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Abstract
In this paper Type-2 Information Set (T2IS) features and Hanman Transform (HT) features as Higher Order Information Set 
(HOIS) based features are proposed for the text independent speaker recognition. The speech signals of different speakers 
represented by Mel Frequency Cepstral Coefficients (MFCC) are converted into T2IS features and HT features by taking 
account of the cepstral and temporal possibilistic uncertainties. The features are classified by Improved Hanman Classifier 
(IHC), Support Vector Machine (SVM) and k-Nearest Neighbours (kNN). The performance of the proposed approaches 
is tested in terms of speed, computational complexity, memory requirement and accuracy on three datasets namely NIST-
2003, VoxForge 2014 speech corpus and VCTK speech corpus and compared with that of the baseline features like MFCC, 
∆MFCC, ∆∆MFCC and GFCC under white Gaussian noisy environment at different signal-to-noise ratios. The proposed 
features have the reduced feature size, computational time, and complexity and also their performance is not degraded under 
the noisy environment.

Keywords Text-independent speaker recognition · Information set theory · Mel frequency cepstral coefficients · Hanman 
transform

1 Introduction

Speaker based biometric authentication in forensic and 
social media applications is emerging as a viable technol-
ogy because acquisition of data is easy and economical. The 
system has been adjudged effective in the noise free envi-
ronment, in the absence of channel variations and in the 
absence of limited data (Jayanna et al. 2009). The present 
work focuses on addressing the noisy conditions that pose 
the real time challenge. The traditional features used for 
speaker recognition are Mel Frequency Cepstral Coefficients 
(MFCC) which are sensitive to the noise. These are first 
introduced by Davis and Mermelstein (Davis and Mermel-
stein 1980) for word recognition and later many variants of 
MFCC such asdelta-MFCC and delta–delta MFCC (Kumar 
et al. 2011) are proposed to make them robust under the 

noisy environment. Approaches to increase the robustness 
are attempted by feature normalization such as cepstral mean 
and variance normalization (CMVN), RASTA filtering (Her-
mansky and Morgan 1994) and feature warping (Pelecanos 
and Sridharan 2001). Zhao et al. (2012) have proposed a new 
speaker feature known as Gammatone Frequency Cepstral 
Coefficients (GFCC) having more robustness towards noise 
than that of the commonly used MFCC. But as explained in 
(Zhao et al. 2013), the frequency scale (Mel scale) employed 
in the filter bank and the nonlinear rectification (i.e., cubic 
root) used in the derivation of scale invariant cepstral coef-
ficients provide robust features to counter noise.

Gaussian mixture model (GMM) (Reynolds and Rose 
1995, Reynolds1995) is still the most common approach 
(Togneri and Pullella 2011) for speaker modeling in the 
text-independent speaker recognition as it is a model based 
approach. Reynolds et al. (2000) have adapted GMM using 
Universal Background Model (UBM) for speaker verifica-
tion system that is found to be efficient.

Fuzzy logic have been used to handle the uncertainty at 
modeling stage, decision stage and the feature dimension-
ality reduction stage to yield promising results. In the lit-
erature there are a large number of Fuzzy based modeling 
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techniques most of which are the fuzzified version of the 
existing modeling and decision techniques.

Yuan et al. (1993) have developed Fuzzy mathemati-
cal algorithm to extract different features of speakers 
between Line Spectrum Pair Frequencies and Cepstrum 
derived from linear prediction analysis. Pierre Castellano 
(Yuan et al. 1993) have utilized the fuzzy set theory that 
provides thesecond stage (post-processing) classification 
after an Artificial Neural Network (ANN) that provides a 
firststage of discrimination. Jawarkar et al. (2011) use the 
fuzzy min–max neural network for the text independent 
speaker identification. This network utilizes fuzzy sets as 
pattern classes. It is a three layer feed forward network that 
grows adaptively to meet the demands of the problem. It 
yields good result as compared to GMM.

Ki Yong Lee in (2004) partitions the data spaceinto 
several disjoint clusters by fuzzy clustering, and then 
performs PCA using the fuzzy covariance matrix in each 
cluster. Finally, the GMM for speaker is obtained from 
the transformed feature vectors with reduced dimension in 
each cluster. As compared to the conventional GMM with 
diagonal covariance matrix, the proposed method needs 
less storage and gives faster results. Lung (2004) extracts 
features based on wavelet transform derived from fuzzy 
c-means clustering. It is found that decreasing the number 
of training frames does not reduce the recognition rate 
by the fuzzy c-means clustering algorithm. Wang et al. 
(2008) proposes a local PCA and Kernel-based fuzzy clus-
tering for feature extraction. These methods remove the 
time pertinence, noise of speech, reduce the feature vector 
dimension and achieve a best performance as compared to 
the standard SVM and GMM. Mirhassani et al. (2014) has 
addressed methods that include the extraction of MFCC 
with the narrower filter bank followed by a fuzzy-based 
feature selection method. The proposed features election 
provides relevant, discriminative, and complementary fea-
tures. The proposed method can diminish the dimension-
ality without compromising the speech recognition rate. 
Pinheiro et al. (2016) describe a novel GMM-UBM based 
system dealing with the session noise variability problem. 
The system uses the Type-2 Fuzzy GMM frame work by 
considering the speaker GMM parameters to be uncertain 
in an interval.

The fuzzy setsare characterized by a set of information 
source values and a membership function (MF) that maps 
the information source values to the membership grades 
(degrees of belongingness or association) to the set. But 
we are interested in representing the uncertainty associated 
with a fuzzy set. The membership grades don’t provide the 
overall uncertainty associated with the fuzzy set. They only 
can present the degree of association or belongingness of 
an information source value to a vague concept represented 
by a MF.

In (Aggarwal and Hanmandlu 2015), Information set the-
ory was proposed to overcome the shortcomings of fuzzy 
set theory. The first shortcoming is that its elements are 
pairs. The components of each pair though related but are 
delinked. The second shortcoming is that it has no provision 
to represent both probabilistic and possibilistic uncertain-
ties. Hence we use the Information Set theory to handle the 
possibilistic uncertainty present in speech signal for the text-
independent speaker recognition.

1.1  Motivation

Though Information set features have been used for the 
development of speaker based authentication system, these 
features cannot take care of the uncertainty in MFCCs fully. 
Hardly any effort is made in the literature to account for 
high order uncertainty in the MFCCs. So we are motivated 
to represent the higher order uncertainty using type-2 Mem-
bership Functions (MF) in place of type-1 MFs in the origi-
nal Information Set features leading to Type-2 Information 
Set features and also by applying the Hanman transform on 
the original information source values. As MFCCs derived 
under noisy environment are subject to higher order uncer-
tainty we are bent upon investing the effectiveness of these 
approaches in representing this kind of uncertainty.

2  Related topics

2.1  Mel‑frequency cepstral coefficients

The frame work to extract Mel-Frequency Cepstral Coef-
ficients (MFCC) from a speech signal as shown in Fig. 1.

Step 1: Pre-process the speech signal s(n) to boost the 
high frequency components and to eliminate the spectrum 
tilt by applying the first order high pass filter with � = 0.97 
as follows: 

The above pre-emphasis operation has little impact on 
imparting robustness to MFCC towards noise. As speech 
is a quasi-stationary signal, features extracted from the 
pre-processed signal are not reliable. However the signal is 
observed to be stationary in a window of small duration and 
so the features extracted in this widow are reliable. There-
fore the signal is divided into frames of 32 ms duration with 
16 ms overlapping.

Step 2: Disregard the silent periods using Voice Activity 
Detection (Jongseo 1999; Ephraim and Malah 1984) and 
consider the frames only with the voice signals as these con-
tribute less while extracting speaker specific features.

Step 3: Calculate the power spectrum of each frame. This 
is motivated by the human cochlea (an organ in the ear) 

(1)S(z) = 1 − �z−1
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which vibrates at different spots depending on the frequency 
of the incoming sounds. Periodogram estimate also helps 
identifying which frequencies are present in the frame.

Step 4: Take a set of Periodogram bins and compute the 
energy of each frequency band by applying the Mel filter 
banks (Davis and Mermelstein 1980) with 40 triangular 
filters. This is due to the fact that cochlea cannot discern 
the difference between two closely spaced frequencies. 
These filter banks are non-linearly placed throughout the 
bandwidth using Mel scale  given by: 

Step 5: Perform the cubic root operation for non-linear 
rectification. As proved in (Zhao et al. 2012, 2013) the Mel 
power spectrum using cubic root operation for non-linear 
rectification is more noise robust than the log operator.

Step 6: Because of using the overlapping filter banks, 
the filter bank energies are quite correlated with each other. 
The DCT decorrelates the energies. But in the traditional 
MFCC, not all DCT coefficients are considered. This is 
because the higher DCT coefficients represent fast changes 
in the filter bank energies that degrade the performance. 
But in the proposed methodology all the coefficients are 
considered for delivering an efficient information.

2.2  Information set theory

The Information theoretic entropy function called the 
Hanman-Anirban entropy function in (Hanmandlu and Das 
2011) represents the possibilistic uncertainty by virtue of 
having parameters in its exponential gain function. This 
entropy function is generalized by Mamta and Hanmandlu 
(Mamta et al. 2014) and Medikonda et al. (2016). Out of 
these the one in (Mamta et al. 2014) is the most general 
entropy followed by the one in (Medikonda et al. 2016) 
which is pursued in the present work.

(2)(f ) = 1125 ln

(
1 +

f

700

)

The concept of information set was mooted in (Hanmandlu 
2011) and utilized in (Mamta and Hanmandlu 2014) for the 
recognition of infra-red face. By taking recourse to the Han-
man-Anirban entropy function the information set theory 
eliminates the shortcomings of fuzzy set theory. This allows 
us to represent the uncertainty in the granularized information 
source values via the corresponding membership function val-
ues. This theory converts the information source values and its 
membership function values which are pairs in a fuzzy set into 
the products termed as the information values constituting the 
information set. The sum of the information values gives the 
overall uncertainty which we call as the information. A brief 
description of information set theory is given below.

To seek the conversion of a fuzzy set into the information 
set consider a set of values, termed as the information source 
values of an attribute Φ = {�1,… ,�n} . This set is denoted 
by XΦ as 

The information set theory permits the use of agents by 
expanding the functionality of a MF called empowered MF, 
which has a limited role in a fuzzy set. Recall the role of an 
agent in artificial Intelligence where it is bestowed with per-
ceiving its environment and performing the assigned task 
accordingly. For example, a robotic agent has sensors that per-
ceive the surroundings and performs simple tasks like pick and 
place to complex tasks. The empowered MF acting as an agent 
can do much more than what it can do as MF.

Let us consider the generalized entropy from (Medikonda 
et al. 2016) in the following form as defined in Eq. (4): 

The gain function in Eq. (4) is defined as follows: 

where {aΦ, bΦ, �Φ} are the real valued parameters, assumed 
to be variables to make the entropy function adaptive.

(3)xΦ =
{
xΦ

(
�i

)} | ∀�i ∈ Φ

(4)IΦ =
∑
i

xΦ
(
�i

)�ΦGΦ

(
�i

)

(5)GΦ

(
�i

)
= e−(aΦxΦ(�i)+bΦ)

�Φ

Fig. 1  Frame work to extract 
MFCC
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We have employed Eq. (4) by taking GΦ from Eq. (5) 
and �Φ = 1 . This gain function GΦ can take any form of MF 
including the commonly used membership functions by an 
appropriate choice of parameters, {aΦ, bΦ, �Φ}.

2.2.1  Gain function as the membership function

Taking aΦ = 1∕
√
2�, bΦ = −�∕

√
2�, �Φ = 2 in Eq. (5) the 

gain function becomes the Gaussian membership function 
where � and � are the mean and standard deviation associ-
ated with xΦ . The choice of parameters involving mean and 
variance in the gain function GΦ

(
�i

)
 helps convert it into 

the Gaussian function representing the possibilistic distribu-
tion of the information source values. This function called 
the Gaussian MF Φ

(
�i

)
 in the parlance of a fuzzy set is 

given by: 

The versatility of the entropy function in Eq. (4) is that 
the information source values 

{
xΦ

(
�i

)}
 can be taken from 

any domain, say, probabilistic, possibilistic or a combination 
of both. Thus we have eliminated two shortcomings of a 
fuzzy set firstly by connecting the information source value 
and its MF value that form a pair as the product called the 
information value and secondly by extending the entropy 
function to deal with both possibilistic and probabilistic 
uncertainties.

The information value IΦ
(
�i

)
 corresponding to the infor-

mation source value xΦ
(
�i

)
 is computed using the general-

ized entropy function of (Medikonda et al. 2016) as 

The set of these information values constitutes the infor-
mation set Φ given by 

The sum of the information values in an information set 
Φ is called the information denoted by IΦ . Thus, the nor-
malized effective information HΦ of the collected informa-
tion source values is given by 

3  Proposed higher order information set 
based features

We now present two approaches for representing higher order 
uncertainty in MFCCs. In the first approach the basic informa-
tion values are modified by replacing type-1 MF with type-2 
MF. The features obtained from this approach are called type-2 

(6)Φ

�
�i

�
= e

−
�

xΦ(�i)−�√
2�

�2

(7)IΦ
(
�i

)
= xΦ

(
�i

)�Φ
Φ

(
�i

)

(8)Φ = {IΦ
(
�i

)
}| ∀�i ∈ Φ

(9)HΦ =

∑
Φ

n
, ∀�i ∈ Φ

Information set features. In the second approach we compute 
the features by applying the Hanman transform directly on 
the information source values. These approaches are now dis-
cussed in detail.

3.1  Type‑2 information set features

In this, we adapt the Mamdani type fuzzy rule to define the 
corresponding information rule, where the input is a set of 
fuzzy sets but the output is an Information Set. Depending on 
the type-1 or type-2 membership function used in the input 
fuzzy sets of the antecedent part of the rule, we define the 
consequent part as the Information set of type-1 or type-2 
unlike the output fuzzy set in the Mamdani rule. We name 
this rule as type-1 Information rule or the type-2 Information 
rule depending on the type of the membership function. It 
may be noted that type-2 Information rule that help represent 
higher order possibilistic uncertainty are the generalization of 
type-1 Information rule.

A pair of type-1 Information rules (T1IRs) is formed from 
MFCC corresponding to spatial (Cepstral) and temporal com-
ponents. The T1IRa for the temporal component and T1IRB 
for the Cepstral component are of the following form:

T1IRa: 

T1IRb: 

Where x1, x2 … . x� and y1, y2 … . yd are the input vectors 
(Information Source values).We denote the information source 
values by x� = {x�1, x�2,… , x�d} and yd = {x1d, x2d,… , x�d}.

The corresponding fuzzy sets are denoted by: 

T andD are the output Information Sets. As these are 
derived from the proposed entropy function they are defined 
as follows: 

where i
and j

 are type-1 membership functions for rule-

T1IRa and T1IRbrespectively.

(10)
IF x1 is �1 and x2 is �2 and… x� is ��

THEN 
T
=

{
x
�

i


i

}
, for i = 1,… , �

(11)
IF y1 is �1 and y2 is �2 and… yd is �d

THEN D =

{
y
�

j
j

}
, for j = 1,… , d

�� =
{
x� ,�

}
=
{(

x�1,�1

)
,
(
x�1,�2

)
,… , (x�1,�d

)
}

�d =
{
yd,d

}
=
{(

x1d, 1d

)
,
(
x1d, 2d

)
,… , (x�d, �d

)
}

x
�

i
i

=
{(

x�
�1
�1

)
,
(
x�
�2
�2

)
,… , (x�

�d
�d

)
}

y
�

j
j

=
{(

x�
1d
1d

)
,
(
x�
2d
2d

)
,… , (x�

�d
�d

)
}
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The combined output information set is taken as, 

The combined effective information of the system is com-
puted from: 

We now describe the type-2 Information rule (T2IR) in 
which the antecedent part contains type-2 input fuzzy sets 
but the consequent part is similar to that of T1IR. The type-2 
information rule consists of two parts: one corresponding to 
the upper MF and another corresponding to the lower MF. 
Thus corresponding to each T1IRa we will have two type-2 
information rules, T2IRUa and T2IRLa and similarly we 
will have two rules, T2IRUb and T2IRLb corresponding to 
T1IRb, defined as:

T2IRUa & T2IRLa: 

T2IRUb &T2IRLb: 

The output of T1IRa is obtained by 

The output of T1IRb is obtained by 

where x1, x2 … . x� and y1, y2 … . yd are the input vec-
tors (Information Source values) represented such as 
x� = {x�1, x�2,… , x�d}  a n d  yd = {x1d, x2d,… , x�d}  . 
�1,�2,… , �� and �

1
, �

2
, … , �

�
 are the upper and lower 

fuzzy sets of T2IRUa and T2IRLarepresented as 

(12) = T +D

(13)H =
1

�

∑
i

, for i = 1,… , �

(14)IF x1 is �1 and x2 is �2 and… x� is �� THEN T = {x�
i
i

} for i = 1,… , �

IF x1 is �1
and x2 is �2

and… x� is ��
THEN 

T
= {x�

i

i

}

(15)
IF y1 is �1 and y2 is �2 and… yd is �d THEN D = {y�

j
j

} for j = 1,… , d

IF y1 is �2
and y2 is �2

and … yd is �d
THEN 

D
=

{
y
�
j

j

}

(16)T =
T∑d

j=1
i

+
∑d

j=1

i

+


T∑d

j=1
i

+
∑d

j=1


i

(17)D =
D∑�

i=1
j

+
∑�

i=1

j

+


D∑�

i=1
j

+
∑�

i=1

j

�� =
{
x� ,�

}
=
{(

x�1,�1

)
,
(
x�1,�2

)
,… , (x�1,�d

)
}

�
�
=
{
x� ,�

}
=
{(

x�1,�1

)
,
(
x�1,�2

)
,… , (x�1,�d

)
}

T andT
 are the upper and lower Information Sets of 

T2IRUa and T2IRLa and D and
D
 are the corresponding 

upper and lower Information Sets of T2IRUb and T2IRLb 
respectively. The combined output of a system is calculated 
using Eqs. (12, 13).

We have a number of type-1 fuzzy membership functions in 
the literature, i.e. Triangular, Gaussian, Trapezoidal, Sigmoi-
dal, pi-shaped, etc. They can be easily converted into type-2 
membership functions by changing their parameters. Type-1 
Gaussian type membership functions can be easily converted 
into type-2 by changing either mean or standard deviation.

The mathematical expressions for the type-1 Gaussian 
membership functions in Cepstro-temporal cases are:

For T1IRa: 

For T1IRb: 

The type-1 antecedent parameters are modified by the 
changing the mean and the standard deviation. The upper 
mean and standard deviation of type-2 Gaussian membership 
are defined as follows:

For T2IRUa: 

For T2IRUb: 

(18)i
= exp

(
−
1

2

(
xi − �i

)2
�2
i

)

(19)j
= exp

(
−
1

2

(
yj − �j

)2
�2
j

)

(20)�i =
1

d

d∑
j=1

xij, i = 1,… , �

(21)�i =

√√√√1

d

d∑
j=1

(xij − �i)
2
, i = 1,… , �

(22)�j =
1

�

�∑
i=1

xij, j = 1,… , d
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Type-2 upper Gaussian membership function for Cepstro-
temporal cases are defined as follows:

For T2IRUa: 

For T2IRUb: 

where, �i is the mean and �i is width of the upper member-
ship grade for T2IRUa and �j is the mean and �j is width of 
the upper membership grade for TSIRUb.

We will now consider type-2 interval sets where the lower 
mean and standard deviation of type-2 lower Gaussian mem-
bership function are obtained by scaling the upper mean and 
standard deviation of the type-2 upper Gaussian membership 
function as, 

where, �1 and �2 are the scaling factors. However we have 
used upper and lower values only in the standard deviation. 
This means �1 = 1 . Inview of this, the twolower membership 
functions are defined as,

For T2IRLa: 

For T2IRLb: 

where, �
i
 is the mean and �

i
 is width of the lower member-

ship grade for T2IRLa and �
j
 is the mean and �

j
 is width of 

the lower membership grade for T2IRLb.

(23)�j =

√√√√1

�

�∑
i=1

(xij − �j)
2
, j = 1,… , d

(24)i
= exp

(
−
1

2

(
xi − �i

)2

�
2

i

)

(25)j
= exp

⎛
⎜⎜⎝
−
1

2

�
yj − �j

�2

�
2

j

⎞
⎟⎟⎠

(26)� = �1�

(27)� = �2�

(28)
i

= exp

⎛
⎜⎜⎜⎝
−
1

2

�
xi − �

i

�2

�2
i

⎞⎟⎟⎟⎠

(29)
j

= exp

⎛⎜⎜⎜⎝
−
1

2

�
yj − �

j

�2

�2
j

⎞⎟⎟⎟⎠

3.2  Hanman transform based features

The Information sets can also be used to assess higher 
form of uncertainty in the information source values based 
on the initial uncertainty representation. This is the con-
cept behind the Hanman transform which follows from 
the possibilistic version of the adaptive Hanman-Anirban 
entropy function (Hanmandlu and Das 2011) having vari-
able parameters. Recall Eq. (9) 

where GΦ

(
�i

)
= e−(aΦxΦ(�i)+bΦ)

�Φ . Assuming its parameters 
to be variables and substituting aΦ = Φ

(
�i

)
 from Eq. (6); 

bΦ = 0; �Φ = 1 we obtain Hanman Transform value set, ℌ as, 

This transform has realistic applications; for example, 
we gather information about an unknown person of some 
interest to us. This is the first level of information (set) and 
then evaluate him again to get the second level of informa-
tion camped with the first one.

To derive Hanman transform, recall the two information 
rules, T1IRa and T1IRb defined as,

T1IRa: 

Rule 1b: 

where x1, x2 … x� and y1, y2 … yd are the input vectors. 
ℌT and ℌD are the higher order Information Sets using Han-
man transform. �i and �j are the gain functions derived 
from the Information sets of T1IRa and T1IRb for the ith 
and jth input vectors respectively. These gain functions are 
functions of the Information values, defined as 

where xii
 and yij

 are the type-1 output Information val-

ues of T1IRa and T1IRb defined in Eqs. (18, 19) respec-
tively. The combined output of a system is calculated using 
Eq. (13).

HΦ =
∑
i

xΦ
(
�i

)�ΦGΦ

(
�i

)

(30)ℌ =
{
xΦ

(
�i

)�Φe−(xΦ(�i)Φ(�i))
}

(31)
IF x1 is �1 and x2 is �2 and… x� is �� THEN

ℌ
T
=

{
x
�

i
𝔄

i

}
, for i = 1,… , �

(32)

IF y1 is �1 and y2 is �2 and… yd is �d THEN

ℌD =

{
y
�

j
𝔅j

}
, for j = 1,… , d

(33)�i = e
−
(
xii

)

(34)�j = e
−
(
yij

)
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4  Experiments and results

4.1  Database description

The proposed approach is tested on the standard databases 
such as NIST-2003, VoxForg-2015 and VCTK speech 
corpus.

Switchboard NIST (2003) evaluation database consists 
of 356 speakers voice recorded on telephone for a duration 
of 2 min per speaker with a sampling rate of 8 kHz at 16 
bit. We have divided this single speech sample into 5 sam-
ples of a user with duration of 50 s for training and testing.

VoxForge (2015) is a collection of transcribed speech 
to use in Open Source Speech Recognition Engines 
(“SRE"s). It consists of a large number of speakers from 
different regions of the world from which we have ran-
domly chosen 100 speakers. Each speaker reads out 10 
sentences in English that are recorded with a sampling rate 
of 8 kHz. The channels used in this recording are different 
like microphone, mobile, laptops etc.

This CSTR VCTK Corpus (2009) includes speech data 
collected from 109 native speakers of English with vari-
ous accents. Each speaker reads out about 400 sentences 
in which we have randomly selected 5 samples. All speech 
data was recorded using an identical recording setup: an 
omni-directional head-mounted microphone (DPA 4035), 
48 kHz sampling frequency at 16 bits. For our experiment 
we have down sampled it to 8 kHz at 16 bits.

4.2  Results and discussions

The other classifiers used in this study are: Gaussian Mix-
ture Model (GMM), Support Vector Machine (SVM) and 
k Nearest Neighborhood (kNN). They are described briefly 
now.

4.2.1  Gaussian mixture model (GMM)

It is a probability density function represented as a weighted 
sum of Gaussian component densities and it is commonly 
used as a parametric model of the probability distribution of 
continuous measurements or features in a biometric system, 
such as vocal-tract related spectral features in a speaker rec-
ognition system. GMM parameters such as mean, standard 
deviation and weight of each Gaussian are estimated from 
the training data using the iterative Expectation–Maximi-
zation (EM) algorithm or Maximum A Posteriori (MAP) 
estimation from a well-trained prior model. In this work we 
have used 16 Gaussian mixtures to model the MFCC feature 
vectors in the training set.

4.2.2  Support vector machine (SVM)

This is a discriminative classifier wherein a model of deci-
sion hyperplane is constructed using the training feature vec-
tors called the support vectors. These vectors help match 
the test feature vector with the training feature vectors. In 
this work we have used radial basis functional kernel with 
degree 3.

4.2.3  k nearest neighborhood (kNN)

It uses the Euclidean distance between the test feature vector 
and the training feature vector and its neighbors to identify 
the unknown user using majority rule. In this work we have 
considered k = 1, 3, 5 nearest neighbors.

For the extraction of the standard MFCC, we have 
selected a frame of 20 ms with a frame shift of 10 ms, and 26 
Mel filter banks that provides 13 MFCC features per frame. 
Similarly by using ∆MFCC we have taken 26 features per 
frame and with ∆∆MFCC 39 features per frame. GMM is 
used to model the training data of the each speaker and log 
likelihood is considered for classification.

A frame length of 32 ms duration with a frame shift of 
16 ms, and 40 Mel filter banks lead to40 MFCC per frame. 
On each speech sample we compute 40 T2IS features and 40 
HT features. For T2IS features, we have used the classifiers : 
IHC (Medikonda et al. 2016), SVM (Chang et al. 2011), and 
k-Nearest Neighborhood (k = 1,3,5).

In Fig. 2, a graph is represented between average rec-
ognition (%) and scaling factor ( � ) is shown. To generate 
type-2 Gaussian membership function we generate upper 
and lower standard deviations ( �). When a test sample is 
considered with additive white Gaussian noise at a Signal-
to-Noise Ratio (SNR) from 0dB to 30dB in steps of 5dB. It 
is found by experimental that at � = 0.2 yields best results 
on three databases. Scaling factor ‘ � ’ can also be learned by 
using different learning technique, but here we considered 
by experimental.

Table 1 presents the average k-fold identification accuracy 
(%) using T1IS on NIST, VoxForge and VCTK databases. It 
is observed that SVM and IHC gives the compatible results 
but with kNN at k = 3 and 5 yields better results with an 
average improvement of 10, 8 and 13% on NIST, VoxForge 
and VCTK respectively.

Tables 2, 3 and 4 presents the comparison of average 
k-fold accuracy (%) of MFCC,ΔMFCC, ΔΔMFCC, and 
GFCC features using GMM andT2IS features using IHC, 
SVM and kNN (k = 1,3,5) on NIST, VoxForge and VCTK 
databases respectively.

On NIST-2003 database, the proposed methods out-
performs other features with an average improvement of 
about 26% when compared with MFCC as can be seen from 
Tables 2 and 5. But when compared with GFCC there is an 
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Fig. 2  Average recognition (%) 
in a noisy environment (white 
noise with SNR from 0 to 30 dB 
in steps of 5 dB) of three data-
bases with respect to scaling 
factor (ϒ)

Table 1  Average k-fold identification accuracy (%) using T1IS on three databases

SNR
(dB)

NIST VoxForge VCTK

IHC SVM kNN IHC SVM kNN IHC SVM kNN

k = 1 k = 3 k = 5 k = 1 k = 3 k = 5 k = 1 k = 3 k = 5

White 0 16.5 16.9 15.4 25.2 28.5 47.9 61.0 49.7 71.0 75.2 21.3 28.8 22.6 36.8 40.9
5 31.4 31.6 28.5 43.3 47.0 69.7 71.7 66.6 81.4 85.5 38.9 47.7 37.9 55.3 60.9

10 44.3 44.1 40.3 56.4 60.6 79.0 78.3 74.5 87.2 90.3 51.2 55.9 50.3 66.2 71.0
15 52.9 51.0 47.9 64.1 68.0 82.1 81.7 80.7 89.0 91.4 60.9 62.6 58.5 73.1 76.3
20 57.8 55.2 52.8 68.7 72.5 83.8 86.2 83.1 92.1 93.8 64.7 68.2 63.0 76.8 80.0
25 61.3 59.9 54.9 71.4 75.3 85.2 87.6 84.5 92.4 94.5 68.4 69.7 66.5 78.7 81.9
30 62.9 62.4 57.9 73.3 76.7 85.9 87.6 84.8 93.1 94.8 71.4 71.6 68.2 80.7 83.9

Avg 46.7 45.9 42.5 57.5 61.2 76.2 79.2 74.8 86.6 89.4 53.8 57.8 52.4 66.8 70.7

Table 2  Comparison of average 
k-fold identification accuracy 
(%) onNIST database

Noise SNR
(dB)

MFCC
Davis and 
Mermelstein 
(1980)

ΔMFCC
Kumar 
et al. 
(2011)

ΔΔMFCC
Kumar 
et al. 
(2011)

GFCC T2IS

IHC SVM kNN

k = 1 k = 3 k = 5

White 0 2.36 2.36 2.70 7.75 19.83 21.01 18.76 32.81 39.44
5 4.44 4.66 4.89 23.71 33.76 35.34 31.91 48.37 56.57

10 6.52 7.64 8.03 48.60 48.26 48.93 43.15 59.94 66.52
15 9.72 10.73 16.12 63.15 55.11 56.85 50.00 66.18 72.58
20 12.47 15.67 27.53 71.18 58.93 60.56 54.89 69.21 75.73
25 16.57 22.13 42.47 75.79 61.07 62.92 56.40 71.74 77.42
30 19.94 28.71 53.54 75.79 62.64 64.38 57.53 72.87 78.37

Avg 10.29 13.13 22.18 52.28 48.51 50.00 44.66 60.16 66.66
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average improvement of 10% when kNN (k = 3, 5) is used 
and there is an average improvement of 5% at 0–5 dB SNR 
when IHC and SVM classifiers are used. At different SNR 
values, the extent of improvement in performance varies. 
And it is similar with VoxForge 2014 and VCTK databases 
as shown in Tables 3, 4 and 5.

The proposed method helps reduce the size of the fea-
ture vector. We can see from Table 6 that there is a drastic 

reduction in feature size in the multi-dimensional feature 
vector of size about 18,000 ( ∼ 13 × 1385 ) for MFCC and 
31,000 ( ∼ 22 × 1385 ) for GFCC to an information set 
based feature vector (T2IS, HT) of size ~ 30 after feature 
selection using MDA.

Another significant achievement of this proposed 
method is reduction in computation time. From Table 7, 
it is observed that computational time using proposed 

Table 3  Comparison of average 
k-fold identification accuracy 
(%) on VoxForge database

Noise SNR
(dB)

MFCC
Davis and 
Mermelstein 
(1980)

ΔMFCC
Kumar 
et al. 
(2011)

ΔΔMFCC
Kumar 
et al. 
(2011)

GFCC T2IS

IHC SVM kNN

k = 1 k = 3 k = 5

White 0 4.48 4.83 4.83 24.48 50.93 63.34 52.62 61.38 71.03
5 7.59 7.59 10.00 53.79 70.97 73.34 67.52 76.9 83.45

10 21.03 21.38 22.76 81.03 81.38 80.69 84.97 86.55 90
15 33.45 32.41 39.66 88.62 83.97 82.34 80.21 90.69 94.48
20 41.38 46.90 52.41 89.66 84.14 87.76 81.00 91.72 95.86
25 48.62 52.76 63.10 91.03 85.48 88.14 82.07 92.41 96.21
30 49.31 54.83 71.03 90.34 85.79 88.45 83.07 92.41 95.86

Avg 29.41 31.53 37.68 74.14 77.52 80.58 75.92 84.58 89.56

Table 4  Comparison of average 
k-fold identification accuracy 
(%) on VCTK database

Noise SNR
(dB)

MFCC
Davis and 
Mermelstein 
(1980)

ΔMFCC
Kumar 
et al. 
(2011)

ΔΔMFCC
Kumar 
et al. 
(2011)

GFCC T2IS

IHC SVM kNN

k = 1 k = 3 k = 5

white 0 5.59 5.38 5.38 12.69 25.22 30.01 22.37 36.34 44.09
5 8.60 8.60 10.54 31.83 40.19 48.06 35.48 55.05 64.09

10 18.49 17.20 18.06 56.34 50.32 57.26 47.53 66.45 72.9
15 25.38 28.39 30.97 66.67 62.91 65.49 60.55 72.26 78.71
20 35.48 37.42 44.52 69.25 65.43 70.58 62.48 75.48 81.72
25 42.15 45.59 55.91 72.04 67.72 71.66 63.77 76.13 82.58
30 48.39 50.54 64.52 74.41 68.52 72.24 63.85 76.34 83.44

Avg 26.30 27.59 32.84 54.75 54.33 59.33 50.86 65.44 72.50

Table 5  Average k-fold 
identification accuracy (%) 
using Hanman transform on 
three databases

Noise SNR
(dB)

NIST VoxForge VCTK

SVM kNN SVM kNN SVM kNN

k = 1 k = 3 k = 5 k = 1 k = 3 k = 5 k = 1 k = 3 k = 5

White 0 22.60 18.31 30.34 38.65 67.14 53.38 60.00 69.31 21.51 18.92 34.41 45.16
5 34.20 30.11 47.53 55.22 72.69 60.24 76.21 83.10 37.20 31.40 53.98 63.01

10 47.00 41.69 59.04 65.79 75.79 69.66 85.52 93.10 49.03 46.24 64.52 73.55
15 57.60 49.49 66.46 72.13 80.31 72.41 88.97 92.41 55.05 50.54 68.82 78.49
20 63.00 54.04 69.89 75.45 82.07 77.24 89.31 93.10 59.14 52.69 70.11 78.71
25 66.60 56.40 71.69 77.42 84.10 78.93 90.34 94.83 62.37 54.62 72.69 80.65
30 70.20 57.87 72.70 78.65 85.76 82.62 91.38 95.17 61.72 56.13 73.55 80.86

Avg 51.60 43.99 59.66 66.19 78.27 70.64 83.10 88.72 49.43 44.36 62.58 71.49
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method is less than that of the standard state-of-the-art 
methods.

5  Conclusions

This paper formulates Type-2 Information Set features 
(T2IS) and Hanman Transform features (HT) based on 
Information Set theory in the development of a robust text-
independent speaker identification system in the presence 
of whiten Gaussian noise at six different SNRs. This was 
an effort taken to extract speaker specific information in 
noisy environment without any noise reduction.

In the first phase the audio signal is partitioned into 
frames and from each frame Mel Frequency Cepstral Coef-
ficients (MFCC). Considering MFCC matrix, such that 
each row of a matrix corresponds to a dimension and each 
column corresponds to a frame. This matrix representation 
facilitates the derivation of T2IS features and HT features 
from frames yielding the type-2 and HTcepstral informa-
tion and dimensions yielding the type-2 and HT temporal 
information. Thus at each position in the matrix we have 
two types of information components adding which we 
get T2IS features. After the extraction of feature vectors 
from all samples of a user, we have set aside some feature 
vectors as the training sets and the rest as the test feature 
vectors.

The proposed method is applied on three datasets (NIST 
2003, VoxForge 2015, VCTK 2009) with four types of 
noises. For the sake of comparison of performance the 
three types of MFCC (MFCC, ΔMFCC, ΔΔMFCC) and 
GFCC with GMM are used as baseline methods. The pro-
posed T2IS features found to be robust and outperforms 
when compared with the baseline methodologies. This 
vindicates the effectiveness of T2IS features over the exist-
ing features. Moreover the number of T2IS features is very 
less thus reducing the computational complexity.
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