first stage) are 
not completely in-line with the vowel regions marked in the 
TIMIT acoustic-phonetic speech corpus. From the Fig. 4f, it 
is noted that the proposed method is superior to the baseline 
methods in terms of spurious vowel detection.
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Fig. 4   Detection of vowel region using the proposed method (stage 
I) for a speech utterance /“Personal predispositions tend to blunt”/. a 
Speech signal with vowel boundaries marked as per TIMIT acoustic-
phonetic speech corpus. b Energy contour of a speech signal. c Mean 

smoothed energy contour. d Enhanced Energy signal contour. e VOP 
and VEP marking after convolving with FOGD operator. f Prediction 
and the ground truth (dashed line)
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4.2 � Stage 2 : Post processing of VOP and VEP 
locations using uniformity of the epochs 
and strength of the excitation

The resulting prediction is further improved in the second 
stage by removing spurious vowel regions and correcting the 
positions of VOP and VEP locations using the uniformity 
of epoch intervals and the SoE of the speech. It is under-
stood that speech is comprised of source and system related 
information. The energy changes in the speech signal during 
the vowel production is reflected in the excitation source 
information. Therefore, these changes are characterized by 
the SoE. The fundamental frequency of vibration of vocal 
folds during the vowel production is near-uniform in the 
speech signal and it is measured as an inverse time period 
between two epoch locations where, the epoch location is 
the instant at which significant excitation takes place dur-
ing the speech production. The SoE and uniformity of the 
epochs are computed from the zero frequency filtered (ZFF) 
signal (Yegnanarayana and Murty 2009) as it highlights the 
high information in lower frequency bands (Murty and Yeg-
nanarayana 2008; Yegnanarayana et al. 2011). The proce-
dure of computing these parameters is carried out in the 
following manner: Consider a speech signal s[n] and perform 
high frequency boosting as it is noted that higher frequencies 
are more important for signal disambiguation than lower 
frequencies.

The speech signal is fed to a resonator centered at 0 Hz. The 
resonator is realized using the following transfer function. 
The output of cascade of two ideal second order digital reso-
nators at zero frequency is computed as:

where a 1 = 4, a 2 = −6, a 3 = 4 and a 4 = −1. The transfer 
function of the system is given by:

The progression can be removed from the output signal 
using progression removal operation, which involves sub-
tracting the local mean of the original signal at every instant 
of time. This is represented using the following expression:

where ỹ[n] = 1∕2N + 1
∑N

n=−N
y[n] . Here 2N+1 is the size of 

the window used for computing local mean, which is typi-
cally average pitch period. The resulting output signal is 
called ZFF signal. The negative to positive zero crossings of 

(12)x[n] = s[n] − s[n − 1]

(13)y[n] =

4∑

k=1

�ky[n − k] + x[n]

(14)H(z) =
1

(
1 − z−1

)4

(15)ŷ[n] = y[n] − ỹ[n]

ZFF signal corresponds GCIs. The gradient of ZFF signal at 
each GCI is termed as SoE (Yegnanarayana and Murty 2009; 
Gangamohan et al. 2014; Vydana et al. 2015).

The SoE is high and successive pitch cycles will be simi-
lar in the vowel regions. The spurious vowel regions are 
removed based on the uniformity of the epochs and the 
SoE. The positions of VOPs and VEPs are corrected based 
on combined cues from the SoE and uniformity of epoch 
intervals. The SoE exhibits positive trend from a local min-
imum at VOP and a negative trend from a local minimum at 
VEP respectively. The uniformity transition points on the 
pitch contour are also corresponds to the vowel bounda-
ries. Therefore, the SoE contour and uniformity of epoch 
intervals can be used as an evidence for correcting the posi-
tions of VOPs and VEPs. The post-processing mechanism 
is demonstrated in Figs. 5, 6 using two different speech 
utterances. Figure 5a shows the speech signal used in the 
stage I with ground truth. Figure 5b–f correspond to the 
prediction in the first level, epoch intervals contour, spuri-
ous removed vowel regions, SoE of the continuous speech 
and the hypothesized prediction obtained via post process-
ing of VOPs and VEPs. In this case, spurious vowels are 
not detected. However, the positions of vowel boundaries 
are corrected based on the SoE profile and uniformity of 
epochs. To demonstrate the significance of removing spuri-
ous vowel regions, a different speech utterance /“The ear 
and in turn the voice as well”/ is considered. The post pro-
cessing mechanism for this signal is demonstrated in Fig. 6. 
A spurious vowel region (marked red in color) is shown in 
Fig. 6b. This region is masked as the epoch intervals are 
found to be non-uniform in that region and the corrected 
prediction is shown in Fig. 6c. Thus obtained prediction is 
further enhanced by correcting the locations of VOP and 
VEP based on the SoE. The VOP and VEP locations are 
aligned towards the positive and negative slopes of the SOE 
respectively. The starting point of positive trend and ending 
point of the negative trend associated with SoE were used 
to correct the locations through thresholding. The results 
produced after the post processing in the proposed method 
are significantly better than the baseline methods in terms 
of detection rate (DR) and FA. The combined sequence 
of steps from stage 1 and stage 2, for the proposed vowel 
region detection method are listed in below:

Sequence 
of steps

Vowel region detection

1 Compute instantaneous energy measure of speech signal 
using envelope of the derivative of the speech signal

2 Mean smooth of energy contour using 50 ms window
3 Enhance the smoothed energy contour using first order 

difference operator
4 Convolve the resulting signal using FOGD operator to 

detect VOPs and VEPs
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Sequence 
of steps

Vowel region detection

5 Remove spurious consonant regions in between a vowel 
region based on the distance criteria (20 ms)

6 Remove spurious vowel regions based on uniformity of 
epochs

7 Correct the locations of VOPs and VEPs based on the 
trend of the SoE

5 � Performance evaluation of the proposed 
method

The experimental results are reported and comparisons 
between the proposed method and other state of the art 
methods is discussed in this section. The proposed two-
stage vowel region detection method is evaluated by 
considering a subset of TIMIT acoustic-phonetic speech 
corpus. 500 test utterances from TIMIT acoustic-phonetic 

speech corpus, spoken by 50 speakers (25 male and 25 
female) are used for evaluating the proposed vowel region 
detection method. For scoring, the detected vowel regions 
are compared with labeled boundaries of vowel regions 
given in TIMIT acoustic-phonetic speech corpus. The 
phones are mapped into two manner classes namely vowels 
and non-vowels. Vowel class includes vowels, semi-vow-
els, and diphthong sound units and, the remaining phones 
are treated as non-vowels. These classes are considered as 
ground truths for vowel region marking.

The performance of the proposed method is compared 
using metrics such as DR, missing rate (MR), total error 
(TE) and FA rate for different amounts of overlap of vowel 
region with ground truths.

–	 DR refers to the ratio of a number of genuine vowel 
regions detected to the total number of reference 
ground truths.
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Fig. 5   Detection of vowel region using the proposed method with 
post processing (stage II). a Speech signal utterance /“Personal pre-
dispositions tend to blunt”/ with marked vowel boundaries. b Predic-
tion. c Epoch intervals of speech signal. d Prediction without spuri-

ous vowel regions. e Strength of the excitation of speech signal. 
f Corrected vowel regions by modifying the positions of VOPs and 
VEPs of the speech signal
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–	 The ratio of undetected vowel regions to the total num-
ber of reference ground truth vowel regions is termed 
as MR.

–	 The ratio of vowel regions detected other than the genu-
ine vowel regions to the total number of reference non-
vowel regions is termed as FA rate or spurious rate.

–	 The sum of MR and the FA corresponds to the TE in the 
vowel detection.

Table 1 demonstrate the performance comparison of pro-
posed method using TIMIT acoustic-phonetic speech corpus 
with combined method and formant energy based method 
for clean speech. The first column indicates different vowel 

0

0.5

1

0

0.5

1

A
m

p
li
tu

d
e

0

0.5

1

0

0.5

1

0 0.5 1 1.5 2 2.5
0

0.5

1

Time (sec)

−1

0

1  / tcl  / dh / ix / q  / ey  / ah  / pau  / q / eh  / n / ih  / n  / tcl  / t  / er  / n  / ax / v  / oy  / s  / q  / ix  / z  / epi / w  / eh  / l  / h#

(b)

(c)

(d)

(e)

(f)

(a)

Fig. 6   Detection of vowel region using the proposed method with 
post processing (stage II). a Speech signal utterance “The ear and 
in turn the voice as well” with boundaries marked vowel regions. b 
Prediction. c Epoch intervals of speech signal. d Prediction without 

spurious vowel regions. e Strength of the excitation of speech signal. 
f Corrected vowel regions by modifying the positions of VOPs and 
VEPs of the speech signal

Table 1   Performance analysis 
of vowel region detection using 
combined method (COMB), 
group delay based formants 
around GCI (FGCI) and 
proposed method for a clean 
speech on TIMIT acoustic-
phonetic speech corpus

DR detection rate, FA false alarm

Vowel region detection method Overlap with ground truth (%) FA (%)

25 50 60 80 90

DR DR DR DR DR

COMB 78.24 68.18 60.33 41.95 26.42 24.56
FGCI 77.16 66.04 40.18 35.81 25.92 13.16
Proposed 92.82 81.73 71.29 60.84 53.26 7.87
Proposed with post-processing 96.67 96.16 95.47 89.52 82.37 3.85
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region detection techniques. Columns two to six indicate 
DRs for the different percentage of overlap with the ground 
truth. The last column indicates the percentage of FA. From 
this table, it is observed that the first stage processing pro-
duced competitive results when compared with the state of 
the art techniques. However, FA rate is found to be slightly 
high (7.87%). The DR for 90% overlap criteria with the 
ground truth is low (53.26%). This is attributed to differ-
ent kinds of production uncertainties associated with the 
speech signal production. Thus, instantaneous energy con-
tour produced using envelope of the derivative of a speech 
signal is a quite robust feature that can be considered as an 
evidence to detect vowel regions using VOP and VEP as an 
anchor points. The performance of the proposed method has 
been significantly improved after the post-processing of the 
prediction. It produced a DR of 96.67 and 82.37 for 25% 
overlap and 90% overlap respectively.

Results for the proposed vowel region detection method 
in noisy environments are tabulated separately for different 
overlapping criteria with the ground truth in Table 2. The 
proposed vowel region detection method has been tested on 
speech utterances in presence of additive white Gaussian 
noise at signal to noise ratios ranging from 20 to 5 dB. From 
these results, it is evident that the DR of the proposed vowel 
detection method is significantly better than the state-of-the-
art methods in noisy conditions. It is observed that the DR 
is 50.42 for 90% overlap with the ground truth at 5 dB and 
whereas DRs of other state-of-the-art methods are found to 
be 24.13 and 21.86%. After the post-processing, the DR has 
been increased and observed to be 94.14 and 77.06% for 

25 and 90% respectively. Moreover, the FA rate (3.88%) is 
reduced in noisy conditions after the post-processing. It is 
noted that few nasal consonants are detected as vowels as 
they may have formant pattern that resemble those of vow-
els and possess side oral resonance cavity which is blocked 
by tongue or lips. Thus the proposed method produced sig-
nificant improvement in vowel region detection at a higher 
amount of overlap with the ground truth through the post 
processing of VOPs and VEPs of the prediction. Therefore, 
it also proves that the energy contour generated by the enve-
lope of the derivative of a speech signal possess desirable 
discriminative ability of vowels from the non-vowels in 
noisy environment.

Additional analysis is presented by comparing the pro-
posed method with the recently proposed vowel detec-
tion techniques (Kumar et al. 2017; Kashani et al. 2017) 
in terms of DR, MR and FA in clean and noisy environ-
ments. During this evaluation, a vowel region overlap of 

Table 2   Performance analysis 
of vowel region detection using 
combined method (COMB), 
group delay based formants 
around GCI (FGCI) and 
proposed method for a noisy 
speech on TIMIT acoustic-
phonetic speech corpus

DR detection rate, FA false alarm

Vowel region detection method Overlap with ground truth (%) FA (%)

25 50 60 80 90

DR DR DR DR DR

SNR 20 dB
 COMB 75.26 68.16 60.27 40.79 26.40 24.87
 FGCI 77.89 66.28 41.93 35.18 25.72 13.62
 Proposed 90.51 81.63 71.11 58.42 53.26 7.87
 Proposed with post-processing 95.78 95.37 93.68 85.47 78.87 4.24

SNR 10 dB
 COMB 75.18 68.16 60.01 40.36 26.50 25.97
 FGCI 77.89 66.26 41.64 33.31 24.73 14.82
 Proposed 90.51 81.54 70.93 58.32 51.34 8.80
 Proposed with post-processing 94.45 94.23 92.84 84.86 77.33 4.78

SNR 5 dB
 COMB 75.18 68.03 60.01 38.23 24.13 27.04
 FGCI 77.24 66.03 41.02 33.06 21.86 15.91
 Proposed 90.26 81.43 70.13 58.11 50.42 10.12
 Proposed with post-processing 94.15 94.17 92.31 84.44 77.06 5.95

Table 3   Performance comparison of vowel region detection methods 
for clean speech in terms of detection rate (DR), missing rate (MR), 
and false alarm (FA)

Method DR (%) MR (%) FA (%)

COMB 96.53 3.47 24.56
FGCI 96.65 3.35 13.16
Method I (Kumar et al. 2017) 85.12 14.88 14.39
Method II (Kashani et al. 2017) 91.60 8.40 10.50
Proposed with post processing 98.45 1.55 3.85
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5% with the ground is considered for the proposed method. 
From Table 3, it can be observed that the proposed method 
exhibits better performance than the method I, method II 
and formulated baseline methods in terms of MR and spuri-
ous rate for clean speech. The DR, missed rate and FA rate 
for the proposed method are found to be 98.45, 1.55 and 
3.85% respectively. Table 4 demonstrates the performance 
comparison of the proposed method with different baseline 
methods in terms of TE in noisy environment. TE is defined 
as sum of FA rate and missed rate. The TE resulted for the 
proposed method is 5.40% for the clean speech, 5.79% at 20 
dB SNR and 6.33% at 10 dB SNR respectively. It is noted 
that the proposed method outperformed the baseline meth-
ods in terms TE. Method I is not included as a part of this 
analysis, as results for the same are not reported in noisy 
environment. However, it is noted that the method I is based 
on the statistical models, which is expected to under-perform 
in mismatched conditions. VOPs and VEPs are considered to 
be the instant properties of a speech signal. The manifesta-
tion of these properties can be attributed to the source and 
the system information in the speech signal. In this context, 
instantaneous energy measure using the envelope derivative 
of the speech signal is found to be a better tool used to bring 
out the fine evidence to detect vowel boundaries in continu-
ous speech signal.

6 � Summary and conclusion

This work has shown that use of temporal energy transition 
measure using non-negative, frequency-weighted energy 
operator for the vowel region detection, which is feasible 
through the detection of VOPs and VEPs. Although pre-
vious studies have investigated the use of energy transi-
tion measure in temporal and spectral domains of speech 
signal to detect acoustic landmarks, it is noted that this 
work has highlighted in terms of less spurious and missed 
landmarks detection in both clean and noisy environment. 
This energy operator could produce high temporal resolu-
tion energy contour for a non-stationary speech signal to 

spot acoustic events in a precise manner eliminating block 
processing. The instantaneous energy of the signal can be 
calculated using three samples including the current sample. 
Additional advantage of this method is that no threshold-
ing mechanism is used to spot spurious landmarks from the 
evidence. As noted by the use of additional post-processing 
operation for the removal of spurious events and position 
correction of landmark locations, the performance of this 
method is enhanced. The proposed scheme jointly utilized 
uniformity of the epochs and the SoE to eliminate spuri-
ous vowel regions and to correct the positions of VOPs and 
VEPs respectively. The performance of this method was 
evaluated using TIMIT acoustic-phonetic speech corpus 
and a significant improvement in vowel region detection 
was observed using proposed method compared to the state 
of the art methods. The robustness of the proposed can be 
evaluated by detecting the vowel regions on different forms 
of speech corpus for different applications. In the next level 
of work, VOP and VEP locations can be detected more 
precisely using combined temporal and spectral cues using 
advanced time–frequency analysis techniques in very high 
noisy environments.

References

Ananthapadmanabha, T., & Yegnanarayana, B. (1979). Epoch extrac-
tion from linear prediction residual for identification of closed 
glottis interval. IEEE Transactions on Acoustics, Speech, and 
Signal Processing, 27(4), 309–319.

Deller, J. R, Jr., Proakis, J. G., & Hansen, J. H. (1993). Discrete time 
processing of speech signals. Englewood Cliffs: Prentice Hall 
PTR.

Donaldson, G. S., Rogers, C. L., Cardenas, E. S., Russell, B. A., & 
Hanna, N. H. (2013). Vowel identification by cochlear implant 
users: Contributions of static and dynamic spectral cues. The 
Journal of the Acoustical Society of America, 134(4), 3021–3028.

Dumpala, S. H., Nellore, B. T., Nevali, R. R., Gangashetty, S. V., & 
Yegnanarayana, B. (2016). Robust vowel landmark detection 
using epoch-based features. In INTERSPEECH (pp. 160–164).

Fant, G. (1971). Acoustic theory of speech production: With calcu-
lations based on X-ray studies of Russian articulations. Berlin: 
Walter de Gruyter.

Gangamohan, P., Kadiri, S. R., Gangashetty, S. V., & Yegnanarayana, 
B. (2014). Excitation source features for discrimination of anger 
and happy emotions. In Fifteenth annual conference of the Inter-
national Speech Communication Association.

Glass, J. R. (2003). A probabilistic framework for segment-based 
speech recognition. Computer Speech & Language, 17(2), 
137–152.

Hansen, J. H., Gray, S. S., & Kim, W. (2010). Automatic voice onset 
time detection for unvoiced stops (/p/,/t/,/k/) with application to 
accent classification. Speech Communication, 52(10), 777–789.

Hermes, D. J. (1990). Vowel-onset detection. The Journal of the Acous-
tical Society of America, 87(2), 866–873.

Johnson, K. (2004). Acoustic and auditory phonetics. Phonetica, 61(1), 
56–58.

Juneja, A., & Espy-Wilson, C. (2008). A probabilistic framework for 
landmark detection based on phonetic features for automatic 

Table 4   Performance comparison of vowel region detection methods 
for a noisy speech in terms of total error (TE = MR + FA)

Method Total error (%)

Clean Noise (20 dB) Noise (10 dB)

COMB 28.03 28.34 29.44
FGCI 16.51 16.97 18.17
Method II (Kashani et al. 

2017)
18.90 19.70 24.20

Proposed with post process-
ing

5.40 5.79 6.33



291International Journal of Speech Technology (2018) 21:279–291	

1 3

speech recognition. The Journal of the Acoustical Society of 
America, 123(2), 1154–1168.

Kaiser, J. F. (1990). On a simple algorithm to calculate the ’energy’ 
of a signal. In Proceedings of the 1990 international conference 
on acoustics, speech, and signal processing (ICASSP-90), pp. 
381–384.

Kaiser, J. F. (1993). Some useful properties of Teager’s energy opera-
tors. In Proceedings of the 18th IEEE international conference 
on acoustics, speech, and signal processing (ICASSP ’93), vol. 3, 
pp. 149–152.

Kashani, H. B., Sayadiyan, A., & Sheikhzadeh, H. (2017). Vowel 
detection using a perceptually-enhanced spectrum matching con-
ditioned to phonetic context and speaker identity. Speech Com-
munication, 91, 28–48.

Kumar, A., Shahnawazuddin, S., & Pradhan, G. (2017). Improve-
ments in the detection of vowel onset and offset points in a 
speech sequence. Circuits, Systems, and Signal Processing, 36(6), 
2315–2340.

Liu, S. A. (1996). Landmark detection for distinctive feature-based 
speech recognition. The Journal of the Acoustical Society of 
America, 100(5), 3417–3430.

Makhoul, J. (1975). Linear prediction: A tutorial review. Proceedings 
of the IEEE, 63(4), 561–580.

Murty, K. S. R., & Yegnanarayana, B. (2008). Epoch extraction from 
speech signals. IEEE Transactions on Audio, Speech, and Lan-
guage Processing, 16(8), 1602–1613.

O’Toole, J. M., Temko, A., & Stevenson, N. (2014). Assessing instan-
taneous energy in the EEG: A non-negative, frequency-weighted 
energy operator. In Engineering in Medicine and Biology Society 
(EMBC), 2014 36th annual international conference of the IEEE, 
pp. 3288–3291.

Palmu, K., Stevenson, N., Wikström, S., Hellström-Westas, L., Van-
hatalo, S., & Palva, J. M. (2010). Optimization of an nleo-based 
algorithm for automated detection of spontaneous activity tran-
sients in early preterm EEG. Physiological Measurement, 31(11), 
N85.

Pradhan, G., & Prasanna, S. M. (2013). Speaker verification by vowel 
and nonvowel like segmentation. IEEE Transactions on Audio, 
Speech, and Language Processing, 21(4), 854–867.

Prasanna, S. M. & Yegnanarayana, B. (2005). Detection of vowel onset 
point events using excitation information. In Ninth European con-
ference on speech communication and technology.

Prasanna, S. M., & Pradhan, G. (2011). Significance of vowel-like 
regions for speaker verification under degraded conditions. IEEE 
Transactions on Audio, Speech, and Language Processing, 19(8), 
2552–2565.

Prasanna, S. M., Reddy, B. S., & Krishnamoorthy, P. (2009). Vowel 
onset point detection using source, spectral peaks, and modulation 

spectrum energies. IEEE Transactions on Audio, Speech, and Lan-
guage Processing, 17(4), 556–565.

Rao, K. S., & Yegnanarayana, B. (2009). Duration modification using 
glottal closure instants and vowel onset points. Speech Commu-
nication, 51(12), 1263–1269.

Rose, P. (2003). Forensic speaker identification. Boca Raton: CRC 
Press.

Saha, P., Laskar, R. H., & Laskar, A. (2016). A pre-processing method 
for improvement of vowel onset point detection under noisy condi-
tions. Speech Communication, 80, 71–83.

Salomon, A., Espy-Wilson, C. Y., & Deshmukh, O. (2004). Detection 
of speech landmarks: Use of temporal information. The Journal of 
the Acoustical Society of America, 115(3), 1296–1305.

Schutte, K., & Glass, J., (2005). Robust detection of sonorant land-
marks. In Ninth European conference on speech communication 
and technology.

Stevens, K. N. (2000). Acoustic phonetics. Cambridge: MIT Press.
Teager, H., & Teager, S. (1990). Evidence for nonlinear sound produc-

tion mechanisms in the vocal tract. Speech Production and Speech 
Modelling, 55, 241–261.

Vuppala, A. K., & Rao, K. S. (2013). Vowel onset point detection for 
noisy speech using spectral energy at formant frequencies. Inter-
national Journal of Speech Technology, 16(2), 229–235.

Vuppala, A. K., Rao, K. S., & Chakrabarti, S. (2012). Improved vowel 
onset point detection using epoch intervals. AEU-International 
Journal of Electronics and Communications, 66(8), 697–700.

Vuppala, A. K., Yadav, J., Chakrabarti, S., & Rao, K. S. (2012). Vowel 
onset point detection for low bit rate coded speech. IEEE Trans-
actions on Audio, Speech, and Language Processing, 20(6), 
1894–1903.

Vydana, H. K., Vikash, P., Vamsi, T., Kumar, K. P., & Vuppala, A. K. 
(2015). Detection of emotionally significant regions of speech 
for emotion recognition. In India conference (INDICON), 2015 
Annual IEEE, pp. 1–6.

Vydana, H. K., & Vuppala, A. K. (2016). Detection of fricatives using 
s-transform. The Journal of the Acoustical Society of America, 
140(5), 3896–3907.

Yadav, J., & Rao, K. S. (2013). Detection of vowel offset point from 
speech signal. IEEE Signal Processing Letters, 20(4), 299–302.

Yegnanarayana, B., Prasanna, S. M. & Guruprasad, S. (2011). Study 
of robustness of zero frequency resonator method for extraction 
of fundamental frequency. In 2011 IEEE international confer-
ence on acoustics, speech and signal processing (ICASSP), pp. 
5392–5395.

Yegnanarayana, B., & Murty, K. S. R. (2009). Event-based instantane-
ous fundamental frequency estimation from speech signals. IEEE 
Transactions on Audio, Speech, and Language Processing, 17(4), 
614–624.


	Application of non-negative frequency-weighted energy operator for vowel region detection
	Abstract
	1 Introduction
	2 Baseline methods
	2.1 Vowel region detection using COMB method
	2.2 Vowel region detection using FGCI method

	3 Non-negative frequency-weighted energy measure
	4 Proposed method for the detection of vowel regions
	4.1 Stage 1 : VOP and VEP detection using non-negative frequency dependent energy measure
	4.2 Stage 2 : Post processing of VOP and VEP locations using uniformity of the epochs and strength of the excitation

	5 Performance evaluation of the proposed method
	6 Summary and conclusion
	References


