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Abstract
HMM is regarded as the leader from last five decades for handling the temporal variability in an input speech signal for 
building automatic speech recognition system. GMM became an integral part of HMM so as to measure the efficiency of 
each state that stores the information of a short windowed frame. In order to systematically fit the frame, it reserves the 
frame coefficients and connects their posterior probability over HMM state that acts as an output. In this paper, deep neural 
network (DNN) is tested against the GMM through utilization of many hidden layers which helps the DNN to successfully 
evade the issue of overfitting on large training dataset before its performance becomes worse. The implementation DNN with 
robust feature extraction approach has brought a high performance margin in Punjabi speech recognition system. For feature 
extraction, the baseline MFCC and GFCC approaches are integrated with cepstral mean and variance normalization. The 
dimension reduction, decorrelation of vector information and speaker variability is later addressed with linear discriminant 
analysis, maximum likelihood linear transformation, SAT, maximum likelihood linear regression adaptation models. Two 
hybrid classifiers investigate the conceived acoustic feature vectors: GMM–HMM, and DNN–HMM to obtain improvement 
in performance on connected and continuous Punjabi speech corpus. Experimental setup shows a notable improvement of 
4–5% and 1–3% (in connected and continuous datasets respectively).

Keywords Deep neural network (DNN) · Gaussian mixture model (GMM) · Hidden markov model (HMM) · Maximum 
likelihood linear transformation (MLLT) · Cepstral mean and variance normalization (CMVN) · Maximum likelihood 
linear regression (fMLLR)

1 Introduction

Speech recognition systems typically model the input uttered 
signal with their corresponding phones in two different steps 
of feature extraction and modeling classifiers. To increase 
the performance of the recognition system, researchers try to 

integrate or refine the extracted feature vector in first phase 
before employing them for classification.

Studies explored stochastic modeling techniques (SMT) 
e.g. HMM that requires the prior knowledge and experi-
ence for dealing with the issues in learning of classifiers 
complexity (Rabiner 1989) from integrated, refined or 
baseline feature vectors point of view. SMT faces the chal-
lenge of reliable parameter evaluation, modeling of speech 
units and prediction of omission observation that must be 
independent from each other. Implementation of HMM 
alone for training of the system did not generate promising 
results. So, researchers purposed many new or hybridization 
of classifiers (Palaz and Collobert 2015; Mitra et al. 2014; 
Sivasankaran et al. 2015) for calculation of its state emission 
probability (Juang et al. 1986). Machine learning algorithm 
in last four decades introduced a powerful tool of expectation 
maximization (EM)—a algorithm for training of HMM. EM 
helps to connect GMM that built a strong relation between 
HMM states and acoustic signa. Extensive efforts have also 
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been made to avoid over fitting on available training data 
space (Hinton et al. 2012). The accuracy of GMM–HMM 
system is increased by embedding tandem and bottleneck 
features through neural networks (Hermansky et al. 2000; 
Bourlard and Morgan 1993). Still there is a vast scope for 
the improvement in the speech recognition systems because 
GMM shows serious shortcomings of inefficient modeling 
of data on or near to nonlinear manifold in existing data 
space. Consequently, many researchers replaced GMM with 
DNN that is capable of attaining better gains (Schmidhu-
ber 2015). However, the current progress in DNN (Hinton 
et al. 2012) in parallel with hardware technology [through 
graphical processing unit (GPU)] for numeral calculations 
enables tackling of huge training task in large vocabulary 
ASR system. Earlier, the successful implementation on 
large vocabulary continuous speech recognizer using TIMIT 
phone corpora is has been demonstrated through DNN that 
displayed its power over GMM. The shared view research 
group of Microsoft, University of Toronto, IBM circle and 
others adopted DNN as an efficient modeling approach (Hin-
ton et al. 2012). The significant gain of DNN is presented in 
Chen and Cheng (2014) that worked well for handling large 
child speech corpus, and in native or non-native Mandrian 
speech corpora. The later part of the paper is structured as 
follows: Sect. 2 describes the overview of Punjabi Speech 
recognition status and overview of some of the techniques 
like speaker adaptation, low rank LDA feature approach and 
acoustic classification approaches. A detailed description of 
proposed system overview is presented in Sect. 3. Finally, 
performance evaluations and conclusion are provided in 
Sects. 4 and 5.

2  Background

Punjabi language is considered as one of the most widely 
spoken languages of the modern Indo-Aryan Language 
group. Punjabi language is the 10th most widely spoken 
language worldwide. Punjabi language, in spite of being 
spoken by large community, can still be called as less 
resource language (LRL) due to the non-availability of 
resources like standard keyboard, recorded speech corpora, 
commercial speech recognition system etc therefore Pun-
jabi language fails to compete with the other most widely 
spoken languages of the world. Research on Punjabi speech 
recognition is also not well traversed. In case of the Punjabi 
language some initiatives were taken by researchers who 
worked on speaker dependent/independent ASR system 
for small vocabulary (Kumar and Singh 2017). Dua et al. 
(2012) constructed a speaker dependent as well as speaker 
independent 115 isolated lexicon Punjabi ASR system that 
employed eight speakers with HMM technique for creation 
of its acoustic model. They added extension in their research 

work by connecting lexicons of previous 115 words on simi-
lar front and back end approaches (Dua et al. 2018). Ghai 
and Singh (2013) reported a continuous automatic speech 
recognition system using a baseline 100 sentences whose 
repetition was generated by nine speakers with a triphone 
modeling unit. Lata and Arora (2013) examined the impact 
of /h/ sound with the help of Praat and Matlab software 
on a particular dialect of Punjabi language such as malwa 
dataset. Mittal and Sharma (2014) investigated three mecha-
nisms of data processing specifically for read, lecture and 
conversation utterances and it was analyzed with the help 
of continuous density HMM on HTK toolkit. Singh et al. 
(2015) has explained five Punjabi tonemes set up on their 
position and observed them using 150 exclusive lexicons 
gathered from ten speakers. Kadyan et al. (2017) proposes 
an approach for the generation of HMM parameters using 
two hybrid classifiers such as GA + HMM and DE + HMM. 
The proposed technique focuses on refinement of processed 
feature vectors after calculating its mean and variance In 
this paper, we complement two different contributions: in 
front-end approaches (MFCC or GFCC) different combi-
nation of speaker adaptive techniques are employed and 
secondly two hybrid HMM classifiers are applied to ana-
lyze the effect on the performance of the recognition sys-
tem. Results of DNN–HMM classifier were compared with 
traditional GMM–HMM approach using monophone and 
triphone based context modeling. As expected, an efficient 
modeling classifier was obtained that achieved better results 
using robust feature extraction approach. The robust feature 
vectors are concatenated with feature reduction approach 
of LDA, speaker adaptation model such as adaptation and 
transformation technique of SAT like CMVN, MLLT and 
fMLLR. Overall, it is found that combined feature vector 
on DNN based hybrid HMM classifier improved the perfor-
mance of Punjabi speech recognition system.

2.1  Acoustic speaker variability techniques

Various adaptation models can handle speaker variability. It 
is possible through two categories such as normalization and 
its adaptation. The first category projects the feature vector 
normalization and its transformation methods that include 
maximum likelihood linear transformation (MLLT) (Gales 
1998), cepstral mean and variance normalization (CMVN) 
(Liu et al. 1993; Acero and Stern 1992), and linear discrim-
inate analysis (LDA) (Haeb-Umbach and Ney 1992) for 
low rank feature projection. The second category involves 
model-space transformation approach such as maximum 
likelihood linear regression (MLLR) (Gales and Woodland 
1996a).
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2.1.1  MLLT

MLLT is used for decorrelation of features. It can be 
applied on acoustic features as a linear transformation to 
encapsulate the correlation among the components of its 
feature vectors. The transformation matrix 

(
Wj

)
 is com-

puted by maximizing its auxiliary function using Eq. (1).

The model parameters as well as its transformation 
parameters are optimized on training data through an 
objective function of maximum likelihood calculations. 
MLLT is implemented on top vectors of LDA approach 
and experimented on context independent HMM models 
through its training data. It is also known as speaker inde-
pendent adaptation method (Matsoukas et al. 1997).

2.1.2  CMVN

Raw input speech signals are processed to generate 
acoustic features that are normalized using cepstral 
mean normalization and cepstral variance normalization 
approaches. CMVN initiates the transformation process 
from the feature without the necessity of the transcription 
or any other model parameters.

It helps in generation of zero mean and unit variance 
through sphere of the data. Consider a set of D-dimen-
sional cepstral features (CO) that consist of a list of OL 
observation vectors  (co1,  co2,  co3,..,cool....,  coOL), such that 
m dimension of oLth frame of a mean normalized feature 
is calculated through relation of Eq. (2).

The mean of observation vector �(m) of oLth frame is 
calculated as in Eq. (3).

2.1.3  MLLR

A baseline acoustic model is necessary for any adaptive 
training dataset. It depends upon the mean parameter of a 
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Gaussian mixture using a transformation matrix ( Wj ), its 
extended mean vector �j through relation of Eq. (4):

It causes an issue of computational complexity for a 
full covariance matrix due to Wj, another important fea-
ture transformation technique is constrained on MLLR is 
fMLLR. It transforms the feature using maximum like-
lihood approach such as EM algorithm. The output of 
fMLLR is considered as an input to DNN as this approach 
has an advantage over MLLR/fMLLR adaptation of (Par-
thasarathi et al. 2015) due to:

• Faster parameter estimation using few EM iterations.
• Easy processing of a few minutes of audio files.
• Compensation of acoustic mismatch upto some level.
• Easy processing of a file with transcription error.

2.2  Low rank feature vector projection

The task of the feature extraction process in a speech rec-
ognition is to generate compact feature space that cap-
tures relevant information discrimination characteristics. 
All the information of a processed feature vector is stored 
in a fixed feature dimension. Each dimension removes 
less discriminate information within the vectors that can 
affect the classification and knowledge generation process 
in decoding module. This technique can be used to sustain 
the power of information discrimination while projecting 
the feature vector in subspace of lower dimensions. The 
process of generation of a new low dimensional feature 
space  RM after transformation of its original feature vector 
is calculated using Eq. (5).

where Fm(T) depicts the feature vector in a transformed 
space of feature, Fn(T) denotes the original feature vector in 
real feature space, and M indicates the required dimensional-
ity of its feature space. Numerous techniques are practiced in 
the past for feature decorrelation and its dimension reduction 
using PCA, LDA, HLDA in Kumar and Andreou (1998). 
In this study, LDA is employed for feature reduction. It is 
a statistical technique that increases the separability among 
different classes. It perform the linear transformation that 
convert n dimension into m dimensions such that m < n to 
increase the distance between inter class. The separated sub 
vector does not contain any classification information and 
its intra class variance is equal to each other.

(4)�j = A�j + b = Wj�j

(5)FM(T) = �TFn(T)
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2.3  Acoustic classifier approaches

2.3.1  GMM–HMM model

In practical, the acoustic model is trained using HMM tech-
nique to generate the observation probabilities. These prob-
abilities are modeled using multivariate GMM technique 
(Povey et al. 2011). The learning of HMM for a word in 
vocabulary is done through basic unit such as phone. The 
phones are combined to generate the specific word informa-
tion. These words are also used to generate the sentence and 
phrase related information after concatenating them. The 
multivariate Gaussian density function for a dimension D 
of observation feature vector is calculated through Eq. (6).

where ∅pn depicts the mean and Cpn indicates the covariance 
matrix on nth Gaussian component of a pth state respec-
tively. A number of other model parameters of HMM such 
as weight of mixtures as well as state transition probabilities 
are also trained using Baum–Welch re-estimation algorithm 
(Rabiner and Juang 1993).

2.3.2  Deep neural network model

The statistical GMM technique earlier faces the challenge 
of on or near the non-linear manifold issue in data space. It 
helps in modeling of the data. A single hidden layer can’t 
resolve the issue in artificial neural network. DNN consists 
of many hidden layers (of various non-linear hidden units) 
connected to a number of output layer for tackling the issue 
of acoustic variability.It is a feed forward network where 
each hidden layer j employed the logistic function in Eq. (7).

where bj depicts the bias for unit j using index i through their 
weight wij on unit i to j in layer below. These output layer will 
facilitate a number of HMM states. Each state modeled the 
phone on either side using the triphone modeling. A thou-
sand of tied state will be output from the triphone HMM on 
a large set of dataset. It process large number of training set 
by operating on small batch instead of whole dataset before 
updating the value of weight according to the gradient. The 
value of gradient can be improved by a momentum coeffi-
cient value lies between 0 < α < 1 that helps in smoothening 
of gradient used for calculation of a minibatch (t). On other 
hand, DNN also helps in handling the issue of over-fitting 
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for large training dataset by terminating the learning process 
before its performance become worse through large weight 
values. Initially small values are assigned to the weight of 
initial layer than its hidden layer to avoid attaining of same 
gradient for all the unit of hidden layer. A DNN generates 
an output of probabilities in the form of (HMM state by 
acoustic input)  pj as a class probability.

2.3.3  DNN–HMM model

DNN is adopted to calculate the posterior probabilities for 
senone (through adoption of context dependent tied state 
model) in an HMM based speech recognition. Consider a 
feature vector  xt of a context dependent window frame and 
applies non linear transformation on it through hidden layers 
of DNN. The technique of force-alignment is used to gain 
the senone label over a training data through conventional 
GMM–HMM system. The DNN parameters are handled by 
gradient descent function with the help of back propagation 
algorithm. It uses softmax output layer that consists of many 
node (number of classes) equal to its number of senones. 
The multi-class classification in DNN is possible through a 
softmax non-linearity relation of Eq. (8).

where p depicts the index for all classes. The senone likeli-
hood 

(
p
(
xt
))

 is employed in HMM through sequential char-
acteristics of the speech modeling information. Finally the 
process of decoding is performed on converting the posteri-
ors to scaled likelihood on test dataset. The output produces 
the recognized hypothesis on scaled likelihood.

3  System overview

MFCC and GFCC feature extraction techniques are used for 
building Punjabi ASR system. Figure 1 consist of two main 
sub-systems: the wholesystem is tested and trained through 
MFCC and GFCC approaches on monophone (M1), triphone 
with delta–delta training (M2), triphone with LDA + MLLT 
(M3), triphone with MLLT + SAT (M4) modeling units in 
GMM + HMM or DNN + HMM classifiers. Initially first 
sub-system is tested using monophone on GMM + HMM 
classifier, in the next case the output of monophone (M1) 
is provided as an input to triphone model (M2). To further 
improve the performance of combined output of M1 and 
M2, it is processed using LDA + MLLT (M3) method in 
GMM + HMM classifier.

In second sub-system, the issue of GMM + HMM system 
is overcame through addition of speaker variability technique 

(8)p
(
xt
)
=

exp
(
xt
)

�kexp
(
xp
)
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such as fMLLR + SAT (M4) with M3 on DNN + HMM 
classifier.

3.1  System implementation using GMM–HMM 
based acoustic modeling

The input speech signal is processed through baseline MFCC 
or GFCC methods to calculate the 13 static features + energy 
with their first and second order temporal derivatives. These 
techniques help in filtering the raw signal by discarding irrel-
evant information present in the speech signal. Moreover, 
this also prevents the vectors that are used to discriminate in 
modeling phase. The MFCC and GFCC generate 13 dimen-
sional features sliced in nine frames (with ± 4). On top of 
it, LDA technique is applied to reduce it into 40 features. 
Finally the process of MLLT is implemented to do decor-
relation among reduced features. The training of these vec-
tors is integrated with GMM–HMM classifiers. A tri-phone 
based acoustic modeling is employed with state tying deci-
sion tree. Each tri-phone model uses three state of HMM 
through 16 diagonal covariance Gaussian and 32 diagonal 
covariance matrix is used for silence and short pauses. For 
an observation sequence O, the most likely model is deter-
mined using Baye’s rule. It helps in the determination of 
maximum probability of the observation through hidden 
states. The maximum probability is calculated over the entire 
trained model. In decoding phase Viterbi algorithm (Kadyan 
et al. 2017) is used to traverse the path that has maximum 
probability through hidden state sequence for desired obser-
vation sequence.

3.2  System implementation using DNN–HMM 
based acoustic modeling

The extracted feature vector from MFCC or GFCC is fur-
ther normalized using CMVN approach. Operations are per-
formed on static feature vectors to produce zero mean and 
unit variance that helps in reducing speaker variability and 
additive noise induced in the channel due to environment. 
The produced vectors are passed through LDA technique 
for further reduction of feature vectors to 40 dimensions. 
Reduced feature vectors are accurately modeled using diago-
nal covariance Gaussian through a feature orthogonal trans-
formation approach of MLLT. The process of normalization 
on speaker is performed by fMLLR that uses the dimension 
of 40 × 41 parameters and is calculated on speaker adaptive 
trainingon GMM dependent system. The DNN technique is 
implemented with the assistance of Kaldi toolkit and maxi-
mum accuracy is obtained at layer 5. Other parameter such 
as learning rate i.e. a matrix-value is fixed to 0.015 with 
number of epochs is equal to 20. The minibatch size can be 
varied as 512, and 1024.

4  Experimental results

System training for the entire dataset is performed with 
GMM–HMM, and DNN–HMM approaches. Kaldi toolkit 
4.3.11 is used to implement two modeling classifiers. Four 
sets of combinations (M1–M4) on extracted feature vectors 
are employed using two type of datasets recorded in clean and 
real environment: connected speech corpus (dataset1) and 
continuous speech corpus (dataset2). The dataset1 consisted 
of 21,764 connected words utterances from 13 speakers. The 

Fig. 1  Block diagram of MFCC and GFCC approaches integrated with monophone (M1), triphone (M2), LDA + MLLT (M3), and 
fMLLR + SAT (M4) modeling units based on GMM + HMM and DNN + HMM classifiers
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dataset2 consisted of utterances from 13 speakers (including 
6 male and 7 female). It is framed on 422 unique phonetically 
rich sentences and produces a total of 3611 sentences in train-
ing phase of the system. It includes both type of speaker that 
provides good and decays the performance recognition result. 
The average length of each speaker utterance is around 3–7 s 
that covers 4–9 words. The corpus is recorded after providing 
of text transcription that makes it a read speech corpus. The 
speech output is reported in word error rate (WER) for Punjabi 
connected and continuous corpora.

4.1  Experimental setup

The evaluation of proposed method with different combina-
tion on extracted feature vectors are performed before clas-
sification. Extracted features are then processed through 
LDA, SAT, fMLLR and MLLT methods using triphone and 
monophone models. Testing of the proposed Punjabi-ASR 
system is performed using tenfold cross validation where 
10% of the development trained data is kept for testing and 
rest part is involved in training of the system.

4.1.1  Words recognition on different modeling units

Initially the input speech signal is fed to context independent 
(CI) monophone model in M1 system through GMM–HMM 
approach. A total of 120 num pdf are used in CI model. 
The system achieves low accuracy on CI model. To improve 
the performance on large vocabulary Punjabi-ASR system, 
context independent models (triphone) are used in different 
combination from M2 to M4 system. Different numbers of 
num pdf are used in triphone models which are employed 
in four sub-systems. We analyze the robust feature vec-
tors on two different acoustic modeling classifiers such as 
GMM–HMM and DNN–HMM. Exhaustive studies of two 
different corpuses are performed to analyze word error rate 
on dataset1 and dataset2 as depicted in Table 1. On large 
dataset DNN gives better performance than GMM on mis-
matched train and test conditions. The monophone based 
model shows high WER on both the dataset. WER of 5.32% 
is obtained in continuous sentences of dataset2 and 39.73% 
on dataset1 using connected words. The system is tested 
with speaker independent corpus where no testing speaker 
is involved in training of the system.

4.1.2  Effect of varying feature dimension with LDA 
approach

DNN based Punjabi ASR system is found to be more effec-
tive than GMM models. The normalization techniques help 
in WER reduction with these modeling approaches. For ana-
lyzing the varying feature dimension, the feature values are 
varied from 8, 12, 16, 32, and 39 as shown in Fig. 2.

The time-spliced MFCC features are found to be more 
beneficial than baseline MFCC feature vectors. LDA 
implemented in the initial stages of HMM training helped 
in reducing the feature vectors from 117 to 40 entries that 
increase the different class seprability. Furthermore, MLLT 
is applied verbosely on LDA feature vectors. It is employed 
on context dependent feature vector of a triphone acoustic 
model. The recognition performance on DNN–HMM sub-
system is found to be superior at feature dimension value of 
16 on front-end combination of triphone with MLLT + SAT. 
The Fig. 2a conceived low WER at feature value of 16 in 
MFCC approach on dataset1 and feature value of 32 in 
MFCC, and feature value of 16 in GFCC on dataset2 of 
Fig. 2b.

4.1.3  Effect of varying hidden layer

For the similar test and train conditions, a better performance 
is obtained with an improvement of 4–5% and 1–3% (in con-
nected and continuous datasets respectively) with DNN than 
GMM–HMM models. Consecutively analysis is carried out 
by varying the number of hidden units and layer in training 
of DNN based ASR model. The normalized features are used 
in DNN–HMM training on non-linear hidden layers using 
tanh function. A number of hidden layers with 1–7 values 
are varied with number of unit per layer is equal to 512, 
1024, 2048 and 3074 respectively. The training is provided 
with number of frames of acoustic feature data in its input 
layer as 7, 11, 15, 27, and 37. It will help in analyzing the 
system from shallow network to deep network as shown in 
Table 2. Finally the minibatch size is fixed to a value of 512 
at the end that attain maximum word accuracy. The dataset1 
receives maximum word accuracy at DNN layer value of 6, 
but dataset2 attain at a value of 5 in Table 2.

Table 1  The WER (%) profile obtained through the baseline MFCC 
and GFCC approaches with integration of M1 to M4 modeling units 
on two acoustic classifiers

The word error rate is calculated for dataset2 using MFCC feature 
approach at 44 kHz or GFCC at 16 kHz and dataset1 at 44 kHz using 
MFCC approach

System type Feature type

GFCC MFCC MFCC

Dataset2 Dataset1

M1 + GMM–HMM 46.3 14.11 46.74
M2 + GMM–HMM 82.16 19.14 46.71
M3 + GMM–HMM 73.39 13.08 46.09
M4 + GMM–HMM 34.4 7.01 44.94
M4 + DNN–HMM 24.67 5.22 39.73
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4.1.4  Effect of varying Gaussian mixture

The experiments are also tried on category of varying Gauss-
ian mixture as shown in Fig. 3. It can be observed that ini-
tially for all varied value for Gaussian system performance 
does not change either in context of monophone or triphone 
model but as the context model is combined with speaker 
adaptation model its performance get affected. Maximum 
word accuracy is obtained with a Gaussian mixture of value 
16 with DNN–HMM model on dataset2 using MFCC feature 

extraction technique and GFCC approach produced better 
result at a very low value of Gaussian mixture. The datset1 
achieved a low WER at an optimal value of 64 for Gaussian 
mixture on MFCC approach.

This paper made an attempt to implement DNN based 
HMM model to overcome the issue of overfitting on large 
Punjabi corpora. In proposed Punjabi ASR system, initially a 
number of experiments are performed with different modeling 
units (Table 1), analyzing the number of feature dimension in 
GMM–HMM or DNN–HMM acoustic classifiers (Fig. 2a, b) 

Fig. 2  The WER profile for 
varying feature dimension 
obtained through the baseline 
MFCC and GFCC feature vec-
tors on different system type 
using two acoustic classifiers. 
The word error rate is calculated 
for dataset1 in (a) using MFCC 
approach and dataset2 in (b) in 
both feature approaches
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Table 2  The WER profile for 
varying number of hidden layer 
obtained through the baseline 
MFCC with integration of M4 
modeling unit

All the mentioned experiments are performed on acoustical mismatched trained and test conditions. The 
word error rate is calculated for dataset1 dataset2 at 44, 16 kHz

Classifier type Number of hidden layer

1 2 3 4 5 6 7

M4 + DNN–HMM 
(dataset1)

18.01 17.97 17.85 17.58 17.66 17.53 17.54

DNN (dataset2) 5.32% 5.41% 5.32% 5.41% 5.22% 5.29% 5.51%
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along with varying number of hidden layer (Table 2) and their 
units in DNN based HMM model. Finally number of Gaussian 
are varied to identify the effect of these variations (Fig. 3a, b). 
The experiments are performed to obtain an optimal value of 
parameters. These parameters increase the recognition accu-
racy after adopting M1–M4 on context model (monophone 
and triphone) with speaker adaption model on MFCC and 
GFCC feature vectors. The MFCC technique shows WER 
performance improvement in comparison to GFCC approach 
on DNN–HMM classifiers. So after analyzing dataset2 on both 
the feature vector approaches, the dataset1 is finally demon-
strated with MFCC approach that showcase better result on 
DNN–HMM classifiers.

5  Conclusions

This paper presented the speaker adaptive technique on 
different acoustic modeling approaches like GMM–HMM 
and DNN–HMM that are used to reduce the affect of 
acoustic mismatch between train and test conditions. 
The issue of overfitting of training data is handled using 
DNN–HMM model instead of GMM–HMM hybrid 

modeling. The experiments are performed on two differ-
ent Punjabi speech corpus i.e. connected words and con-
tinuous sentences. Different acoustic modeling approaches 
on robust feature vectors are analyzed through combina-
tion of low rank feature projection and speaker variability 
techniques. The combination of CMVN normalization 
and MLLT feature transformation is performed on LDA 
features in baseline MFCC and GFCC acoustic feature 
extraction approaches. These approaches yielded perfor-
mance improvement of 4–5% and 1–3% (in connected and 
continuous datasets) with DNN–HMM than GMM–HMM 
approach. Further work can be extended for integration 
of recurrent neural network approaches in acoustic and 
language modeling for speech recognition enhancement.
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Fig. 3  The WER profile for var-
ying Gaussian mixture obtained 
through the baseline MFCC and 
GFCC techniques with integra-
tion of context dependent and 
independent modeling units on 
two acoustic modeling type for 
dataset1 in (a) using MFCC fea-
ture approach only and dataset2 
in (b) employed both feature 
vector approaches
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