
Vol.:(0123456789)1 3

International Journal of Speech Technology (2018) 21:185–192 
https://doi.org/10.1007/s10772-018-9494-9

Robust noise MKMFCC–SVM automatic speaker identification

Osama S. Faragallah1,2

Received: 7 February 2017 / Accepted: 22 January 2018 / Published online: 14 February 2018 
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
This paper proposes robust noise automatic speaker identification (ASI) scheme named MKMFCC–SVM. It based on the 
Multiple Kernel Weighted Mel Frequency Cepstral Coefficient (MKMFCC) and support vector machine (SVM). Firstly, 
the MKMFCC is employed for extracting features from degraded audio and it uses multiple kernels such as the exponential 
and tangential and for MFCC’s weighting. Secondly, the extracted features are then categorized with the SVM classification 
technique. A comparative study is performed between the proposed MKMFCC–SVM and the MFCC–SVM ASI schemes 
using the MKMFCC and MFCCs with five schemes for extracting features from telephone-analogous and noisy-like degraded 
audio signals. Experimental tests prove that the proposed MKMFCC–SVM ASI scheme yields higher identification rate in 
noise presence or degradation.

Keywords  Automatic speaker identification (ASI) · MKMFCCs · SVM

1  Introduction

Enhancing automatic speaker recognition (ASR) systems has 
become an attractive challenge due to the growing needs for 
secure access or criminalistics inquiries. The main objective 
of ASR is to determine and recognize speaker personality, 
regardless of what speaker is clarifying (Dharanipragada 
et al. 2007; Huang et al. 2016; Shuling 2009; Gandhiraj 
and Sathidevi 2007). The ASR includes both verifying 
and identifying phases. In automatic speaker verification 
(ASV), speaker’s speech is matched according to his/her 
pattern within the database and categorized either customer 
or imposter (Furui 1981). ASV systems can be usually uti-
lized in many security fields such as telephone transactions. 
With automatic speaker identification (ASI), speech talking 
of anonymous speaker is tested and matched with patterns 
of all recognized speakers to determine the top matched 
speaker (Xu and Yang 2016; Li and Gao 2016; Hossain et al. 

2007). ASI can be divided into either closed or open sets. 
Closed set ASI include that speaker under test was previ-
ously recognized to be one from finite set of speakers. Open 
set ASI involves the preference of defining declaring that 
test speaker may not belong to any one from recognized 
speakers.

ASR includes two phases stages, named, feature 
extracting and classification phases. The feature extract-
ing   phase  may be thought as data reducing procedure 
with the potential of capturing main speaker features with 
reduced data as possible. There exist several schemes for 
speech features extraction using various coefficients types 
like linear prediction coefficients (LPCs) (Mellahi and 
Hamdi 2015), linear prediction cepstral coefficients (LPCCs) 
(Polur and Miller 2005), Mel-frequency cepstral coefficients 
(MFCCs) (Selva Nidhyananthan et al. 2016), and multiple 
kernel weighted MFCCs (Subba Ramaiah and Rajeswara 
Rao 2016).

Classification phase may be thought as a procedure that 
includes two stages named as; speaker modeling/ match-
ing stages. In speaker modeling stage, the speaker is reg-
istered in the system with extracted features resulted from 
training data. If   data  sample of anonymous speaker is 
received, feature matching schemes can be utilized for map-
ping features of input speech data sample to a pattern that 
may correspond to a recognized speaker. The combination 
of speaker modeling/matching schemes may be known as 
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classifier. Classification schemes employed in ASI systems 
may cover Gaussian mixture models (GMMs) (Ding and 
Yen 2015; Qian et al. 2008), vector quantization (VQ), 
hidden Markov models (HMMs) (Polur and Miller 2005), 
ANNs (Galushkin 2007; Hayati and shirvany 2007) and 
SVM (Naeeni et al. 2010; Boujelbene et al. 2010; Zergat 
and Amrouche 2014).

In this paper, an efficient robust noise MKMFCC–SVM 
method for ASI is presented. The proposed method utilizes 
the MKMFCC as feature parameterization with multiple 
kernels such as the exponential and tangential to weight the 
MFCC’s and the SVM for classification. The cepstral fea-
tures combining the Mel filter bank tangential/exponential 
functions were utilized in cepstral coefficient parameteriza-
tion. Multiple kernel weighted functions may help in con-
sidering low/ high energy frames of recognized audio signal, 
such that no frames dropped out. The paper remainder may 
be arranged as follow. Section 2 explores feature extrac-
tion using the MKMFCC. Then, the SVM is described in 
Sect. 3. Section 4 detailed the proposed MKMFCC–SVM 
ASI. Section 5 presents the utilized data sets and test results. 
And finally, Sect. 6 concludes the paper.

2 � MKMFCC feature extraction

The MKMFCC employs two distinct kernel functions for 
the MFCC coefficients weighting (Ramaiah and Rao 2016). 
The kernel weighting offers a natural way for mixing and 
integrating various data types. Also, flexible mixture of 
suited kernel design and modern kernel schemes proved 
the superiority of such class of methods whose statistical 
and computational characteristics are well known by several 
machine learning methods. The MKMFCC is illustrated in 
Fig. 1 and detailed steps are given as follows.

2.1 � Pre‑emphasis

The pre-emphasis stage is employed for flattening speech 
spectrum, as it increases the high frequency band amplitude 
and reduce the low frequency band. It can be estimated by,

where C, A, B, m are constant value, input signal, output 
signal, and speech signal samples.

2.2 � Framing

The speech signal sample is split into short L blocks of M 
samples. The speech block length is ranged as 20–40 ms. 
The neighbouring blocks are unattached by R factor; where 
R < M.

(1)B(m) = A(m) − C ⋆ A(m − 1)

2.3 � Hamming windowing

During hamming window stage, all close frequencies in speech 
streams are integrated together. The hamming windowing can 
be represented as W(m) ∶ 1 ≤ m ≤ M − 1. The speech signal 
after employing windowing can be computed as,

where W(m) is the hamming window and it is computed as,

2.4 � Fast fourier transform (FFT)

During FFT stage, the speech signal are FFT transformed. The 
block power spectrum can be computed as,

The Discrete Fourier Transform (DFT) of correspondent 
block can be estimated as,

(2)B(m) = A(m) ⋆W(m)

(3)W(m) = 0.56 − 0.46
(

2�m

M − 1

)
; 0 ≤ m ≤ M − 1.

(4)Pl(k) =
1

M
||Al(k)

||2

(5)Al(k) =

M∑
m=1

B(m) ⋅ e−j2�km;1 ≤ k ≤ K

Mel Filter Bank 

Pre-Emphasis 

Framing 

Hamming Window 

Mel Filter 
Bank energy 

Tangential/ 
Exponential 
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Delta Energy and Spectrum 

Cepestral Normalization 

Cepestral MKMFCC 
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Fig. 1   Block diagram of MKMFCC (Ramaiah and Rao 2016)
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where k is the DFT length and B(m) covering M sample long 
analysis window.

2.5 � Mel filter bank processing

Signal frequencies will be filtered using triangular filter for 
estimating filter spectral components weighted sum and Mel 
scale triangular filter output border. Figure 2 illustrates the 
Mel scale filter bank.

The high and low FH/FL frequency spectral components of 
periodogram estimations must be considered. The filter loca-
tions have equivalent space in Mel frequency.

The Mel Filter bank can be estimated with FFT as

The filter bank can be computed as;

where  f = 1 to F is Mel Filters number.

2.6 � Filter bank energy

The filter bank is bonded by power spectrum and summed up 
to some coefficients. The filter bank energy can be computed 
as;

where WTm is the multiple kernel weighted function that can 
be computed as;

(6)MEL(f ) = 1125 × ln

(
1 +

f

700

)

(7)G(l) = (mFFT + 1) × h(l)∕Sample rate

(8)Mf (k) =

⎧
⎪⎪⎨⎪⎪⎩

0 k < G(f − 1)
k−G(f−1)

G(f )−G(f−1)
G(f − 1) ≤ k ≤ G(f )

G(f+1)−k

G(f+1)−G(f )
G(f ) ≤ k ≤ G(f + 1)

0 k > G(f + 1)

(9)E(l) =

m

2∑
m=0

log |A(m)|B(m)
(
k
2�

M

)
×WTm

(10)WTm = WTm1 +WTm2

2.7 � Discrete cosine transform (DCT)

The DCT is performed for transforming the log Mel spec-
trum estimates to spatial domain.

where

The cepstral coefficient can be computed as;

WCs(m) represents multiple kernel weighted Mel fre-
quency cepstral coefficients.

2.8 � Delta energy and spectrum

The energy patterns or features are summed within the 
acoustic features vector. The addition enhances audio rec-
ognition accuracy and dominates noise robustness as well 
as the echo.

2.9 � Cepstral normalization

In the normalization procedure, the average of each of 
coefficients will be subtracted and divided with variance.

3 � Classification using support vector 
machine

The classification stage in ASI systems is a feature match-
ing procedure among the new speaker features and the 
database saved features. The SVM depends on the statis-
tical learning theory (Boujelbene et al. 2010). It is based 
on finding the best interval among between feature levels 
to be precisely isolated as much as possible. Such features 
must be divided linearly using the hyper-plane which may 
be consider like linear classifier. The SVM transform input 
features into feature space with large dimension (Zergat 
and Amrouche 2014; Campbell et al. 2007).

3.1 � Geometric margin

It is required to estimate the space from the two patterns to 
separator. The space is the margin among the two patterns 

(11)E(l) = E(k)

(12)E(k) =

{
E(l), k = kl
0, otherwise

(13)WCs(m) =
1

M�

M�−1∑
k=0

Ē(k) ejk(2𝜋∕M
�)m

Fig. 2   Mel scale filter bank
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which is the minimum space among the pattern and hyper-
plane, defined with dashed line in Fig. 3.

For formulating such distance r, let x′–x defines the dotted 
line which is perpendicular to decision border and parallel to 
the hyperplane with the normal vector w. The unit vector of 
normal vector direction to the hyperplane may be estimated as:

So that the distance r may be estimated as:

Since,

So,

The margin among the hyper-plane and the closest two pat-
terns of the two data classes may be estimated as:

where w is the decision hyperplane normal vector, Xi is the 
data point, and yi is the data point class (+ 1 or − 1).

The margin distance may be estimated as:

3.2 � Separation technique of SVM

The main aim of SVM is to determine the optimal separately 
hyperplane. So, the optimal separately hyperplane may be 
considered as optimizing problem:

(14)v̄ =
w

|w|

(15)r̄ = r ⋆ v̄

(16)r = X� − X

(17)X� = X − r
w

|w|

(18)z(Xi) = yi(w
TXi + b)

(19)� =
2

‖w‖

Using Lagrange multiplier scheme, Eq. (20) can be mini-
mized and the objective function can be restated as:

where constant αi is Lagrange multiplier. By differentiating 
αi with respect to w and b:

Substituting from Eqs. (22) and (23) into Eq. (21):

The minimization of Eq. (24) can be considered as a con-
vex quadratic programming problem with condition:

The minimization of the Eq. (24) will be:

The hyperplane may be estimated as:

4 � The proposed MKMFCC–SVM ASI system

The full description of the proposed MKMFCC–SVM ASI 
system using MKMFCC feature extraction and SVM clas-
sification algorithm is addressed. Initially, the audio signals 
for multiple speakers are taken as input for the ASR sys-
tem. Feature extraction is performed in which the feature 
vector sequences representing feature patterns about speech 
signal is extracted. The MFCC features are extracted, and 
multiple kernel weighted function is performed for generat-
ing the MKMFCC coefficients using Mel filter bank energy. 

(20)
Maximize ∶ �

Subject to ∶ z(Xi) ≥ 1

(21)L(w,b,�) =
1

2
ww −

n∑
i=1

�i(yi(wxi + b) − 1)

(22)
�L(w,b,�)

�w
= w −

n∑
i=1

�iyixi = 0

(23)
�L(w,b,�)

�b
=

n∑
i=1

�iyi = 0

(24)L(w,b,�) =

n∑
i=1

�i −
1

2

n∑
i,j=1

yiyj�i�jxixj

(25)
n∑
i=1

yi�i = 0 and �i ≥ 0

(26)L(w,b,�) =

n∑
i=1

�i −
1

2

n∑
i,j=1

yiyj�i�jk(Xi,Xj)

(27)z(X) = sign

[
n∑
i

yi�ik(Xi,Xj) + b

]

Fig. 3   Separating different patterns with a hyperplane
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After feature extracting phase, speech classification phase is 
employed with the SVM.

4.1 � Feature extraction phase

The feature extraction phase include speaker related prop-
erties for effective recognition. The KMFCCs are consid-
ered within the proposed ASI since it enhances and pre-
serves information formant from spectral envelope. The 
MFCC spectral feature differs from other acoustic features 
in time frequency analysis and requency smoothing schemes.

4.2 � SVM implementation for feature matching 
phase

The research paper utilizes sequential minimal optimiza-
tion (SMO) (You et al. 2010). The SMO selection rather 
than other optimization schemes is due to reliability of SMO 
scheme on large datasets and the LIBSVM library utilized 
for SVM implementation using SMO can be linked to the 
Matlab platform. Much time is required for Kernel matrix 
calculation utilized in SVMs under normal situation, this 
time grows quickly when training samples number are exist, 
resulting in a larger Kernel matrix. To bypass such difficulty, 
SMO divides the problem into a series of smaller quadratic 
programming problems. The SMO procedure may be sum-
marized as:

Step 1	 Choose an arbitrary Lagrange multiplier α.
Step 2	 Choose other Lagrange multiplier.
Step 3	 Upgrade the other  second Lagrange multiplier 

using Eq. (28):

Step 4	 Set the Lagrange multiplier, i.e. �new, assigned

2
← �new

2
.

Step 5	 If the Lagrange multiplier is not varied, go back to 
Step 1.

Step 6	 Upgrade the earliest Lagrange multiplier.
Step 7	 If all Lagrange multiplier satisfy step 5 conditions, 

end. Else, go to step 1.

5 � Experimental tests

With existence of telephone and noise-analogous degra-
dations, speaker recognition process may be not an easy 
process. The noise-analogous degradation tries to disguise 
the speech signal so the extracted features will not accurate 
and infeasible for recognition. The telephone-analogous deg-
radation may be considered as a low-pass filter on the speech 
signal that may remove a lot of speaker features. In this sec-
tion, different four speaker recognition tests are performed 

(28)�new
2

= �2 +
y2(E1 − E2)

k

with different degradation types. The considered degrada-
tions will be  AWGN, colored noise, telephone-analogous 
degradations with AWGN and telephone-analogous degra-
dations with colored noise. The telephone-analogous deg-
radations have been simulated using low-pass filter of low 
bandwidth applied on speech signals.

During ASI training stage, a database that includes 80 
speakers is utilized. Every speaker iterates a given Arabic 
clause 15 times. As a result, 1200 speech models will be 
utilized for providing MKMFCCs using the proposed MKM-
FCC–SVM ASI, MFCCs and polynomial coefficients for 
MFCC–SVM ASI to constitute database features vector. 
During enrolling stage, every speaker is requested to repeat 
the clause and the audio signal is subjected to degradation. 
Comparable features like utilized during enrollment will be 
also evolved from such the degraded speech signals, and 
utilized in the classification stage. Five methods for feature 
extraction are employed in the paper.

In first scheme, features extraction of the MKMFCCs, 
and MFCCs is performed directly using only the speech 
signals. In second scheme, features extraction is performed 
using DCT of speech signals. In third scheme, features 
extraction is performed from the concatenation of both the 
original speech signal and DCT of speech signal in one 
features vector. In fourth scheme, features extraction is 
performed using DWT of speech signals. In fifth scheme, 
features extraction is performed from the concatenation of 
both the original speech signal and DWT of speech signal in 
one features vector. Comparisons are performed to inspect 
the performance of MKMFCC–SVM ASI with respect to 
MFCC–SVM ASI in terms of identification rate using the 
above mentioned five feature extraction schemes in four deg-
radation situations, and test results are shown in Tables 1, 
2, 3 and 4. Firstly, the results shown in Tables 1, 2, 3 and 4 
ensured and proved the superiority of the proposed MKM-
FCC–SVM ASI compared with MFCC–SVM ASI using 
the five feature extraction schemes in all the four degrada-
tion cases. Also, it is clear from the results in Tables 1, 2, 
3 and 4 for both the proposed MKMFCC–SVM ASI and 
MFCC–SVM ASI that the extracted features from the audio 
plus DWT audio signals and audio plus DCT audio signals 
have the highest recognition rate in all the four degradation 
cases. In AWGN case, the extracted features using speech 
plus DWT speech signals have the best recognition rates with 
different SNRs. For colored noise case shown in Table 2, 
the extracted features using speech plus DCT speech signals 
achieve the best recognition rates with different SNRs. In 
telephone-analogous degradations with AWGN and colored 
noise cases shown in Tables 3 and 4, respectively, the per-
formance suffers since the low-pass filter eliminates a lot of 
speech features. The extracted features using speech plus 
DWT speech signals achieve the best recognition rates for 
the telephone like degradations and AWGN at all SNRs. 
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But the extracted features from the audio plus DCT audio 
signals achieve the best recognition rates for the telephone 
like degradations and colored noise at all SNRs.

6 � Conclusion

The paper introduced an efficient robust noise ASI 
method using MKMFCC and SVM. A comparative study 
is held between the proposed MKMFCC–SVM ASI and 
MFCC–SVM ASI in terms of identification rate measure 
using five methods for extracting features in presence of five 
degrading cases. Experimental tests prove the effectiveness 
of the proposed MKMFCC–SVM ASI for extracting fea-
tures from telephone and noisy-like degraded audio signals.
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