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Abstract
This paper presents a patient-specific approach for electroencephalography (EEG) channel selection and seizure prediction 
based on statistical probability distributions of the EEG signals. This approach has two main phases; training and testing 
phases. In the training phase, few hours of multi-channel nature for each patient representing normal, pre-ictal, and ictal 
activities are selected. These hours are segmented into non-overlapping 10-s segments and probability density functions 
(PDFs) are estimated for the signals, their derivatives, local means, local variances, and medians. These PDFs have multiple 
bins, which are studied separately as random variables across different segments of the same nature. Depending on the PDFs 
of these random variables for different signal activities and on predefined prediction and false-alarm probability thresholds, 
bins are selected from certain channel distributions for seizure prediction. In the testing phase, the selected bins only are 
used for classification of each signal segment activity into pre-ictal or normal states in the prediction process. In the final 
prediction step, an equal gain decision fusion process is performed leading to a discrete decision sequence representing the 
activities of all segments. This sequence is filtered with a moving average filter and compared to a patient-specific prediction 
threshold. Moreover, we have studied the effect of a lossy compression technique on the accuracy of the proposed algorithm 
using discrete sine transform (DST) compression. This system can be implemented for communication between headset 
and mobile to give alerts for patients.
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1  Introduction

Since the first EEG signal acquisition by Berger (1929), 
researchers have directed so much effort to processing of 
these signals. EEG signal processing has a variety of appli-
cation; medical applications such as seizure detection and 
prediction (Tzallas et al. 2012; Alickovic et al. 2018), and 
non-medical applications such as games and safety (Scherer 
et al. 2013; Makeig et al. 2012). Epilepsy-related studies are 
dominant in the field of EEG signal processing. Epilepsy 
is a brain disorder affecting 1% of world population, and 
it is characterized by EEG seizures (Thurman et al. 2011; 
Tzimourta et al. 2018). The research objective of seizure 
detection is to check the existence of the seizure in EEG 
signals. We would like to anticipate the seizure with as long 
prediction time as possible in the so-called seizure predic-
tion process. The early anticipation of seizures helps to alert 
patients or caregivers to save patients from possible hazards 
by implementing the seizure prediction system through a 
communication process between headset and mobile. The 
efficiency of a seizure prediction algorithm is determined by 
the prediction rate, false-alarm rate, and prediction horizon.

Different trends have been investigated in the literature 
for EEG seizure prediction using time-domain techniques, 
signal transforms, and signal decompositions. Zandi et al. 
(2010, 2013) adopted a time-domain zero-crossing rate sei-
zure perdition approach based on histograms of different 
window intervals. They achieved a sensitivity of 88.34%, 
a false-prediction rate of 0.155/h and an average predic-
tion time of 22.5 min. Arabi and He (2012) adopted sta-
tistical features including correlation entropy, correlation 
dimension, Lempel–Ziv, noise level, largest Lyapunov 

exponent, and nonlinear independence in their patient-spe-
cific approach. In the simulation experiments, their maxi-
mum sensitivity was 90.2% and the average false prediction 
rate was 0.11/h. Shelter et al. (2011) presented a seizure 
prediction algorithm depending on the interaction between 
pairs of EEG signals, and this algorithm achieved a sensi-
tivity of 60%. Wang et al. (2010) presented a seizure pre-
diction system depending on reinforcement learning with 
online monitoring. They achieved an accuracy of 70%. Li 
et al. (2013) investigated the use of morphological opera-
tions and averaging filters for EEG seizure prediction. They 
achieved a 75.8% sensitivity and a false-alarm rate of 0.09/h.

Wavelet transform and its versions have also been used 
for EEG seizure prediction. Hung et al. (2010) developed 
a wavelet-based seizure prediction algorithm using cor-
relation dimension and its correlation coefficients. They 
achieved an average sensitivity of 87% with a false-alarm 
rate 0.24/h, and an average of 27 min warning time. Chiang 
et al. (2011) developed a wavelet-based seizure prediction 
algorithm adopting nonlinear independence, cross corre-
lation, difference of Lyapunov exponents and phase lock-
ing. This algorithm achieved a sensitivity of 74.2% on MIT 
database. Gadhoumi et al. (2013) developed a wavelet-based 
seizure prediction method from iEEG signals depending 
on measuring the similarity with a reference signal. They 
achieved a sensitivity of 85% with a false-alarm rate of 
0.35/h. Wang et al. (2013) exploited Lyapunov exponent, 
correlation dimension, Hurst exponent, and entropy features 
in the wavelet domain for seizure prediction. They achieved 
an average sensitivity of 73%, and a specificity of 76%. 
Costa et al. (2008) developed a seizure prediction method 
based on wavelet energy features. They achieved an average 

Table 1   A comparison between some time and wavelet-based seizure prediction methods

Method Domain Features Performance metrics

Zandi et al. (2010, 2013) Time Histograms of different window intervals Sensitivity of 88.34%, a false prediction rate 
of 0.155/h, and an average prediction time of 
22.5 min

Arabi and He (2012) Correlation dimension, correlation entropy, noise 
level, Lempel–Ziv complexity, and largest Lyapu-
nov exponent

Maximum sensitivity of 90.2% with an average false 
prediction rate of 0.11/h

Schelter et al. (2011) Interaction between pairs of EEG signals Sensitivity of 60%
Wang et al. (2010) Distance values to measure similarity Accuracy of 70%
Li et al. (2013) Morphological features Sensitivity of 75.8% and a false-alarm rate of 0.09/h
Hung et al. (2010) Wavelet Correlation dimension and its correlation coef-

ficients
Average sensitivity of 87% with a false-alarm rate 

of 0.24/h and an average of 27 min warning time
Chiang et al. (2011) Nonlinear independence, cross correlation, differ-

ence of Lyapunov exponents, and phase locking
Sensitivity of 74.2% on MIT database

Gadhoumi et al. (2013) Similarity with a reference signal Sensitivity of 85% with a false-alarm rate of 0.35/h
Wang et al. (2013) Lyapunov exponent, correlation dimension, Hurst 

exponent, and entropy features
Average sensitivity of 73% and a specificity of 76%

Costa et al. (2008) Wavelet energy features Average sensitivity of 83% and an average accuracy 
of 96%
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sensitivity of 83% and an average accuracy of 96%. Table 1 
gives a comparison between some different seizure predic-
tion methods in time and wavelet domains.

The compression of EEG signals is of great importance 
in the biomedical field. The reason for this is to overcome 
the limitations of channel capacity, achieve small memory 
usage, and avoid high bandwidth transmission. The effec-
tive compression of EEG signals is very difficult due to the 
random nature of these signals (Sriraam 2012). Compres-
sion techniques are basically classified to lossy and lossless 
compression techniques (Ruchi et al. 2016).

In the lossless compression process, no data is lost, and 
the original data can be exactly reconstructed from their 
compressed form. All information is saved with no distor-
tion. In contrast, lossy compression is an irreversible process 
that provides only an approximate version of the original 
data with some losses. Lossy compression can provide high 
compression rates. Various algorithms have been adopted for 
EEG data compression based on lossy techniques.

This paper presents a proposed time-domain approach for 
EEG channel selection and hence seizure prediction based 
on simple statistics. Its main idea is how to discriminate 
between different signal activities based on their probabil-
ity density functions (PDFs). Simulation experiments have 
shown that if the signals are segmented into non-overlapping 
segments, the PDFs of these segments differ even for seg-
ments of the same category. This means that we can treat the 
bins of each PDF as random variables across segments and 
select the most appropriate bins for discrimination through 
simple thresholding processes. Section 2 introduces a brief 
description of compression techniques. Section 3 gives a 
detailed explanation of the proposed seizure prediction 
approach. Section 4 gives the pre-processing steps imple-
mented prior to PDF calculations. Section 5 gives the simu-
lation results. Finally, sect. 6 gives the concluding remarks.

2 � EEG signal compression

Compression of EEG signals is one of the most important 
solutions to speed up the signal transfer and save storage 
capacity. Compression techniques are basically partitioned 
into two different and important branches (Aiupkumar and 
Bej 2013): lossy and lossless compression techniques.

2.1 � Lossless compression techniques

2.1.1 � Huffman coding

Huffman coding is one of the lossless compression tech-
niques. In Huffman coding, variable-length codes are gen-
erated for the input symbols based on their probability of 
occurrence. Huffman coding is a sort of entropy encoding. 

It can be applied in the encoding process of EEG signals for 
the compression purpose.

2.1.2 � Shannon Fano coding

It is another lossless compression technique, which also falls 
under the category of entropy encoding. The main concept 
of this technique the generation of variable-length codes for 
the symbols based on Shannon’s theorem.

2.1.3 � Lempel–Ziv–Welch (LZW) compression

This compression technique is named according to Abraham 
Lempel, Jacob Zev, and Terry Welch. It is based on creating 
a dynamic dictionary based on the choice of a sub-string 
from the original file, and then this string is matched with 
the dictionary. If the string is obtained, the reference is men-
tioned in the dictionary, and if the string is not obtained, a 
new dictionary is created with a new reference entry.

2.2 � Lossy compression techniques

2.2.1 � Discrete sine transform (DST) technique

DST is similar to discrete Fourier transform (DFT) but 
with a purely real matrix. The DST can be represented 
with Eq. 1. The basic idea of DST compression is the 
neglection of some coefficients in the DST domain based 
on their significance. Figure 1 illustrates an example of an 
EEG signal before and after compression. 

where  k= 0,1, 2,…N-1, n = 0, 1, 2,…N-1, and y(k) is the 
DST of x(n).

3 � Proposed seizure prediction approach

The proposed channel selection and seizure prediction 
approach depends mainly on estimating the PDFs of sig-
nal amplitude, derivative, local mean, local variance, 
and median of the different signal channels as illustrated 
in Fig. 2. This approach comprises two phases: training 
and testing as shown in Fig. 3. In the training phase, few 
hours are selected randomly for normal activities and two 
or three intervals for ictal and pre-ictal activities. The 
selected periods with multi-channel nature are segmented 
into 10-second segments. For each channel in each seg-
ment, five PDFs are estimated for amplitude, derivative, 
local mean, local variance, and median of the signal.

(1)y (k) =

N−1
∑

n=0

x(n) sin

(

�
(k + 1)(n + 1)

N + 1

)
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We treat each PDF bin (9 bins) as a random variable 
across segments for each of the normal, ictal, and pre-
ictal histogram classes. Based on predefined false-alarm 
and prediction probability thresholds, the bins and the 
channels that discriminate between normal and pre-ictal 

classes are selected for discrimination in the testing phase. 
The effect of DST compression is also studied with the 
proposed approach to estimate its sensitivity to lossy 
EEG signal compression.

4 � Pre‑processing of EEG signals

The proposed approach depends on some pre-processing 
operations carried out on the signal channels including the 
derivative, local mean, local variance, and median as dis-
cussed below. The derivative of an EEG signal reinforces the 
rapid transitions in the signal and damps slow transitions, 

Fig. 1   EEG signal a before compression, b after compression in DST  
domain, c after IDST

Fig. 2   PDFs estimated from EEG signals for channel selection and 
seizure prediction
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Fig. 3   Training and testing phases of the proposed channel selection 
and seizure prediction algorithm. a Training phase, b testing phase
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and hence the different activities of the signal will yield 
more distinguishable derivatives through their PDFs. The 
local mean is a good indication of the signal trend, and the 
local variance characterizes the signal power very well from 
sample to sample. The median filtering process removes 
spikes that may result from impulsive noise during the sig-
nal recording process. Based on the five estimated PDFs: 
signal amplitude, derivative, local mean, local variance, and 
median for any EEG segment, we can discriminate between 
normal, ictal, and pre-ictal signal segments.

4.1 � Signal derivative

In EEG signals, abnormal activities are accompanied with 
abrupt changes in signal amplitude. To reinforce these 

abrupt changes, a signal differentiator can be utilized. We 
use a digital first-order differentiator filter for this purpose. 
This filter is given by (Kuo et al. 2006; Milić et al. 2013):

4.2 � Local mean

We can estimate the local mean of a signal X(n) as follows 
(Abd El-Samie 2011):

(2)H (z) = 1 − z−1

(3)X̂(n) =
1

(2K + 1)

n+K
∑

k=n−K

X(k)

-8 -6 -4 -2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Log of amplitude

P
D

F

PDF of the amplitude of normal segments

Segment 1
Segment 2
Segment 3

(a)

-8 -6 -4 -2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Log of derivative

P
D

F

PDF of the derivative of normal segments

Segment 1
Segment 2
Segment 3

-8 -6 -4 -2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Log of local mean

P
D

F

PDF of the local mean of normal segments

Segment 1
Segment 2
Segment 3

(b)

(c)
0 1 2 3 4 5 6 7 8 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Log of local variance

P
D

F

PDF of the local variance of normal segments

Segment 1
Segment 2
Segment 3

-8 -6 -4 -2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Log of median

P
D

F

PDF of the median of normal segments

Segment 1
Segment 2
Segment 3

(d)

(e)

Fig. 4   PDFs of the amplitude, derivative, local mean, local variance, and median for three randomly selected normal segments. a Amplitude dis-
tribution, b derivative distribution, c local mean distribution, d local variance distribution, e median distribution
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where (2K + 1) is the number of samples in the short seg-
ment used in the estimation.

4.3 � Local variance

We can estimate the local variance of a signal X (n) as fol-
lows (Abd El-Samie 2011):

(4)�̂
2

X
(n) =

1

(2K + 1)

n+K
∑

k=n−K

(

X(k) − X̂(n)
)2

4.4 � Median filtering

Median filtering is a sort of nonlinear smoothing of signals. 
It aims at reducing some of the spikes in the signals that may 
occur due to impulsive noise. In the median filtering process, 
an odd number of signal samples is stored and sorted. The 
middle value after sorting is extracted. For a median filter 
of length N = 2K + 1 , the filter output is given as (Yin et al. 
1996):

(5)Y(n) = MED[X(n − K),… ,X(n),… ,X(n + K)]
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Fig. 5   PDFs of the amplitude, derivative, local mean, local variance, and median for three randomly selected ictal segments. a Amplitude distri-
bution, b derivative distribution, c local mean distribution, d local variance distribution, e median distribution
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where X(n) and Y(n) refer to the nth sample of the input and 
output sequences, respectively.

This type of median filtering is non-recursive in the sense 
that an estimate of the median filter output at any sample 
time is independent of the median filter output history. There 
is another type of median filtering which is recursive. For a 
recursive median filter with window length N = 2K + 1 , the 
output is defined as (Yin et al. 1996):

This recursion process is a type of feedback that reduces 
noise more efficiently.

(6)
Y(n) = MED[Y(n − K), Y(n − K + 1)… ,

Y(n − 1),X(n),… ,X(n + K)]
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Fig. 6   PDFs of the amplitude, derivative, local mean, local variance, and median for three randomly selected pre-ictal segments. a Amplitude 
distribution, b derivative distribution, c local mean distribution, d local variance distribution, e median distribution
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Table 2   Six rows of the 
prediction matrix of patient 20 1.0000 12.0000 2.0000 0.7083 0.2792 0.1606 1.0000

3.0000 12.0000 2.0000 0.7000 0.2667 0.1587 1.0000
5.0000 12.0000 2.0000 0.7083 0.2806 0.1599 1.0000
2.0000 20.0000 3.0000 0.9917 0.2847 0.1986 0
4.0000 2.0000 3.0000 1.0000 0.1514 0.0444 1.0000
2.0000 2.0000 4.0000 1.0000 0.2847 0.2745 1.0000
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Fig. 7   PDFs of selected bins in Table 2
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5 � Simulation results and discussion

Simulation experiments have been carried on five patients 
from MIT database (patients 1, 8, 11, 14, 20) with 
148.6133 hours containing 31 seizures (http://physi​onet.
org/pn6/chbmi​t/). To better understand the steps of the 
proposed approach, we display some results for patient 
20. Firstly, we begin by estimating the PDFs of the nor-
mal, ictal, and pre-ictal 10-s segments. Examples of these 
PDFs are shown in Figs. 4, 5, and 6 for normal, ictal and 
pre-ictal segments for patient 20. Three PDFs of three 
randomly-selected segments of each type are shown in 
the figures. The histograms are estimated for log values 
of the amplitudes to cover the large dynamic range of the 
signals. It is clear from these figures that each bin has 
different values from segment to segment, and hence it is 

necessary to consider each bin value as a random variable 
across segments and determine its PDF.

Our main objective is to distinguish between normal and 
pre-ictal activities for early seizure prediction. Hence, we 
have estimated the PDF of each bin from the normal and 
pr-ictal PDFs among all segments. If we can distinguish 
between these PDFs with a certain threshold for some 
selected bins, we can carry out a prediction process with 
these bins and their corresponding channels. Towards this 
objective, we set predefined prediction and false-alarm prob-
ability thresholds as 70% and 30%, respectively, for patient 
20 for instance. The histogram bins from the channels, which 
satisfy these two constraints, are selected to create a predic-
tion matrix for each patient.

Table 2 illustrates five rows of the prediction matrix 
obtained for patient 20. The first column in this matrix rep-
resents the feature type: amplitude (1), derivative (2), local 
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Fig. 8   Variation of the discrimination count with time for the selected five patients. a Patient 1, b patient 8, c patient 11, d patient 14, e patient 
20
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mean (3), local variance (4), and median (5). The second 
column represents the index of the selected channel ranging 
from 1 to 23 for patient 20. The third column represents the 
index of the selected bin form the histogram of the feature of 
the first column ranging from 1 to 9. The sixth column rep-
resents the estimated threshold value to which we compare 
the corresponding bin value from each incoming segment 
of the same channel in the testing phase. The last column 
has a value of 1 for an incoming bin value that must be 
greater than or equal to the threshold and zero, otherwise. 
The fourth and fifth columns represent the prediction and 
false-alarm probabilities, respectively, achieved with the 
selected bin from the selected channel and selected feature. 

The prediction probability must be > 70%, while the false-
alarm probability must be < 30%.

Figure 7 illustrates the PDFs of the bins in Table 2. It 
is clear from the figures and the table that the selected 
threshold is not exactly the curve intersection point. It is 
selected as the value that maximizes the prediction proba-
bility, while maintaining the false-alarm probability below 
30%. So, we accept more false alarms in order to maximize 
the prediction probabilities, depending on the fact that we 
will have multiple decisions that will be combined for each 
signal segment, which in turn reduces the false alarms. 
A binary decision is taken for each row of the prediction 
matrix and an accumulative sum is estimated for each 10-s 
incoming segment in the testing phase to be classified as 
a pre-ictal segment or not. A moving average filter is used 
to refine the results as shown in Fig. 8, because a deci-
sion of a certain activity is not taken with a single signal 
segment. Multiple segments are required in this decision, 
and hence the moving average process is appropriate for 
this action. The discrimination count on the vertical axis 
is compared with a selected threshold to determine the 
pre-ictal regions (Fig. 9).

In the simulation experiments, we have tested three dif-
ferent prediction horizons of 30, 60, and 90 min. In addi-
tion, a 15-min post seizure horizon has been adopted in the 
interpretation of the results. The obtained results for five 
MIT patients are given in Tables 3, 4, 5 and 6. From these 
results, it is clear that long prediction horizons are preferred 
to short prediction horizons from the prediction and false-
alarm rates perspectives. In addition, the moving-average 
strategy contributes to the reduction of false alarms in the 
interpretation of seizure prediction results.

6 � Conclusions

This paper presented a statistical time-domain approach 
for EEG channel selection and seizure prediction, which 
depends on estimating the PDFs of the signals and pre-
processed versions of them. This approach is of multi-
channel nature, and it depends on pre-defined constrains 
on the required prediction and false-alarm probabilities. 
Decision fusion and moving average post-processing 
steps are utilized to reduce the false-alarm effects and to 
make robust decisions regarding signal activities. The pro-
posed approach has been tested for different prediction 
horizons. It achieved prediction rates of 90.32%, 93.55%, 
and 93.55% for prediction horizons of 30, 60, and 90 min, 
respectively with false-alarm rates of 0.148/h, 0.074/h, 
and 0.054/h, respectively. The average prediction times 
were 22.63 min, 34.25 min, and 40.96 min for the 30, 
60, and 90 min horizons, respectively. These obtained 
results revealed that the proposed EEG seizure prediction 

Fig. 9   Variation of the discrimination count with time for three 
patients (8, 14 and 20) with DST Compression technique. a Patient 8, 
b patient 14, c patient 20
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approach can be appropriately used in a mobile application 
for epilepsy patients and caregivers.
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