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Abstract
In this work, we address some issues in the classification of varying length patterns of speech represented as sets of continu-
ous-valued feature vectors using kernel methods. Kernels designed for varying length patterns are called as dynamic kernels. 
We propose two dynamic kernels namely segment-level pyramid match kernel (SLPMK) and segment-level probabilistic 
sequence kernel (SLPSK) for classification of long duration speech, represented as varying length sets of feature vectors 
using extreme learning machine (ELM). SLPMK and SLPSK are designed by partitioning the speech signal into increasingly 
finer segments and matching the corresponding segments. SLPSK is built upon a set of Gaussian basis functions, where half 
of the basis functions contain class-specific information while the other half implicates the common characteristics of all 
the speech utterances of all classes. The computational complexity of SVM training algorithms is usually intensive, which 
is at least quadratic with respect to the number of training examples. It is difficult to deal with the immense amount of data 
using traditional SVMs. For reducing the training time of classifier we propose to use a simple algorithm namely ELM. 
ELM refers to a wider type of generalized single hidden layer feedforward networks (SLFNs) whose hidden layer need not 
be tuned. In our work, we proposed to explore kernel based ELM to exploit dynamic kernels. We study the performance of 
the ELM-based classifiers using the proposed SLPSK and SLPMK for speech emotion recognition and speaker identification 
tasks and compare with other kernels for varying length patterns. Experimental studies showed that proposed ELM-based 
approach offer a 10–12% of relative improvement over baseline approach, and a 3–9% relative improvement over ELMs/
SVMs using other state-of-the-art dynamic kernels.

Keywords  Varying length patterns · Extreme learning machine · Segment level probabilistic sequence kernel · Segment 
level pyramid match kernel · Speech emotion recognition · Speaker identification

1  Introduction

Short-time analysis of speech signal involves performing 
spectral analysis on each frame of about 20 ms duration and 
representing each frame by a real valued feature vector. The 
speech signal of an utterance with T frames is represented as 
a sequential pattern � = (�1, �2,… , �t,… , �T ) , where �t is 
a feature vector for tth frame. The duration of the utterances 
varies from one utterance to another. Hence, the number of 
frames also differs from one utterance to another. In the tasks 
such as acoustic modeling of sub-word units of speech such 
as phonemes, triphones, and syllables, duration of the data 
is short and there is a need to model the temporal dynamics 
and correlations among the features in the sequence of fea-
ture vectors. The hidden Markov models (HMMs) (Rabiner 
and Juang 2003) are commonly used for sequential pattern 
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classification. On the other hand, in the tasks such as speaker 
identification, spoken language identification, and speech 
emotion recognition, the duration of the data is long and pre-
serving sequence information is not critical. In such cases, 
a speech signal is represented as a set of feature vectors. 
The focus of this paper is on the classification of varying 
length patterns of long duration speech that are represented 
as sets of continuous valued feature vectors. Conventionally, 
Gaussian mixture models (GMMs) (Reynolds 1995) are used 
for classification of varying length patterns represented as 
sets of feature vectors. The maximum likelihood (ML) based 
method is commonly used for estimation of parameters of 
the GMM for each class. When the amount of the training 
data available per class is limited, robust estimates of model 
parameters can be obtained through maximum a posteri-
ori adaptation of the class-independent GMM (CIGMM), 
which is also called as universal background model (UBM), 
to the training data of each class (Reynolds et al. 2000). 
The CIGMM or UBM is a large GMM trained using the 
training data of all the classes. An important issue with the 
GMM-based classifiers is that they are trained using non-
discriminative learning based approaches. In this work, we 
propose to consider discriminative learning based classifiers 
that are expected to perform better for the varying length 
pattern classification task.

Neural network based classifiers and support vector 
machine (SVM) based classifiers are two important dis-
criminative learning based classifiers. Traditionally, multi-
layer feed forward neural networks (MLFFNNs) are con-
sidered for building discriminative classifiers. However, In 
MLFFNNs manual tuning of various parameters and hyper 
parameters is needed which results in the slow training of 
network. To overcome these issues, recently extreme learn-
ing machine (ELM) (Huang et al. 2006, 2012) is proposed 
which is gaining immense popularity. The ELM is a quick 
and robust learning algorithm for single hidden layer feed-
forward networks (SLFNs) that exhibit good generaliza-
tion. In ELM, the weights for the connections between the 
input and hidden layer neurons are initialized randomly. The 
weights in the output layer are analytically computed that 
reduces the training time significantly. The learning process 
in ELM comprises of two steps. The first step map the input 
to a high-dimensional space known as ELM space. In the 
second step, the high dimensional data is projected onto a 
space of class labels. The dimensionality of ELM space is 
mostly chosen empirically. Choosing the dimensionality of 
ELM space can be avoided by using kernel version of ELM 
(Alexandos et al. 2015). In kernel based ELM (KELM), the 
network hidden layer outputs are directly taken from the ker-
nel matrix. This avoids the problem of random assignment of 
weight for the hidden layer. Another popular discriminative 
classifier is support vector machine (SVM) that is proven 
to exhibit good generalization. SVMs can also be seen as 

SLFN like KELM. One of the difference is that in KELM the 
number of hidden nodes is decided by the number of training 
examples, whereas, in SVMs the number of hidden nodes 
is decided by the number of support vectors that are result-
ant of optimization of SVM cost function (Huang 2014). 
Support vector machines are originally designed for two-
class pattern classification. Multi-class pattern classification 
problems are commonly solved using a combination of two-
class SVMs which are obtained using one-against-rest or 
one-against-one approach (Allwein et al. 2000). When the 
number of classes are large, number of SVM needs to build 
are also large. However, KELM implicitly handles multi-
class classification. Due to its learning speed, high efficiency 
and ability to handle multi-class classification tasks we 
propose to consider dynamic kernel based ELM classifiers 
for speech emotion recognition and speaker identification 
tasks that deal with long duration varying length patterns of 
speech represented as the set of feature vectors.

Classification of varying length sets of feature vectors 
using KELM-based classifiers and SVM-based classifi-
ers requires the design of a suitable kernel as a measure 
of similarity between a pair of sets of feature vectors. The 
kernels designed for varying length patterns are referred 
to as dynamic kernels (Dileep and Chandra Sekhar 2014). 
Fisher kernel using GMM-based likelihood score vectors 
(Smith et al. 2001), probabilistic sequence kernel (Lee et al. 
2007), GMM supervector kernel (Campbell and Sturim 
2006), GMM-UBM mean interval kernel (You et al. 2009), 
GMM-based intermediate matching kernel (Dileep and 
Chandra Sekhar 2014) and GMM-based pyramid match 
kernel (Dileep and Chandra Sekhar 2012) are some of the 
state-of-the-art dynamic kernels for sets of feature vectors. 
In this paper, we propose segment-level pyramid match ker-
nel (SLPMK) (Gupta et al. 2016a) and segment-level proba-
bilistic sequence kernel (SLPSK) (Gupta et al. 2016b) as 
dynamic kernels for speech signals represented as varying 
length sets of feature vectors.

In SLPMK speech signal is repeatedly divided into seg-
ments to form a pyramid of increasingly finer segments. 
Then the SLPMK between a pair of speech signals is con-
structed by matching the corresponding segments at every 
level of the pyramid. We explore two approaches to obtain 
SLPMK. The first approach is inspired by the spatial pyra-
mid match kernel (Lazebnik et al. 2006) proposed for image 
classification. In this approach, each segment is represented 
as a bag-of-codewords, where the codewords are obtained 
by clustering all the feature vectors of all the speech signals 
using K-means clustering technique. The codebook-based 
SLPMK (CBSLPMK) between a pair of speech signals is 
computed as a weighted sum of the number of new matches 
found at different levels of the pyramid of segments. The 
bag-of-codewords representation used in CBSLPMK suf-
fers from loss of information due to the hard assignment 
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of a feature vector to a codeword. To address this issue, we 
propose Gaussian mixture model (GMM) based SLPMK 
(GMMSLPMK) as the second approach to constructing the 
SLPMK. In this approach, bag-of-codewords representa-
tion for each segment of a speech signal is obtained by soft 
assignment of the feature vectors to codewords using class 
independent GMM as soft clustering technique. Further, 
we explore the probabilistic sequence kernel (PSK) (Lee 
et al. 2007) to include local information in matching the two 
speech utterances and to maintain the temporal ordering of 
the feature vectors. PSK maps a set of feature vectors onto a 
high dimensional probabilistic score space. The probabilis-
tic score space for a class is obtained by using the posterior 
probability of components of adapted GMM built for that 
class and the posterior probability of component of class-
independent Gaussian mixture model (CIGMM) to which 
the data of a class is adapted. PSK does not include tempo-
ral information while computing the kernel. In this work, 
we propose segment-level probabilistic sequence kernel 
(SLPSK) as the dynamic kernel for building the SVM-based 
classifier for classification of speech signals represented as 
varying length sets of feature vectors. We propose to divide 
each speech signal into the fixed number of segments. We 
propose to compute PSK of the local feature vectors of a 
particular segment from the two examples. Then the pro-
posed SLPMK is computed as a combination of PSKs cor-
responding to all the segments. As the kernel is computed 
at the segment level, it is expected to include more local 
information. Salient features of the proposed SLPMK and 
SLPSK as compared to that of other state-of-the-art dynamic 
kernels for sets of feature vectors are: (i) maintaining the 
temporal ordering of the feature vectors in a speech sig-
nal for some extent, and (ii) using the local information for 
matching between two speech utterances represented as sets 
of feature vectors.

In this work, we propose to use dynamic kernel based 
ELM for speech emotion recognition and speaker identi-
fication tasks. The effectiveness of the proposed SLPSK 
and SLPMK is studied for speech emotion recognition and 
speaker identification tasks using KELM-based classifiers. 
The performance of KELM-based classifier using SLPMK 
and SLPSK is compared with that of the KELM-based clas-
sifier using other state-of-the-art dynamic kernels. The con-
tribution of this work is as follows: (i) two dynamic kernels 
namely SLPMK and SLPSK are proposed that retain the 
ordering of feature vectors to some extent as well as use the 
local information for matching two speech utterances, (ii) 
KELM-based classifiers using dynamic kernel including the 
proposed SLPMK and SLPSK for speech emotion recogni-
tion and speaker identification tasks, and (iii) comparison 
with SVM-based classifiers using SLPMK and SLPSK for 
speech emotion recognition and speaker identification tasks.

The remainder of the paper is organized as follows. In 
Sect. 2 we present ELM for the classification of varying 
length patterns of speech represented as sets of feature vec-
tors. In Sect. 3, a brief review of dynamic kernels for sets 
of feature vectors is presented. The proposed dynamic ker-
nels i.e. SLPMK and SLPSK are discussed in Sects. 4 and 5 
respectively. In Sect. 6, the studies on speech emotion rec-
ognition and speaker identification tasks are presented. The 
discussion of the proposed approach is presented in Sect. 7. 
The conclusions are presented in Sect. 8.

2 � Extreme learning machine for varying 
length pattern of speech

In this section, we briefly explain the learning strategy of 
extreme learning machine (ELM) by Huang et al. (2006, 
2012) and its extension to kernel ELM (KELM). ELM is 
a simple and efficient learning algorithm for single-hidden 
layer feedforward networks (SLFNs) in which input layer 
weights and bias are initialized randomly to obtain the output 
of the hidden layer which leads to fast network training and 
low human supervision. Additionally, the algorithm guar-
antees lowest training error and smallest norm of learned 
weights. After the input weights and the hidden layer biases 
are chosen arbitrarily, SLFNs can be simply considered as 
a linear system and the output weight matrix ��� (linking the 
hidden layer to the output layer) can be analytically deter-
mined through simple generalized inverse operation (Rao 
and Mitra 1971) of the hidden layer output matrices � as:

where � is a matrix containing the expected network target 
label. The generalized inverse of a matrix can be calculated 
using orthogonal projection method, orthogonalization 
method, iterative method or singular value decomposition 
(SVD). The advantage of generalized inverse operation is 
that it avoids lengthy training phase where the parameters 
of the network are tuned iteratively with some appropriate 
learning parameter.

In the task like speaker identification and speech 
emotion recognition length of speech utterance varies 
from one example to other. In such cases input example 
�i = {�i1, �i2,… , �it,… , �iT} , is represented as varying 
length set of feature vector and training data is denoting as 
{�i, �i}, i = 1,… , L where L is the total number of training 
examples and �i = [ti1,… , tic]

⊺ is the corresponding class 
label vector with tic = 1 if �i belong to class c or tic = −1 oth-
erwise. One way of training ELM network using the varying 
length data is by considering individual feature vector �it as 
an example or by considering �it as the super-vector of con-
textual vectors around �it . The second case is the standard 
in the speech community (Chen et al. 2015), where the input 

(1)��� = �†�
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feature vectors to the ELM network is obtained by stacking 
every d-dimensional feature vectors �it by l contextual vec-
tors to the left and r contextual vectors to the right. Thus, 
the total number of stacked frames is l + r + 1 . Therefore, 
the dimension of input feature vectors to the ELM network 
is d(l + r + 1) corresponding to every frame �it . Another 
approach is obtain a fixed-dimensional representation by 
mapping these set of feature vectors to bag-of-codeword 
representation. A varying length set of feature vector can 
be converted into bag-of codebook representation by using 
both soft and hard quantization techniques. Size of this rep-
resentation is dependent on the size of the codebooks. This 
fixed length representation now can be used as input to the 
conventional ELM. This is an elegant approach. However, it 
leads to a loss of information due to quantization.

The issue with the naive implementation of ELM is that 
for very large training datasets, even though the entire algo-
rithm is faster than other conventional methods (such as iter-
ative tuning of weights as in multilayer feedforward neural 
networks), the inverse calculation requires lot of resources, 
since the entire training data has to be loaded onto memory. 
Also for avoiding the problem of time-consuming algorithms 
for the determination of ELM space dimensionality (number 
of hidden node), kernel versions of the ELM classifier have 
been recently proposed by Huang et al. (2012) and Alexan-
dos et al. (2015). The idea of kernel ELM is that the network 
hidden layer outputs need not to be calculated by passing 
the training example as input, but they can be inherently 
encoded in the ELM kernel matrix defined by � = �⊺� , 
where � ∈ ℝ

L×h refers to the training data representations 
in the ELM space with L is the number of training example 
and h is the dimensionality of ELM space. The classification 
problem for ELM with multi-output nodes can be formulated 
as

w h e r e  ��� = [���1,… ,��� j,…���c] i s  t h e  m a t r i x  o f 
weights linking hidden layer to the output nodes. 
� = [�1,… , �i,… , �L] is a matrix containing the expected 
network target vectors. � is the hidden-layer output matrix, 
� = [�(�1),… , �(�i),… , �(�L)] where each �(�i) is the 
output vector of the hidden layer with respect to the input 
�i . �(�i) actually maps the data from the input space to 
the h-dimensional hidden-layer feature space (ELM fea-
ture space) � , and thus, �(�) is indeed a feature mapping. 
Karush–Kuhn–Tucker (KKT) (Gordon and Tibshirani 2012) 
conditions are the first-order necessary conditions for a solu-
tion in nonlinear programming to be optimal, provided that 
some regularity conditions are satisfied. The least squares 
solution of Eq. (2) based on KKT condition can be written 
as:

(2)Minimize: ‖���� − �‖, ‖���‖

(3)��� = �⊺

(
�

C
+��⊺

)−1

�

where C is the regularization coefficient. For a test example 
� , The output function of ELM for multi class classifica-
tion is

If the feature mapping �(�) is unknown then the ker-
nel matrix for ELM based on Mercers conditions can be 
defined as follows

thus, for a test example � , the output function f (�) of the 
kernel based extreme learning machine (KELM) can be writ-
ten as

where K(�,�j) is the kernel function of hidden neurons of 
single hidden layer feedforward neural networks. In litera-
ture there are many kernel functions exist which satisfying 
the Mercer condition, such as linear kernel, polynomial ker-
nel, Gaussian kernel, and exponential kernel. But these ker-
nels can only be applied to fixed length patterns, and not on 
the varying length patterns. The kernels used for the varying 
length patterns are called as dynamic kernels (Dileep and 
Chandra Sekhar 2014). In this research work, we propose to 
explore dynamic kernel based ELM (DKELM) for simula-
tion and performance analysis of the task such as speaker 
identification and speech emotion recognition. We explore 
the possibility of directly classifying varying length patterns 
with ELM using dynamic kernels, and compare its perfor-
mance with state-of-the-art dynamic kernel based-SVM for 
speech emotion recognition and speaker identification tasks. 
Here the hidden layer feature mapping or the dimensionality 
of the hidden layer feature space (number of nodes in the 
hidden layer) need not be known, and a suitable dynamic 
kernel can be used. In the next section we present the brief 
review of state-of-the-art dynamic kernel for varying length 
pattern of speech.

3 � Dynamic kernels for sets of feature 
vectors

In this section, we review the approaches to design 
dynamic kernels for varying length patterns represented 
as sets of feature vectors. Different approaches to design 
dynamic kernels are broadly divided into explicit mapping 
based approaches and matching based approaches (Dileep 
and Chandra Sekhar 2014).

(4)f (�) = �(�)�⊺

(
�

C
+��⊺

)−1

�

(5)� = ��⊺ ∶ K(�i,�j) = �(��)
⊺�(��)

(6)f (�) = [K(�,�1),… ,K(�,�j)]
(
�

C
+�

)−1

�
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3.1 � Explicit mapping based approaches

These approaches involve mapping a set of feature vectors 
onto a fixed-dimensional representation and then defining a 
kernel function in the space of that representation. In this work 
we propose to explore Fisher kernel (FK) (Smith et al. 2001), 
GMM supervector (GMMSV) kernel (Campbell and Sturim 
2006) and GMM-UBM mean interval (GUMI) kernel (You 
et al. 2009) as the dynamic kernels for sets of feature vectors 
constructed using the explicit mapping based approaches.

3.1.1 � Fisher kernel

Fisher kernel (FK) (Smith et al. 2001) for sets of local feature 
vectors uses an explicit expansion into a kernel feature space 
defined by a GMM based likelihood score space in which a 
set of feature vectors is represented as a fixed dimensional 
Fisher score vector. Likelihood score space is formed using 
the first order derivatives of the log-likelihood with respect to 
the GMM parameters. For an utterance represented as a set of 
d-dimensional local feature vectors � = {�1, �2,… , �T} , the 
first order derivative of the log-likelihood, i.e., the gradient 
vector of the log-likelihood, with respect to mean vector of the 
qth component of the GMM, �q , is given by

where �tq = �−1
q
(�t − �q) . Let the ith element of �tq be 

denoted by ztiq . Here, �q(�t) is the responsibility of the com-
ponent q for a local feature vector �t and is given by

The gradient vector of the log-likelihood with respect to 
�q is given by

where the d2-dimensional vectors, �q = vec (�−1
q
) and 

�tq =
[
zt1q�

⊤
tq
, zt2q�

⊤
tq
,… , ztdq�

⊤
tq

]⊤
 . For any d × d matrix � 

w i t h  aij, i, j = 1, 2,… , d  a s  i t s  e l e m e n t s , 
vec (�) = [a11, a12,… , add]

⊤ . The gradient of the log-likeli-
hood with respect to wq is given by

(7)� (�)
q
(�) =

T∑

t=1

�q(�t)�tq

(8)�q(�t) =
wq (�t��q,�q)

∑Q

q�=1
wq� (�t��q� ,�q� )

(9)� (�)
q

(�) =
1

2

T∑

t=1

�q(�t)
[
−�q + �tq

]

(10)� (w)
q

(�) =

T∑

t=1

�q(�t)

[
1

wq

−
�1(�t)

w1�q(�t)

]

The Fisher score vector with respect to the parameters of 
the qth component of the GMM is obtained as a supervector 
of gradient vectors of the log-likelihood for that component 
and is given by

Now, a set of local feature vectors � is represented as a 
fixed dimensional supervector �FK(�) of all the Q Fisher 
score vectors as follows:

The dimension of Fisher score vector is D = 
Q(d + d2 + 1) . The Fisher kernel between two sets of local 
feature vectors �m and �n is computed as

Here � is the Fisher information matrix given as

where L is the number of training samples. The computa-
tion of Fisher information matrix and its inverse is com-
putationally intensive. For a 128-component GMM on the 
39-dimensional feature vectors, the dimension of the result-
ing supervector of Fisher score vectors for an example is 
19,98,081, and the dimension of the Fisher information 
matrix is 19,98,081 × 19,98,081.

3.1.2 � GMM supervector kernel

The GMM supervector (GMMSV) kernel (Campbell and 
Sturim 2006) performs a mapping of a set of local feature 
vectors onto a higher dimensional vector corresponding to 
a GMM supervector. An example-specific adapted GMM is 
built for each example by adapting the means of the UBM 
using the data of that example. Let �(�)

q
 be the mean vector 

of qth component in the example-specific adapted GMM for 
an example � = {�1, �2,… , �T} . A GMM vector � q(�) for 
an example � corresponding to the qth component of GMM 
is obtained as follows:

where wq and �q are the mixture coefficient and covariance 
matrix of qth component in UBM. The GMM supervector 
for the example � is given by

(11)��q(�) =
[
� (�)

q
(�)⊤,� (�)

q
(�)⊤,𝛹 (w)

q
(�)

]⊤

(12)�FK(�) =
[
��1(�)

⊤, ��2(�)
⊤,… , ��Q(�)

⊤
]⊤

(13)KFK(�m,�n) = �FK(�m)
⊤�−1�FK(�n)

(14)� =
1

L

L∑

l=1

�FK(�l)�FK(�l)
⊤

(15)� q(�) =

�
√
wq�

−
1

2

q �(�)
q

�⊤

(16)�GMMSV(�) = [� 1(�)
⊤,� 2(�)

⊤,… ,�Q(�)
⊤]⊤
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The dimension of GMM supervector is D = Qd. The 
GMMSV kernel between a pair of examples �m and �n is 
given by

3.1.3 � GMM‑UBM mean interval kernel

The GMM-UBM mean interval (GUMI) kernel (You et al. 
2009) performs a mapping of a set of local feature vectors 
onto a higher dimensional vector corresponding to a GUMI 
supervector. In GUMI kernel, an example-specific adapted 
GMM is built for each example by adapting the mean vec-
tors and covariance matrices of the UBM using the data of 
that example. Let �(�)

q
 and �(�)

q
 be the mean vector and the 

covariance matrix of qth component in the example-specific 
adapted GMM for an example � = {�1, �2,… , �T} . A GUMI 
vector � q(�) for an example � corresponding to the qth 
component of GMM is obtained as follows:

where �q and �q are the mean vector and covariance matrix 
of qth component in UBM. The GUMI supervector is 
obtained by concatenating the GUMI vectors of different 
components as

The dimension of GUMI supervector is D = Qd. The 
GUMI kernel between a pair of examples �m and �n is given 
by

3.2 � Matching based approaches

These approaches involve computing a kernel function by 
matching the feature vectors in the pair of sets of feature vec-
tors. In this work, we propose to use CIGMM-based inter-
mediate matching kernel (Dileep and Chandra Sekhar 2014), 
histogram intersection kernel (HIK) (Gemert et al. 2010) 
and Chi-square-�2 kernel (Vedaldi and Zisserman 2010) 
and GMM-based pyramid match kernel (Dileep and Chan-
dra Sekhar 2012) as the dynamic kernels designed using the 
matching based approaches.

3.2.1 � CIGMM‑based intermediate matching kernel

An intermediate matching kernel (IMK) (Boughorbel et al. 
2005) is constructed by matching the sets of feature vectors 
using a set of virtual feature vectors. For every virtual feature 
vector, a feature vector is selected from each set of feature 
vectors and a base kernel for the two selected feature vectors 

(17)KGMMSV(�m,�n) = �GMMSV(�m)
⊤�GMMSV(�n)

(18)� q(�) =

(
�(�)

q
+�q

2

)−
1

2(
�(�)
q

− �q

)

(19)�GUMI(�) = [� 1(�)
⊤,� 2(�)

⊤,… ,�Q(�)
⊤]⊤

(20)KGUMI(�m,�n) = �GUMI(�m)
⊤�GUMI(�n)

is computed. The IMK for a pair of sets of feature vectors is 
computed as a combination of these base kernels. In (Dileep 
and Chandra Sekhar 2014), the set of virtual feature vectors 
considered are in the form of the components of CIGMM. For 
every component of CIGMM, a feature vector each from the 
two sets of feature vectors, that has the highest probability of 
belonging to that component (i.e., value of responsibility term) 
is selected and a base kernel is computed between the selected 
feature vectors. The responsibility of qth component for a local 
feature vector � , �q(�) , is given as

where wq is the mixture coefficient of the component q, and 
 (�|�q,�q) is the normal density for the component q with 
mean vector �q and covariance matrix �q . The local feature 
vectors �∗

mq
 and �∗

nq
 respectively in �m and �n , are selected 

using the component q as

The CIGMM-based IMK is computed as the sum of the 
values of the base kernels computed for the Q pairs of selected 
local feature vectors as follows:

The Gaussian kernel k(�∗
mq
, �∗

nq
) = exp (−�||�∗

mq
− �∗

nq
||2) 

is used as the base kernel. Here � is the width parameter of the 
Gaussian kernel that is empirically chosen.

3.2.2 � Histogram intersection kernel

In histogram intersection kernel (HIK) (Gemert et al. 2010), 
a set of feature vectors is mapped onto a histogram vector. 
The histogram encoding of a set of feature vector is from soft 
quantization using CIGMM with Q components. Let �(�m) 
and �(�n) be the histogram vectors corresponding to the sets 
of feature vectors �m and �n . The number of matches in the 
qth bin is given by histogram intersection function (Swain and 
Ballard 1991), defined as follows:

An HIK is computed as the total number of matches and 
is given by,

(21)�q(�) =
wq (���q,�q)

∑Q

j=1
wj (���j,� j)

(22)�∗
mq

= argmax
�∈�m

�q(�) and �∗
nq

= argmax
�∈�n

�q(�)

(23)KCIGMMIMK(�m,�n) =

Q∑

q=1

k(�∗
mq
, �∗

nq
)

(24)sq = min
(
hq(�m), hq(�n)

)

(25)KHIK(�m,�n) =

Q∑

q=1

sq



237International Journal of Speech Technology (2019) 22:231–249	

1 3

3.2.3 � GMM‑based pyramid match kernel

In the pyramid match kernel (PMK), a set of feature vec-
tors is mapped onto a multi-resolution histogram pyra-
mid. The kernel is computed between a pair of examples 
by matching the pyramids using a weighted histogram 
intersection match function at each level of pyramid. In 
Dileep and Chandra Sekhar (2012), the CIGMMs built 
with increasingly larger number of components are used 
to construct the histograms at the different levels in the 
pyramid. At level j, a CIGMM of bj components is built 
using the feature vectors in the training examples of all the 
classes. The histogram vectors �j(�m) and �j(�n) with bj
-dimensions, corresponding to the sets of feature vectors 
�m and �n , is then obtained by soft quantization. An histo-
gram intersection kernel, K(j)

HIK
 is then computed to obtain 

the number of matches between a pair of histogram vectors 
corresponding to a pair of examples �m and �n at each 
level, j = 0, 1,… , J − 1 . Here, J is the total number of lev-
els in the pyramid. The matching is a hierarchical process 
from the bottom of the pyramid to the top of the pyramid. 
The number of new matches at a level j is calculated by 
computing the difference between the number of matches 
at that level and the number of matches at its immediately 
higher level and is given by K(j)

HIK
(�m,�n) − K

(j+1)

HIK
(�m,�n) . 

The number of new matches at each level is weighted 
according to the number of components of CIGMM at 
that level. The GMM-based PMK between a pair of exam-
ples is computed as a weighted sum of the number of new 
matches at different levels of pyramid and is given as,

In our studies, we compare the performance of the 
SVM-based classifiers using the proposed SLPMK and 
SLPSK with that of the SVM-based classifiers using ker-
nels reviewed in this section.

4 � Segment‑level pyramid match kernels

In designing segment-level pyramid match kernels (SLP-
MKs), a speech utterance represented as a set of feature 
vectors is decomposed into pyramid of increasingly finer 
segments. SLPMK between a pair of speech utterances is 
computed by matching the corresponding segments at each 
level in the pyramid. Let j = 0, 1,… , J − 1 be the J levels 
in pyramid. At level 0 (i.e. j = 0 ) complete speech signal 
is considered as a segment. At level 1 (i.e. j = 1 ), a speech 
signal is divided into two equal segments. At level 2 (i.e. 

(26)KPMK(�m,�n) =

J−1∑

j=0

1

bJ−j
(K

(j)

HIK
− K

(j+1)

HIK
) + K

(J)

HIK

j = 2 ), a speech signal is divided into four equal segments 
and so on. Hence at any level j, a speech utterance is par-
titioned into 2j equal segments.

4.1 � Codebook‑based SLPMK

For designing codebook based segment-level pyramid match 
kernel (CBSLPMK) we borrowed the idea from spatial 
pyramid match kernel (Lazebnik et al. 2006) which con-
sider the pyramid of spatial division of images. In design-
ing CBSLPMK, every segment from a speech utterance is 
mapped to a bag-of-codewords representation. A codeword 
is a representative feature vector for a group of similar fea-
ture vectors. Collection of all the codewords is known as a 
codebook. A codebook of size Q is constructed by clustering 
the feature vectors in the training examples of all the classes 
using K-means clustering technique. The bag-of-codewords 
representation for a speech segment is obtained by assigning 
every feature vector to one of the Q codewords. Let �jk(�) 
be the Q-dimensional bag-of-codewords representation of 
kth segment of an example � = {�1, �2,… , �T} in the jth 
level of pyramid. Let hjkq(�) be an element in the �jk(�) , 
indicating the number of feature vectors of kth segment 
assigned to qth codeword. Let �m = {�m1 , �m2,… , �mTm} and 
�n = {�n1, �n2,… , �nTn } be the two sets of feature vectors. 
The number of matches in the qth codeword between the kth 
segments of �m and �n at jth level of pyramid is given by

Total number of matches at level j between the kth seg-
ments of �m and �n is obtained as,

Total number of matches between �m and �n at level j is 
obtained as,

Note that the number of matches found at level j also 
includes all the matches found at the finer level j + 1 . There-
fore, the number of new matches found at level j is given by 
Ŝj–Ŝj+1 . The CBSLPMK is computed as,

Figure 1 illustrates the process of computing CBSLPMK 
between a pair of examples. Since kernel function is a simi-
larity function which take two samples as input and spits 

(27)sjkq = min (hjkq(�m), hjkq(�n))

(28)Sjk =

Q∑

q=1

sjkq

(29)Ŝj =

2j∑

k=1

Sjk

(30)KCBSLPMK(�m,�n) =

J−2∑

j=0

1

2J−(j+1)
(Ŝj − Ŝj+1) + ŜJ−1
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out how much similar are they. Same is observe from the 
Fig. 1, that when the two examples are from the same class, 
the value of CBSLPMK is higher than that for the exam-
ples from different classes. Examples of the same class are 
expected to be similar to each other rather then of other 
class.

The key issue in the design of SLPMK is the choice of the 
technique for constructing the bag-of-codewords represen-
tation for each segment of speech utterance. The K-means 
clustering method makes use of information about the cent-
ers of clusters and the distances of a feature vector to the 
centers of clusters to assign that feature vector to one of the 
clusters. A better bag-of-codewords representation of speech 
segment can be obtained by considering a clustering method 
that considers additional information like the spread of the 
clusters and the sizes of the clusters along with the centers 
of the clusters (Grauman and Darrell 2007). Moreover, the 
construction of CBSLPMK involves hard clustering. A bet-
ter SLPMK is constructed by using soft clustering. In the 
next subsection, we propose the GMM-based SLPMK. The 
GMM uses the information about the spread and the size 
of the clusters along with the centers of the clusters for soft 
assignment of feature vectors.

4.2 � GMM‑based SLPMK

In this approach, we propose to use a class-independent 
GMM (CIGMM) for forming the clusters to obtain the 
bag-of-codewords representation for each speech segment. 
CIGMM is a large GMM of Q components built using the 
feature vectors in the training examples of all the classes. 
Every component of the CIGMM represents a codeword. 
The qth codeword is now represented by the mean vector 
�q , covariance matrix �q and mixture weight �q of the qth 
component of CIGMM. The soft assignment of a feature 
vector from a segment to the qth component in the CIGMM 
is obtained using the responsibility term and it is given by

where  (�t ∣ �q , �q ) is the normal density for the compo-
nent q. For the kth speech segment at jth level of pyramid, 
the effective number of feature vectors hjkq(�) assigned to a 
component q is given by

(31)�q(�t) =
wq (�t��q,�q)

∑Q

q�=1
wq� (�t��q� ,�q� )

where Tk is the number of feature vectors in the kth seg-
ment of � . For a pair of examples represented as sets of 
feature vectors, �m and �n , number of matches in the qth 
codeword between the kth segments of �m and �n at jth 
level of pyramid is denoted by sjkq , total number of matches 
at level j between the kth segments Sjk and total number of 
matches between �m and �n at level j, Ŝj are computed as in 
(27), (28) and (29) respectively. The GMM-based SLPMK 
(GMMSLPMK) between a pair of examples �m and �n , 
KGMMSLPMK is then computed as in eq. (30).

Figure  2 illustrates the process of computing 
GMMSLPMK between a pair of examples. In Fig. 2a, �m 
and �n are the two examples of same class are considered 
whereas in Fig. 2b, �l is of different class is considered. 
It is observed from Fig. 2a, when the two examples are 
from the same class the value of GMMSLPMK matching 
score is higher in compare to the examples from differ-
ent classes Fig. 2b. As the process of obtaining bag-of-
codeword representation is different in CBSLPMK and 
GMMSLPMK, it is also seen from the Fig. 1 and Fig. 2 
that the kernel values (the matching scores) are also differ-
ent. For the same examples ( �m–�n ) and ( �m–�l ) matching 
scores from CBSLPMK and GMMSLPMK is computed in 
Figs. 1 and 2. It is observed in Fig. 2 that GMMSLPMK 
is more efficient as in GMMSLPMK matching score of 
examples belonging to same class is higher and examples 
of different classes is lower in compare to matching scores 
of CBSLPMK Fig. 1.

Both CBSLPMK and GMMSLPMK are valid positive 
definite kernel. The main advantages of using SLPMK over 
other dynamic kernels, especially over GMMPMK (Dileep 
and Chandra Sekhar 2012) are: (i) use of local information 
while matching a pair of speech utterances and (ii) maintain-
ing temporal ordering of feature vectors in a speech utter-
ance for some extent by matching at segment levels.

5 � Probabilistic sequence kernel for sets 
of feature vectors

In this section we present probabilistic sequence kernel 
(PSK) constructed between pair of examples represented as 
sets of feature vectors. Let � = {�1, �2,… , �T} be a set of 
local feature vectors. PSK (Lee et al. 2007) maps a sets of 
feature vectors onto a fixed dimensional probabilistic fea-
ture vector obtained using Gaussian mixture model (GMM). 
The PSK uses universal background model (UBM) with Q 
components and the class-specific GMMs obtained by adapt-
ing the UBM. The UBM, also called as class independent 

(32)hjkq(�) =

Tk∑

t=1

�q(�t)

Fig. 1   A schematic illustration of the construction of codebook-based 
SLPMK using segment-level pyramids that consists of three levels for 
a pair of examples. At level 0, a single segment of speech is consid-
ered resulting in a single bag-of-codewords representation. At level 1, 
a speech signal is subdivided into two segments, yielding two histo-
grams, and so on

◂
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GMM (CIGMM), is a large GMM built using the train-
ing data of all the classes. A local feature vector � is rep-
resented in a higher dimensional feature space as a vector 
of responsibility terms of the 2Q components (Q from a 
class-specific adapted GMM and other Q from UBM), 
� (�) = [𝛾1(�), 𝛾2(�),… , 𝛾2Q(�)]

⊤ . Since the element �q(�) 
indicates the probabilistic alignment of � to the qth compo-
nent, � (�) is called the probabilistic alignment vector. Thus 
a probabilistic alignment vector includes the information 
specific to a class as well as the global information com-
mon to all the classes. A set of local feature vectors � is 
represented as a fixed dimensional vector �PSK(�) , and is 
given by

T h e n ,  t h e  P S K  b e t we e n  t wo  exa m p l e s 
�m = {�m1, �m2,… , �mTm} and �n = {�n1, �n2,… , �nTn} is 
given as

where � is the correlation matrix. The PSK in Lee et al. 
(2007), does not include temporal ordering of the local fea-
ture vectors. In many speech application, including the tem-
poral information helps to build a better classifier. Also in 
many applications, preserving local information also helps 
to build a better discriminative classifier (Sachdev et al. 
2015). In the following section, we propose segment-level 
PSK (SLPSK) to include local information as well as tem-
poral information in the computation of PSK. It is seen from 
(33) that �PSK(�) is obtained by pooling all the probabil-
istic alignment vectors corresponding to each local feature 
vectors of X and taking their average. This is called aver-
age pooling (Wang et al. 2010). In the next section we also 
propose to explore different pooling technique such as sum 
pooling (Wang et al. 2010) and max pooling (Yang et al. 
2009) in the construction of �PSK(�).

5.1 � Segment‑level probabilistic sequence kernel

In this section, we propose segment-level PSK (SLPSK). 
In SLPSK, speech utterance represented as a set of feature 
vectors is divided into a fixed number of segments and then 
feature vectors of each segment is mapped onto probabilistic 

(33)�PSK(�) =
1

T

T∑

t=1

� (�t)

(34)KPSK(�m,�n) = �PSK(�m)
⊤�−1�PSK(�n)

feature vector. SLPSK between a pair of speech utterances is 
computed by matching the corresponding segments.

L e t  �m = {�m1, �m2,… , �mTm}  a n d 
�n = {�n1, �n2,… , �nTn} be the sets of feature vectors for 
two examples (speech utterances). Let N be the number of 
segments into which each utterance is divided. Let 
�k

m
= {�k

m1
, �k

m2
,… , �k

mTk
m

} and �k
n
= {�k

n1
, �k

n2
,… , �k

nTk
n

} be 
the subsets of local feature vectors of �m and �n belonging 
to kth segment in their respective speech utterance. We 
propose to compute PSK between the two subsets of local 
feature vectors in the kth segment. The corresponding 
fixed dimensional vectors �k

PSK
(�k

m
) and �k

PSK
(�k

n
) are 

obtained by pooling their respective probabilistic align-
ment vectors. The different pooling techniques are pre-
sented in the end of this section. The segment-specific 
PSK between �k

m
 and �k

n
 is computed using

The correlation matrix �k is defined as follows

where �k is the matrix whose rows are the probabilistic 
alignment vectors for local feature vectors of kth segment 
and Mk is the total number of local feature vectors in kth 
segment. The SLPSK for the �m and �n is then computed 
as combination of the segment-specific PSKs as follows:

Since, PSK is a valid positive semidefinite kernel (Lee 
et al. 2007), the segment specific PSK is also a valid posi-
tive semidefinite kernel. Hence, the SLPSK is also a valid 
positive semidefinite kernel because the sum of valid posi-
tive semidefinite kernel is a valid positive semidefinite 
kernel.

Next, we discuss different pooling techniques used for 
pooling the probabilistic alignment vectors of sets of local 
feature vectors corresponding to each segments.

5.1.1 � Pooling techniques for constructing �
PSK

(�)

Let �k = {�k
1
, �k

2
,… , �k

Tk
} be the segment-level feature vec-

tors corresponding the kth segment of an utterance. In this 
work we propose to explore 3 pooling techniques that are 
popular in the image domain (Yang et al. 2009). They are:

	 (i)	 Average pooling: In average pooling, �PSK(�
k) is 

obtained by pooling all the probabilistic alignment 

(35)Kk
PSK

(�k
m
,�k

n
) = �k

PSK
(�k

m
)⊤�−1

k
�k

PSK
(�k

n
)

(36)�k =
1

Mk

�⊤
k
�k

(37)KSLPSK(�m,�n) =

N∑

k=1

Kk
PSK

(�k
m
,�k

n
)

Fig. 2   A schematic illustration of the construction of GMM-based 
SLPMK using segment-level pyramids that consists of 3 levels for a 
pair of examples. At level 0, a single segment of speech is consid-
ered resulting in a single bag-of-codewords representation. At level 1, 
a speech signal is subdivided into two segments, yielding two histo-
grams, and so on

◂
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vectors corresponding to each local feature vectors 
of �k and taking their average. It is given as

	 (ii)	 Sum pooling: In sum pooling, �PSK(�
k) is obtained 

by adding all the probabilistic alignment vectors cor-
responding to each local feature vectors of �k . It is 
given by:

The �PSK(�
k) = [�1(�

k),�2(�
k),…�2Q(�

k)]T  is 
then normalized using sum normalization as sug-
gested in Wang et al. (2010). The normalized qth 
value of �PSK(�

k) is given as:

	 (iii)	 Max pooling: In max pooling, �PSK(�
k) is obtained 

by taking maximum of each dimension of all proba-
bilistic alignment vectors corresponding to each local 
feature vectors of �k . It is given by

		    The �PSK(�
k) = [�1(�

k),�2(�
k),…�2Q(�

k)]T is 
then normalized using l2 normalization as suggested 
in Yang et al. (2009). The normalized qth value of 
�PSK(�

k) is given as:

In the next section, we present the effectiveness of 
the proposed kernels for speech emotion recognition and 
speaker identification tasks using ELM-based classifiers.

6 � Experimental studies on speech emotion 
recognition and speaker identification

Speech emotion recognition task involves automatically 
identifying the emotional state of a speaker from his/her 
voice. Speaker identification task involves identifying 
a speaker among a known set of speakers using a speech 
utterance produced by the speaker. We first discuss the fea-
tures and datasets used for the studies on speech emotion 

(38)�PSK(�
k) =

1

Tk

Tk∑

t=1

�(�k
t
)

(39)�PSK(�
k) =

Tk∑

t=1

�(�k
t
)

(40)�q(�
k) =

�q(�
k)

∑2Q

j=1
�q(�

k)

(41)
�PSK(�

k) = max(�(�k
1
),�(�k

2
),… ,�(�k

t
),… ,�(�k

Tk ))

(42)�q(�
k) =

�q(�
k)

||�PSK(�
k)||2

recognition and speaker identification. We have considered 
Mel frequency cepstral coefficients (MFCC) as features. The 
MFCC are the most successful and extensively used features 
for speech recognition. A speech utterance is represented by 
a set of feature vectors by extracting 39-dimensional feature 
vectors from every frame by performing spectral analysis. 
Among the 39 features, the first 12 features are the MFCC 
and the 13th feature is the log energy. The remaining 26 fea-
tures are the delta and acceleration coefficients. A frame size 
of 20 ms and a shift of 10 ms are used for feature extraction 
from the speech signal of an utterance. The Berlin emotional 
speech database (Emo-DB) (Burkhardt et al. 2005) and the 
German FAU Aibo emotion corpus (FAU-AEC) (Steidl 
2009) are used for studies on speech emotion recognition 
task. Emo-DB contains 494 utterances belonging to the 
following seven emotional categories with the number of 
utterances for the category given in parentheses: fear (55), 
disgust (38), happiness (64), boredom (79), neutral (78), sad-
ness (53), and anger (127). These utterances correspond to 
ten sentences in German language uttered by five male and 
five female actors. We have considered 80% of the utterances 
for training and the remaining for testing. The multi-speaker 
speech emotion recognition accuracy presented in this work 
for the Emo-DB is the average classification accuracy along 
with 95% confidence interval (CI) obtained for 5-fold strati-
fied cross-validation. We have considered four super classes 
of emotions, anger, emphatic, neutral, and motherese in the 
FAU-AEC. We have considered an almost balanced subset 
of the corpus defined for these four classes by CEICES of 
the Network of Excellence HUMAINE funded by the Euro-
pean Union (Steidl 2009). We perform the classification at 
the chunk (speech utterance) level in the Aibo chunk set. 
The speaker-independent speech emotion recognition accu-
racy presented in this study for the FAU-AEC is the aver-
age classification accuracy along with 95% CI obtained for 
3-fold stratified cross validation. The 3-fold cross validation 
is based on the three splits defined in Appendix A.2.10 of 
Steidl (2009).

The studies on the speaker identification are performed on 
the 2002 and 2003 NIST speaker recognition (SRE) corpora 
(NIS 2002, 2003). We considered the 122 male speakers 
that are common to the 2002 and 2003 NIST SRE corpora. 
Each utterance in the training and test sets is divided into 
segments of around 5 s. Each speech segment is considered 
as an example. This leads to a total of 6661 examples with 
each speaker class having about 55 examples. The experi-
ments are conducted in five trials by considering randomly 
chosen 30 utterances from each speaker class (total of 3660 
examples) for training and rest for testing (total of 3001 
examples). The speaker identification accuracy presented 
is the average classification accuracy along with 95% CI 
obtained for five trials.
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The classification accuracy gives the percentage of test 
examples that are correctly predicted by the classifier. The 
classification accuracy is given as the ratio of number of test 
examples correctly classified ( correct ) to the total number 
of test examples ( test ). The classification accuracy (CA) in 
% is given as:

In order to ascertain the statistical importance of the 
result, the classification accuracy is presented along with 
the 95% CI. A simple asymptotic method (Wald method) 
Newcombe (1998) is employed to estimate the 95% CI of 
the classification accuracy. The CI of classification accuracy 
is computed as

where � is the accuracy in decimals, and correct is the num-
ber of test examples. Here z is the standard normal distribu-
tion associated with a two-tailed probability. For 95% CI, z 
takes the value of 1.96.

We first present the experimental studies on speech emo-
tion recognition and speaker identification using conven-
tional ELM in Sect. 6.1. In Sect. 6.2 experimental studies 
using ELM-based classifiers with the proposed dynamic ker-
nels, SLPMKs and SLPSKs are presented. In Sect. 6.3, we 
compare the results of SVM based classifier using proposed 
kernels with that of the proposed dynamic kernel based 
ELM classifiers. Comparison of results with state-of-the-
art-approaches is presented in Sect. 6.4.

6.1 � Experimental studies using conventional ELM

We consider the same architecture as discussed in Sect. 2 for 
the conventional ELM to perform classification of varying 
length patterns of speech. Every speech frame is represented 
as 39-dimensional MFCC vectors. As per the standards 
(Chen et al. 2015), we have considered l = 7 contextual vec-
tors (frames) to the left and r = 7 contextual vectors (frames) 
to the right. Thus, the total number of stacked frames is 15. 
Now, the dimension of input feature vector to the conven-
tional ELM is D = 585 corresponding to every frame. Thus 
there are 585 nodes in the input layer of the conventional 
ELM. Experiments are carried out using different number 
of nodes (h) in the hidden layer. A sigmoid activation func-
tion is considered for the nodes in the hidden layer. Table 1 
shows the classification accuracy (in %) for speech emotion 
recognition and speaker identification tasks using the con-
ventional ELM. It is observed that in all cases h = 2048 has 
given highest accuracy.

(43)CA (in %) =
correct

test

× 100

(44)CI = z

√
�(1 − �)

test

In another experiment, varying length speech utterance is 
mapped to a bag-of-codewords representation (description 
for bag-of-codewords representation is given in Sects. 4.1 
and 4.2). Table 2 presents classification accuracy (CA) (in 
%) using conventional ELM considering bag-of-codeword 
representations of speech signals as input for speech emo-
tion recognition (SER) and speaker identification (Spk-id) 
tasks. We consider K-means and GMM-based clustering 
techniques to obtain codebooks. Experiments are carried out 
using different number of codewords (Q) in a codebook. The 
dimension of input feature vector to the conventional ELM is 
D = Q corresponding to every speech sample. Thus there are 
D nodes in the input layer of the conventional ELM. Experi-
ments are also carried out using different number of nodes 
(h) in the hidden layer. Here, sigmoid activation function is 
considered for the nodes in the hidden layer. The accuracies 
presented in Table 2 are the best accuracies observed for the 
different values of (Q, h). The best performances in all these 
cases for the different tasks are shown using bold phase. 
It is observed that conventional ELM considering GMM-
based bag-of-codeword representations for speech signals 
performed significantly better than that of the K-means 
based bag-of-codeword representations. It is also observed 
that conventional ELM performed better when the speech 
signals are presented using bag-of-codeword representations 
than that of the contextual vector representation.

Next we present the experimental studies on speech emo-
tion recognition and speaker identification tasks using the 
proposed dynamic kernel (SLPMKs and SLPSKs) based 
ELM classifiers.

6.2 � Experimental studies using dynamic kernel 
based ELM classifiers with the proposed SLPSKs 
and SLPMKs

In this section, experimental studies using proposed dynamic 
kernel based ELM classifiers is presented. As discussed in 

Table 1   Classification accuracy (CA) (in %) of the conventional 
ELM-based classifier for speech emotion recognition (SER) and 
speaker identification (Spk-id) tasks

Here, CA 95% CI indicates average classification accuracy along with 
95% CI and h is the number of hidden nodes in ELM. Bold numerals 
indicate the best accuracy with respect to corresponding dataset and 
task

SER Spk-id

EmoDB FAU-AEC

h CA 95% CI h CA 95% CI h CA 95% CI

512 52.60 ± 0.23 512 44.25 ± 0.16 512 50 ± 0.18

1024 57.85 ± 0.21 1024 46.78 ± 0.14 1024 54 ± 0.19

2048 59.25 ± 0.29 2048 48.60 ± 0.17 2048 59 ± 0.16
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Sect. 2, KELM has two advantages over the conventional 
ELM. One of the advantage is that we need not have to con-
sider the random weights for the input layer. Second advantage 
is that, we need not have to choose the nodes for the hidden 
layer. In this study, we use the proposed dynamic kernels in 
the KELM to handle the varying length patterns of speech 
efficiently. The classification accuracies for the ELM-based 
classifier using the proposed SLPSKs and SLPMKs are given 
in Tables 3 and 4 for speech emotion recognition and speaker 
identification tasks. In our studies, the dynamic kernel based 
ELM classifier using the SLPSK is built using different values 
for Q corresponding to the number of Gaussian components 
and N correspond to the number of segmental division. The 
classification accuracies for the KELM using SLPSK are given 
in Table 3 for speech emotion recognition and speaker iden-
tification tasks using different pooling techniques. The best 
performances are shown using bold phase. SLPSK computed 
using sum pooling performed better for speaker identification 
task and SLPSK computed using max pooling performed bet-
ter for speech emotion recognition task.

In our studies, the ELM-based classifiers using the 
CBSLPMK and GMMSLPMK are built using different 
values for Q corresponding to the number of codewords 
and J corresponding to the number of levels in pyramid. In 
CBSLPMK, Q corresponds to number of clusters obtained 
using K-means clustering technique and in GMMSLPMK, 
Q corresponds to number of Gaussian components. The 
classification accuracies for the ELM-based classifier 
using CBSLPMK and GMMSLPMK are given in Table 4 
for speech emotion recognition and speaker identifica-
tion tasks. It is seen that, the ELM-based classifiers using 
GMMSLPMK perform significantly better than ELM-based 
classifiers using CBSLPMK for all the tasks. The better per-
formance of the KELM-based classifier using the proposed 
dynamic kernel is mainly due to the capabilities of the SLP-
MKs and SLPSKs in capturing the local information better 
than the other dynamic kernels and also maintaining tempo-
ral information for some extent.

For all the experimental studies using dynamic kernel 
based ELM classifier, regularization coefficient C defined 
in Sect. 2, is chosen empirically as 10−2 . In state-of-the-art-
approaches dynamic kernels are mostly used with SVM-
based classifiers (Dileep and Chandra Sekhar 2012, 2014). 
But in our work, we have proposed dynamic kernel based 
ELMs for handling varying length pattern classification 
problem. Reason for the same is kernel ELM based classifier 
is comparable with SVM based classifier (Chorowski et al. 
2014) and have many advantages like, it is simple, deals 
with multi-class classification problem and takes less train-
ing time in compare to training time of SVM based classifier. 
In the next Section, we present the comparison of kernel 
ELM with SVM using proposed dynamic kernels.

Ta
bl

e 
2  

C
om

pa
ris

on
 o

f 
cl

as
si

fic
at

io
n 

ac
cu

ra
cy

 (
CA

) 
(in

 %
) 

us
in

g 
co

nv
en

tio
na

l E
LM

 c
on

si
de

rin
g 

ba
g-

of
-c

od
ew

or
d 

re
pr

es
en

ta
tio

ns
 o

f 
sp

ee
ch

 s
ig

na
ls

 a
s 

in
pu

t f
or

 s
pe

ec
h 

em
ot

io
n 

re
co

gn
iti

on
 

(S
ER

) a
nd

 sp
ea

ke
r i

de
nt

ifi
ca

tio
n 

(S
pk

-id
) t

as
ks

K
-m

ea
ns

 c
lu

ste
rin

g 
an

d 
G

M
M

-b
as

ed
 c

lu
ste

rin
g 

te
ch

ni
qu

es
 a

re
 u

se
d 

to
 o

bt
ai

n 
co

de
bo

ok
s. 

H
er

e,
 C

A
 9

5%
 C

I 
in

di
ca

te
s 

av
er

ag
e 

cl
as

si
fic

at
io

n 
ac

cu
ra

cy
 a

lo
ng

 w
ith

 9
5%

 C
I. 

Q
 is

 th
e 

nu
m

be
r 

of
 

co
de

w
or

ds
 a

nd
 h

 is
 th

e 
nu

m
be

r o
f h

id
de

n 
no

de
s i

n 
EL

M
. B

ol
d 

nu
m

er
al

s i
nd

ic
at

e 
th

e 
be

st 
ac

cu
ra

cy
 w

ith
 re

sp
ec

t t
o 

co
rr

es
po

nd
in

g 
da

ta
se

t a
nd

 ta
sk

K
-m

ea
ns

 b
as

ed
 c

od
eb

oo
k 

re
pr

es
en

ta
tio

n
G

M
M

-b
as

ed
 c

od
eb

oo
k 

re
pr

es
en

ta
tio

n

SE
R

Sp
k-

Id
SE

R
Sp

k-
Id

Em
oD

B
FA

U
-A

EC
Em

oD
B

FA
U

-A
EC

(Q
, h

)
CA

 9
5%

 C
I

(Q
, h

)
CA

 9
5%

 C
I

(Q
, h

)
CA

 9
5%

 C
I

(Q
, h

)
CA

 9
5%

 C
I

(Q
, h

)
CA

 9
5%

 C
I

(Q
, h

)
CA

 9
5%

 C
I

(6
4,

 2
04

8)
7
0
.8
2
±
0
.2
9

(6
4,

 1
28

)
�
�
.�
�
±
�
.�
�

(6
4,

 1
02

4)
5
9
.6
7
±
0
.1
5

(6
4,

 2
04

8)
7
5
.4
7
±
0
.2
9

(6
4,

 2
56

)
5
8
.8
6
±
0
.1
8

(6
4,

 1
02

4)
6
2
.1
4
±
0
.1
7

(1
28

, 2
04

8)
6
9
.2
2
±
0
.2
3

(1
28

, 2
56

)
5
3
.6
0
±
0
.1
5

(1
28

, 1
02

4)
�
�
.�
�
±
�
.�
�

(1
28

, 2
04

8)
7
8
.7
2
±
0
.2
3

(1
28

, 1
28

)
�
�
.�
�
±
�
.�
�

(1
28

,1
02

4)
�
�
.�
�
±
�
.�
�

(2
56

, 2
04

8)
6
9
.5
9
±
0
.2
1

(2
56

, 2
56

)
5
3
.2
0
±
0
.1
7

(2
56

, 1
02

4)
5
7
.1
3
±
0
.1
5

(2
56

, 2
04

8)
8
0
.2
0
±
0
.2
6

(2
56

, 2
56

)
5
9
.5
5
±
0
.1
9

(2
56

, 1
02

4)
5
7
.1
7
±
0
.1
4

(5
12

, 2
04

8)
7
2
.6
2
±
0
.2
5

(5
12

, 5
12

)
5
1
.6
5
±
0
.1
3

(5
12

, 1
02

4)
5
8
.0
2
±
0
.1
2

(5
12

, 2
04

8)
�
�
.�
�
±
�
.�
�

(5
12

, 5
12

)
5
6
.5
3
±
0
.1
7

(5
12

, 1
02

4)
6
2
.7
8
±
0
.1
4

(1
02

4,
 2

04
8)

�
�
.�
�
±
�
.�
�

(1
02

4,
 5

12
)

5
0
.9
9
±
0
.1
4

(1
02

4,
 1

02
4)

5
7
.0
7
±
0
.1
3

(1
02

4,
 2

04
8)

7
9
.8
9
±
0
.2
7

(1
02

4,
 5

12
)

5
6
.7
3
±
0
.1
5

(1
02

4,
 1

02
4)

6
2
.2
3
±
0
.1
3



245International Journal of Speech Technology (2019) 22:231–249	

1 3

6.3 � Comparison of kernel ELM with SVM using 
SLPMKs and SLPSKs

In this section, comparison of dynamic kernel based ELM 
with SVM using proposed dynamic kernels is presented. 
For dynamic kernel based SVM classifiers, we uses the 
LIBSVM (Chang and Linm 2011) tool to build the SVM 
classifiers. In this study, the one-against-the-rest approach 
is considered. The value of trade-off parameter in SVM is 
chosen empirically as 10−3 . The classification accuracies for 
the KELM-based classifier and SVM based classifier using 
the proposed SLPSKs and SLPMKs are given in Table 5 
for speech emotion recognition and speaker identification 

tasks. The accuracies presented in Table 5 are the accura-
cies observed by considering SLPMKs and SLPSKs with 
best parameter values shown in Table 3 and Table 4. It is 
observed that the KELM using GMMSLPMK performs 
better than that of the CBSLPMK and SLPSKs for speech 
emotion recognition task. It is also observed that KELM 
using GMMSLPMK performs comparable to SLPSK with 
sum pooling for speaker identification task. It is seen that the 
SVM classifiers using SLPSK with sum pooling is margin-
ally better than ELM using SLPSK with sum pooling for 
speech emotion recognition and speaker identification tasks. 
However, ELM classifier using GMMSLPMK perform 

Table 3   Classification accuracy (in %) of the dynamic kernel based ELM classifiers classifier with SLPSK for speech emotion recognition (SER) 
and speaker identification (Spk-ID) tasks using different pooling technique for the different values of Q and N 

Here, CA 95% CI indicates average classification accuracy along with 95% CI. Bold numerals indicate the best accuracy with respect to corre-
sponding dataset and task

Q N KELM using SLPSK with average pooling KELM using SLPSK with sum pooling KELM using SLPSK with max pooling

SER Spk-ID SER Spk-ID SER Spk-ID

Emo-DB FAU-AEC Emo-DB FAU-AEC Emo-DB FAU-AEC

CA 95% CI CA 95% CI CA 95% CI CA 95% CI CA 95% CI CA 95% CI CA 95% CI CA 95% CI CA 95% CI

256 1 86.01 ± 0.21 65.15 ± 0.09 84.12 ± 0.18 90.80 ± 0.24 64.89 ± 0.19 82.28 ± 0.19 86.00 ± 0.18 65.08 ± 0.14 82.99 ± 0.11

2 87.82 ± 0.23 66.17 ± 0.15 85.07 ± 0.15 90.90 ± 0.18 65.60 ± 0.17 83.03 ± 0.14 88.60 ± 0.19 65.89 ± 0.16 83.11 ± 0.16

4 84.07 ± 0.20 65.28 ± 0.16 82.28 ± 0.19 89.60 ± 0.19 65.22 ± 0.15 84.66 ± 0.14 87.24 ± 0.18 65.01 ± 0.11 81.94 ± 0.13

512 1 88.00 ± 0.19 65.06 ± 0.14 87.56 ± 0.11 90.60 ± 0.21 64.11 ± 0.14 87.62 ± 0.17 87.68 ± 0.21 64.17 ± 0.09 86.45 ± 0.17

2 ��.�� ± �.�� 65.96 ± 0.11 89.89 ± 0.19 ��.�� ± �.�� 65.08 ± 0.12 88.17 ± 0.24 87.90 ± 0.21 65.15 ± 0.11 89.01 ± 0.12

4 89.01 ± 0.21 64.81 ± 0.12 87.44 ± 0.19 88.30 ± 0.30 65.16 ± 0.12 87.83 ± 0.13 86.37 ± 0.28 64.78 ± 0.15 87.88 ± 0.14

1024 1 88.61 ± 0.28 65.91 ± 0.09 90.22 ± 0.19 89.00 ± 0.18 65.01 ± 0.11 90.69 ± 0.12 86.06 ± 0.18 65.10 ± 0.14 88.84 ± 0.16

2 89.90 ± 0.23 ��.�� ± �.�� ��.�� ± �.�� 90.60 ± 0.17 ��.�� ± �.�� ��.�� ± �.�� ��.�� ± �.�� ��.�� ± �.�� ��.�� ± �.��

4 86.22 ± 0.19 65.66 ± 0.09 88.89 ± 0.13 88.40 ± 0.17 65.22 ± 0.08 89.07 ± 0.12 85.01 ± 0.17 63.15 ± 0.09 89.11 ± 0.13

Table 4   Classification accuracy 
(CA) (in %) of the ELM-based 
classifiers with CBSLPMK 
and GMMSLPMK for speech 
emotion recognition (SER) and 
speaker identification (Spk-ID) 
tasks for the different values of 
Q and J 

Here, CA 95% CI indicates average classification accuracy along with 95% CI. Bold numerals indicate the 
best accuracy with respect to corresponding dataset and task

Q J KELM using CBSLPMK KELM using GMMSLPMK

SER SER

Emo-DB FAU-AEC Spk-ID Emo-DB FAU-AEC Spk-ID

CA 95% CI CA 95% CI CA 95% CI CA 95% CI CA 95% CI CA 95% CI

256 1 77.81 ± 0.25 60.11 ± 0.08 78.99 ± 0.09 86.14 ± 0.18 64.12 ± 0.09 80.11 ± 0.08

2 79.26 ± 0.16 62.89 ± 0.11 79.11 ± 0.09 87.00 ± 0.21 65.97 ± 0.15 81.04 ± 0.14

3 81.00 ± 0.40 63.02 ± 0.14 78.01 ± 0.07 88.09 ± 0.16 66.17 ± 0.08 78.09 ± 0.07

512 1 81.89 ± 0.19 59.85 ± 0.07 80.12 ± 0.09 87.19 ± 0.14 67.07 ± 0.06 82.10 ± 0.06

2 ��.�� ± �.�� 63.89 ± 0.09 81.98 ± 0.12 90.44 ± 0.16 69.13 ± 0.05 85.56 ± 0.11

3 85.61 ± 0.23 61.87 ± 0.06 78.23 ± 0.09 ��.�� ± �.�� ��.�� ± �.�� 82.78 ± 0.06

1024 1 82.48 ± 0.26 61.08 ± 0.09 81.58 ± 0.09 87.60 ± 0.18 67.01 ± 0.05 88.09 ± 0.03

2 85.10 ± 0.21 65.39 ± 0.08 ��.�� ± �.�� 88.77 ± 0.18 68.09 ± 0.08 ��.�� ± �.��

3 84.10 ± 0.25 ��.�� ± �.�� 82.01 ± 0.07 87.50 ± 0.22 66.89 ± 0.17 88.89 ± 0.80



246	 International Journal of Speech Technology (2019) 22:231–249

1 3

better than SVM using GMMSLPMK for speech emotion 
recognition in FAU-AEC and in speaker identification task. 
Overall, it is observed that the accuracies obtained by the 
SVM-based classifiers and the ELM-based classifiers using 
dynamic kernels are close to each other

In past few years many researchers has discussed that 
SVM based classifiers and kernel ELM based classifiers 
are comparable to each other (Chorowski et  al. 2014; 
Zhang et al. 2016). The SVM uses kernel functions to 
transform the data from the original input space into a 
highly dimensional space called the feature space, where 
linear separation of training samples belonging to differ-
ent classes is possible. Whereas, in dynamic kernel based 
ELM feature mapping is known through kernel matrix and 
used instead of random weight for solving the problem in 
kernel space. Moreover, ELM has better generalization 

performance, better scalability and runs at much faster 
learning speed than traditional SVM (Huang et al. 2012). 
So, for further experimental studies and comparison with 
state-of-the-art approaches, we have considered dynamic 
kernel based ELM classifier only. In the next Section, we 
present the comparison of proposed dynamic kernel based 
ELM with state-of-the-art-approaches.

6.4 � Comparison of proposed dynamic kernel based 
ELM with state‑of‑the‑art approaches

In this section, we study comparison of proposed 
dynamic kernel based ELM classifier with state-of-the-art 
approaches. Table 6 compares the accuracies for speech 
emotion recognition and speaker identification tasks 
obtained using the GMM-based classifiers, multi-layer 
feed-forward neural networks (MLFFNNs), conventional 

Table 5   Comparison of classification accuracy (CA) (in %) of the 
SVM-based classifiers with Kernel ELM using FK, PSK, GMMSVK, 
GUMIK, GMMIMK, GMMPMK, GMMSLPMK and SLPSK for 

speech emotion recognition (SER) task and speaker identification 
(Spk-ID) task

Here, CA 95% CI indicates average classification accuracy along with 95% CI. Q indicates the number of components considered in building 
GMM for each class or the number of components considered in building CIGMM or the number of virtual feature vectors considered. The pair 
(J, b) indicates values of J and b considered in constructing the pyramid. (Q, N) indicates the number of components considered in building 
GMM and the number of segments in SLPSK. (Q, J) indicates the number of components considered in building GMM and the number of levels 
in GMMSLPMK. Bold numerals indicate the best accuracy with respect to corresponding dataset and task

Classification model SER

Emo-DB FAU-AEC Spk-ID

Q/(J, b)/(Q, N)/
(Q, J)

CA 95% CI Q/(J, b)/(Q, N)/
(Q, J)

CA 95% CI Q/(J, b)/(Q, N)/
(Q, J)

CA 95% CI

SVM using
 FK 256 87.05 ± 0.24 512 61.54 ± 0.11 512 89.14 ± 0.15

 GMMSVK 256 87.18 ± 0.29 1024 59.78 ± 0.19 512 87.93 ± 0.14

 GUMIK 256 88.17 ± 0.34 1024 60.66 ± 0.10 512 90.31 ± 0.15

 GMMIMK 512 85.62 ± 0.29 1024 62.48 ± 0.07 1024 88.54 ± 0.16

 GMMPMK (11,2) 88.65 ± 0.23 (5,4) 64.73 ± 0.16 (6,4) 90.26 ± 0.15

 CBSLPMK (512,2) 87.60 ± 0.20 (1024,3) 61.04 ± 0.09 (1024,2) 84.85 ± 0.16

 GMMSLPMK (512,3) 92.24 ± 0.19 (1024,2) 67.96 ± 0.10 (1024,2) 91.35 ± 0.14

 SLPSK with average pooling (512,2) 91.18 ± 0.27 (1024,2) 67.05 ± 0.18 (1024,2) 91.01 ± 0.14

 SLPSK with sum pooling (512,2) ��.�� ± �.�� (256,2) 66.29 ± 0.17 (1024,1) 91.07 ± 0.16

 SLPSK with max pooling (1024,2) 91.08 ± 0.24 (1024,2) 66.78 ± 0.15 (1024,1) 90.12 ± 0.15

Kernel ELM using
 FK 256 88.23 ± 0.25 512 63.67 ± 0.10 512 88.24 ± 0.12

 GMMSVK 256 89.01 ± 0.27 1024 61.23 ± 0.13 512 89.03 ± 0.14

 GUMIK 256 89.11 ± 0.23 1024 61.95 ± 0.11 512 90.78 ± 0.17

 GMMIMK 512 84.13 ± 0.24 1024 62.71 ± 0.09 1024 88.89 ± 0.15

 GMMPMK (11,2) 88.15 ± 0.24 (5,4) 64.13 ± 0.14 (6,4) 89.63 ± 0.18

 CBSLPMK (512,2) 85.60 ± 0.29 (1024,3) 66.01 ± 0.11 (1024,2) 82.96 ± 0.16

 GMMSLPMK (512,3) 92.23 ± 0.26 (1024,2) ��.�� ± �.�� (1024,2) ��.�� ± �.��

 SLPSK with average pooling (512,2) 90.80 ± 0.29 (1024,2) 66.22 ± 0.12 (1024,2) 91.17 ± 0.13

 SLPSK with sum pooling (512,2) 91.40 ± 0.25 (256,2) 65.60 ± 0.17 (1024,2) 90.88 ± 0.07

 SLPSK with max pooling (1024,2) 88.40 ± 0.28 (1024,2) 66.06 ± 0.13 (1024,2) 89.76 ± 0.12
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ELM and KELM-based classifiers using the state-of-the-
art dynamic kernels mentioned in Sect. 3 and the proposed 
CBSLPMK, GMMSLPMK and SLPSKs with different pool-
ing techniques.

In this study, the GMMs whose parameters are estimated 
using the maximum likelihood (ML) method (MLGMM) 
and by adapting the parameters of the UBM or class inde-
pendent GMM to the data of a class (adapted GMM) (Reyn-
olds et al. 2000) are considered to build GMM-based clas-
sifiers. The GMMs are built using the diagonal covariance 
matrices. MLFFNNs required fixed length input. We have 
converted varying length set of feature vector representation 
to fixed length contextual vector using the same approach 
explained in the Sect. 6.1 for passing the data to MLFFNNs. 
In our experiments for MLFFNNs architecture we have con-
sidered 3 hidden layers with 512 neurons in each layers and 

sigmoid activation function. We used SVM classifier with 
the convolutional neural network (SVMCNN) based features 
extracted from the architecture defined in (Mao et al. 2014). 
We reproduce the results for Emo-DB and FAU-AEC data-
sets but due to limited resources, we could not produce the 
results for large size speaker identification dataset. Details 
of conventional ELM experiments are presented in Sect. 6.1. 
Experiments of KELM-based classifiers are performed using 
the state-of-the-art dynamic kernels mentioned in Sect. 3 
and the proposed CBSLPMK, GMMSLPMK and SLPSKs 
with different pooling techniques. The best performances 
are shown using bold phase. Fisher kernel (FK) using 
GMM-based likelihood score vectors (Smith et al. 2001), 
GMM supervector kernel (GMMSVK) (Campbell and 
Sturim 2006), GMM-UBM mean interval kernel (GUMIK) 
(You et al. 2009), GMM-based intermediate matching ker-
nel (GMMIMK) (Dileep and Chandra Sekhar 2014) and 
GMM-based pyramid match kernel (GMMPMK) (Dileep 
and Chandra Sekhar 2012) are the state-of-the-art dynamic 
kernel based ELM classifiers considered for the study. The 
accuracies presented in Table 6 are the best accuracies 
observed among the GMM-based classifiers, MLFFNNs, 
conventional ELM and KELM-based classifiers with 
dynamic kernels using different values for their parameters. 
The details of the dynamic kernel based experiments and the 
best values for the parameters can be found in Dileep and 
Chandra Sekhar (2012, 2014).

7 � Discussion

The ELM is a learning algorithm for single layer feed-for-
ward networks (SLFNs) that does not involve iterative learn-
ing. An important benefit of ELM is that the hidden layer 
of the SLFNs need not be tuned. ELM requires less human 
intervention in tuning the parameter than in SVMs. In ELM, 
only one regularization coefficient C needs to be tuned in 
experiments if the feature mappings h(x) are known priorly. 
The feature mapping is incorporated into ELM using kernel 
matrix. The generalization ability of ELM is not sensitive to 
the dimensionality h of the ELM space (the number of hid-
den nodes) as long as there are sufficient number of training 
examples. The experimental studies show that, dynamic ker-
nel based ELM achieve comparable or better performance to 
that obtained using SVM classifiers using dynamic kernels 
for speech emotion recognition and speaker identification 
tasks. ELM has better scalability and computationally effi-
cient than traditional SVMs. The performance of the ELM-
based classifiers using the proposed GMM-based SLPMK is 
significantly better than the SVM-based classifier and ELM-
based classifier using state-of-the-art dynamic kernels for 
FAU-AEC dataset. For the remaining datasets, SVM clas-
sifiers using SLPSK with sum pooling is performing better 

Table 6   Comparison of classification accuracy (CA) (in %) of the 
GMM-based classifiers, MLFFNN, conventional ELM based classi-
fiers and KELM-based classifiers using state-of-the-art dynamic ker-
nels for speech emotion recognition task and speaker identification 
task

Here, CA 95% CI indicates average classification accuracy along with 
95% CI. Bold numerals indicate the best accuracy with respect to cor-
responding dataset and task

Classification model SER Spk-ID

Emo-DB FAU-AEC

CA 95% CI CA 95% CI CA 95% CI

MLGMM 66.81 ± 0.44 60.00 ± 0.13 77.50 ± 0.12

Adapted GMM 79.48 ± 0.31 61.09 ± 0.12 83.05 ± 0.14

MLFFNN 88.12 ± 0.18 68.02 ± 0.16 89.21 ± 0.14

SVMCNN 90.70 ± 0.28 64.09 ± 0.16 –
Conventional ELM 59.25 ± 0.29 48.60 ± 0.17 59.00 ± 0.16

Conventional ELM with 
K-mean based codebook 
representation

75.67 ± 0.28 54.86 ± 0.16 62.19 ± 0.15

Conventional ELM with 
GMM-based codebook 
representation

81.37 ± 0.25 61.54 ± 0.15 67.07 ± 0.16

Kernel ELM using
 FK 88.23 ± 0.25 63.67 ± 0.10 88.24 ± 0.12

 GMMSVK 89.01 ± 0.27 61.23 ± 0.13 89.03 ± 0.14

 GUMIK 89.11 ± 0.23 61.95 ± 0.11 90.78 ± 0.17

 GMMIMK 84.13 ± 0.24 62.71 ± 0.09 88.89 ± 0.15

 GMMPMK 88.15 ± 0.24 64.13 ± 0.14 89.63 ± 0.18

 SLPSK with average 
pooling

90.80 ± 0.29 66.22 ± 0.12 91.17 ± 0.13

 SLPSK with sum pool-
ing

91.40 ± 0.25 65.60 ± 0.17 90.88 ± 0.07

 SLPSK with max pool-
ing

88.40 ± 0.28 66.06 ± 0.13 89.76 ± 0.12

 CBSLPMK 85.60 ± 0.29 66.01 ± 0.11 82.96 ± 0.16

 GMMSLPMK 92.23 ± 0.26 71.12 ± 0.15 91.65 ± 0.09
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then SVM-based classifier and KELM-based classifier using 
state-of-the-art dynamic kernels. However, its performance 
is very close to that of the KELM classifier using SLPSK 
with sum pooling and GMM-based SLPMK. We have done 
experiments with MLFFNNs also for comparing with pro-
posed approach by converting the varying length set of fea-
ture vector representation of data example to fixed length 
contextual vectors as per the standard defined in Chen et al. 
(2015). We observed that MLFFNN is performing compara-
ble to proposed KELM using SLPMKs and SLPSKs. Tuning 
of parameters for MLFFNN requires huge amount of time in 
compare to training of KELM. For small dataset like EMO-
DB and FAU-AEC building KELM based classifier is good 
choice in compare to MLFFNNs.

8 � Conclusion and future work

In this paper, we proposed the segment-level pyramid match 
kernels (SLPMKs) and segment-level probabilistic sequence 
kernels (SLPSKs) for the classification of varying length 
patterns of speech represented as sets of feature vectors 
using ELM-based classifiers. The SLPMK is computed by 
partitioning the speech signal into increasingly finer subparts 
and matching the corresponding subparts using a segment-
level pyramid. The SLPSK is computed by partitioning the 
speech signal into finer segments and computing the pooled 
probabilistic alignment vector of corresponding segment and 
then matching the corresponding part using a probabilistic 
sequence kernel. The effectiveness of the proposed SLP-
MKs and SLPSKs in building the KELM-based classifiers 
for classification of varying length patterns of long duration 
speech is demonstrated using studies on speech emotion rec-
ognition and speaker identification tasks.

In future work, the proposed SLPMKs and SLPSKs can 
also be used for classification of varying length patterns 
extracted from video, audio, music, and so on, represented 
as sets of continuous valued feature vectors using KELM-
based classifiers.
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