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improves the true detection and false alarm rates about 21% 
and 21%, respectively.
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1 Introduction

1.1  Definition

Speech recognition is used in a wide range of applications 
such as receiving and understanding a set of simple com-
mands and even extracting all information from speech sig-
nal. In some applications, the goal is to detect only specific 
keywords or phrases uttered by a speaker. In such cases, if 
the speaker utters other words or phrases rather than the 
special keywords, speech recognition problem is converted 
to keyword spotting problem.

Four major applications of keyword spotting are keyword 
monitoring, audio document indexing, command-controlled 
devices and dialogue systems. The focus of this paper is 
mainly on the command control devices, which monitor the 
input spoken utterances and reacts after detecting specific 
voice command.

1.2  Applications

Voice command Detection (VCD) has many social and 
industrial applications. Different applications of VCD can 
be divided into four groups. The first group relates to the 
autonomous robots specialized for helping elder people or 
people with disabilities (Fezari and Bousbia-Salah 2006; 
Wang et al. 2015). The second group includes the smart 
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homes and controlling the home appliances via spoken com-
mands (Ahmed et al. 2012; Butt et al. 2011; Cornu et al. 
2002; Manikandan et al. 2015; Principi et al. 2015). The 
third group relates to the vehicle controlling via voice (Fir-
daus et al. 2015; Özkartal 2015) and the last group contains 
software controlling via spoken commands (Watile et al. 
2015). In the aerospace field, voice commands could be used 
instead of data commands in order to speed up the command 
transmission (command agility) compared to the usual data 
command transmission methods. In addition, voice com-
mands can help crew members in completing their tasks by 
allowing hands-free control of supplemental equipment. As 
the third point, voice commands could be used besides (not 
instead of) the data commands as a redundant system for 
increasing the reliability of command transmission.

1.3  Literature review

Regardless of the reason for using voice commands in the 
aerospace applications, it is necessary to have an approach 
or a system to recognize them, accurately. One example 
of VCD systems is a voice guiding system for a robot arm 
(Fezari et al. 2012). The reported VCD methods differ in 
various speech features and classification methods used for 
decoding the voice commands. All the experimental results 
are obtained using a corpus prepared for the project. There 
are five voice commands and each of them contains just one 
word. The performance of the system is evaluated for each 
command, separately. The best accuracy is obtained for the 
fifth command and is about 92%. The average accuracy is 
about 88.2 in the best case. Another example is a method 
that enables a computer system to perform tasks via voice 
commands (Gupta et al. 2014). Accuracy of the proposed 
method is 90%, which is applicable for the female voices 
as well as male. Again, in this work the voice commands 
contain just one word such as “mute” and “open”. The third 
example is a voice command based ground truth collection 
system which its dictionary is consisted of 5 digit word 
(“one”, “two”, “three”, “four”, “five”) and 5 command word 
(“up”, “down”, “start”, “stop”, “back”) (Hoque et al. 2014). 
The original dataset is a recording of 30 native speakers. 
The system produces an average accuracy rate of 93.89% in 
the environment without noise and 58.1% in environments 
with noise. Voice commands are also used in the field of 
aerospace applications (Morris et al. 1993; Weinstein 1995) 
and result in acceptable performance of the whole system.

1.4  The main idea

In almost all different mentioned works, the voice commands 
are limited to 5–10 single-word commands. In such condi-
tion, the VCD converts to a simple word recognizer. It is 
expected that for such limit systems the detection rate is very 

high (about 90% or even more). In this paper, a VCD system 
is proposed to decode about 63 different voice commands, 
which contains more than two words, in an online manner 
with a low false alarm rate. Thus, the proposed system has 
two main advantages compared to the prevailing systems. 
First, the number of voice commands are not limited to just 
5 or 10. Second, the voice commands contain more than one 
word (seven words in some commands).

1.5  Paper contributions

The system is mainly based on a keyword spotting method 
(in contrast to the existent VCD systems which are based 
on speech recognition methods), which detects only target 
keywords predetermined in the dictionary. The detected key-
words are input to a rule-based language model that decodes 
the voice commands based on them and their locations. In 
this paper, both phone-based and word-based keyword spot-
ting methods are mentioned. The phone-based keyword spot-
ter is trained on TIMIT database. In order to compensate 
the differences between the test and train platforms, speaker 
adaptation methods are used to estimate new model param-
eters for new speakers. For training word-based keyword 
spotter, a complete database (about 4 h) has been prepared 
and labeled based on word unit. In this case, the train and 
test platforms are the same and it is expected that the perfor-
mance of the word-based system would be higher than that 
of the phone-based one (even with adaptation phase). The 
main contributions of this paper are:

1. A framework for VCD based on keyword spotting.
2. Complete VCD software for aerospace application with 

a guide for users.
3. A rule-based language model for decoding the voice 

commands based on discriminative keywords (since in 
the existent VCD system, the voice commands are usu-
ally composed of just one word, these is no need to use 
a language model).

4. A 4-h non-native (the mother language of speakers are 
Persian but they utter voice commands in English) data-
base for aerospace applications.

1.6  Paper structure

This paper is organized as follows. The proposed framework 
for VCD is proposed in Sect. 2. Section 3 introduces the 
non-native database, which is prepared for aerospace appli-
cations. The experimental conditions and results evaluations 
are presented in Sect. 4. Finally, the paper is concluded in 
Sect. 5.
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2  The proposed framework for voice command 
detection

Figure 1 shows the proposed framework for keyword spot-
ting-based VCD.

As Fig. 1 shows, the whole VCD system is composed 
of two main parts: keyword spotting and voice command 
decoding parts. The output of the first part is some discrimi-
native keywords, which are injected to the second part as 
input arguments. In the second part, a rule-based language 
model is proposed as a voice command decoder, which 
decodes input voice commands based on the mentioned 
discriminative keywords and several rules. The output of 
the second part is the decoded voice commands.

As another viewpoint, the VCD system includes two 
main phases: Train and test phases. The train phase con-
tains three sub-sections; Feature extraction, post processing 
and model training. The test phase includes pre-processing, 
feature extraction, post-processing, keyword spotting and 

rule-based language model. The adaptation phase is optional 
and is applied to the trained models in order to compensate 
the differences between test and train platforms. These sub-
sections have been discussed completely, in the following.

2.1  Feature extraction

Feature extraction from speech signals converts the speech 
waveform into some useful parametric representation. It 
plays an important role in separating speech patterns from 
one another. However, extracted features should meet some 
criteria such as easy to measure extracted speech features, 
discriminating different classes accurately, perfect in show-
ing environment variation and stability over time.

There are different methods for feature extraction from 
speech signals. The more important features are Lin-
ear Predictive Coding (LPC), Linear Predictive Cepstral 
Coefficients (LPCC), Perceptual Linear Predictive (PLP) 

Fig. 1  The proposed framework for VCD system
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Coefficients, Mel-Frequency Cepstral Coefficients (MFCC) 
and Wavelet features (Mporas et al. 2007).

According to acceptable performance of MFCC fea-
tures, they are extracted from speech signals in both train 
and test phases of the baseline framework. Thus, 39 MFCC 
features (12 MFCC features plus energy plus their first and 
second derivatives [Delta and Delta Delta coefficients)] are 
extracted from speech signals.

2.2  Pre‑processing

The pre-processing of speech utterances in this paper is 
applied in order to cancel the noise effects and enhance the 
input speech. Several methods can be used for improving 
the input voice commands, which are grouped to speech 
enhancement methods, feature compensation methods, 
model adaptation methods and methods based on the ear 
properties (Li et al. 2014). In this paper, the speech enhance-
ment methods have been considered for noise cancelation. 
There are various speech enhancement methods (Ngo et al. 
2012; Tabibian et al. 2015; Vaseghi 2008). In this paper, 
the input command is segmented into speech and silence 
parts using a voice activity detection (VAD) method (Tranter 
et al. 2004). Then, the noise signal is estimated in the silence 
parts. After that, the noisy speech is enhanced using the esti-
mation of noise. This method is perfect when the signal to 
noise ratio (SNR) is greater than 10 db. In the lower SNRs, 
the method leads to perceptual quality degradation and sig-
nal distortion. Unidirectional microphones can be used in 
this method to improve the quality of the input command as 
more as possible.

2.3  Post processing

The performance of speech recognition systems degrades 
dramatically when speech is corrupted by background 
noise and channel distortion. To overcome this problem, 
several normalization techniques have been proposed such 
as cepstral mean normalization (CMN), cepstral variance 
normalization (CVN) (Viikki et al. 1998), cepstral mean 
and variance normalization (CMVN) and cepstral gain nor-
malization (CGN) (Yoshizawa et al. 2004) techniques. In 
the baseline framework, the post-processing is applied to 
normalize MFCC features using CMVN method. In CMVN 
method, cepstral coefficients are normalized using Eq. (1) 
(Chen et al. 2002): 

where μd and σd are mean and variance of d-th feature 
dimension along frames and so time. Additionally, Ctd is the 
cepstral coefficients of d-th feature dimension and t-th frame.

When speech is corrupted by noise, both its statistical 
distribution and temporal structure are distorted. Hence, it 

(1)C̄
td
= (C

td
− 𝜇

d
)∕𝜎

d

is desirable to normalize the temporal structure of the fea-
tures as well. The methods used in this paper to normalize 
the temporal structure of the features are discussed in the 
pre-processing section.

2.4  Model training

Speech recognition problem and in its special form, keyword 
spotting, can be considered as classification problems. Dif-
ferent classification approaches can be divided into two gen-
eral categories; Generative and discriminative approaches. 
Generative approaches learn a model of joint probability 
p(x,y) of input signal x and class label y and make their pre-
dictions by Bayes rules to calculate p(y|x) and then picking 
the most likely class. In discriminative approaches, p(y|x) is 
directly computed, without considering any statistical con-
ditions or limitation on observation space. Hidden Markov 
Model (HMM) is a sample of generative models commonly 
used in the field of speech recognition and keyword spotting. 
HMM based keyword spotting approaches are divided into 
three main groups; whole-word modeling (Rohlicek et al. 
1989), phonetic-based approaches (Manos and Zue 1997) 
and Large Vocabulary Continuous Speech Recognition 
(LVCSR) based approaches (Szöke et al. 2005).

Despite their popularity, HMM-based approaches have 
several known drawbacks such as convergence of the training 
algorithm to local maxima and lack of accurate estimates in 
some cases due to insufficient observations. Another impor-
tant weakness of HMM for keyword spotting is that it does 
not aim at maximizing the detection rate of the keywords, 
directly. In recent years, various approaches are presented 
for resolving some of these drawbacks. Maximum Mutual 
Information Estimation (MMIE) (Bahl et al. 1986), Mini-
mum Classification Error (MCE) (Juang and Katagiri 1992) 
and Minimum Word Error (Povey and Woodland 2002) are 
some examples of these approaches using discriminative 
algorithms for training Hidden Markov Models. The fol-
lowing research investigated various discriminative train-
ing techniques and models such as neural networks (Chen 
et al. 2014; Fernández et al. 2007) and large-margin-based 
approaches (Keshet et al. 2009; Tabibian et al. 2013, 2014, 
2016; Vapnik and Vapnik 1998). There is both theoretical 
and empirical evidence that discriminative approaches out-
perform generative approaches for the same task (Vapnik 
and Vapnik 1998). However, the feature extraction part in 
discriminative approaches is very important and has notice-
able effects on the computational complexity and perfor-
mance of the whole keyword spotting system.

In aerospace applications it is necessary to have a VCD 
system with high accuracy, quick response and low compu-
tation complexity. Although large-margin based and deep 
neural network approaches have higher accuracy compared 
with the HMM-based ones, in this paper, the HMM-based 
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approaches are used for training the phone/word models 
due to their quick response to the user, less computation 
complexity and simpler feature extraction phase. Moreover, 
due to the small size of the dictionary and suitable recorded 
dataset (discussed in the following sub-sections), HMM-
based approaches could achieve high accuracy on this limit 
dictionary.

In the proposed phone-based VCD systems (Ph-VCD), 
each phone is represented by a simple left-to-right three-
state HMM with 16 Gaussian mixtures per state. The HMM 
Toolkits (HTK) (Young et al. 1993) is used for implement-
ing the HMM-based approaches. The phone-based HMMs 
are trained on the whole TIMIT database (5040 Sentences) 
(Lamel et al. 1989). The speakers, which communicate with 
the system, are non-native persons. However, the TIMIT 
database is a complete database contains utterances of 
speakers with eight different English accents. Since the train 
and test platform are different, the true detection rate of the 
VCD system will be degraded in real conditions. In order 
to compensate the differences between the test and train 
platforms, speaker adaptation methods are used to estimate 
new model parameters for new speakers. Maximum a Poste-
riori (MAP) (Vergyri et al. 2010) and Maximum Likelihood 
Linear Regression (MLLR) (Liu and Fung 2000) are two 
main approaches in speaker and accent adaptation. These 
two approaches have been used due to their efficiency and 
simple implementation (HMM toolkits provide a suitable 
platform for implementing these adaptation techniques).

If the number of target keywords is limited and a com-
plete database exists, using word-based models instead of 
phone-based models will improve the performance of the 
VCD system. In the proposed word-based VCD system 
(Wrd-VCD), each word is represented by a simple left-to-
right six-state HMM with 16 Gaussian mixtures per state. 
47 target keyword models, one model for silence and one 
model for other words have been trained. The non-keyword 
model has been trained with all parts of utterances in the 
train set except the keywords and silence parts. The HMM-
based keyword spotting approach is discussed in the next 
section. In the Wrd-VCD the adaptation phase has not been 
applied to word-based models.

2.5  Keyword spotting

Phone-based or word-based keyword spotting (KWS) is per-
formed using phone-based filler model, as in (Shokri et al. 
2011). The rule-based language model will be discussed in 
the next section.

2.6  Rule‑based language model

The main contribution of this paper is the rule-based lan-
guage model. The rule-based language model converts 

the VCD problem from whole speech recognition to spo-
ken keyword spotting. As presented in the next section, 
each speaker utters 63 commands. These 63 commands 
contain 78 keywords. From these 78 keywords, because 
of the rule-based language model, the VCD system has 
to detect just 47 discriminative keywords (the keywords 
that could be assigned to a special voice command and 
discriminates accurately a voice command from other 
commands). Other 31 keywords will be labeled as non-
keyword parts of speech utterances (it is not important 
what they are, exactly). This will decrease the computa-
tional complexity of the search algorithm and the number 
of word-based HMM models. Additionally, it speeds up 
both test and train phases. The discriminative keywords 
are the main features of the voice command decoding part. 
Table 1 shows the discriminative keyword(s) of each voice 
command. The rule-based language model works based on 
the content of this table.

As it is clear from Table 1, there are some voice com-
mands that have the same discriminative keywords. 
For such voice commands, another keyword(s) have to 
be considered, which is (are) not shared between those 
commands. For example, keyword “launcher” is shared 
between commands 1 and 61. Thus, keyword “separation” 
and “parameters” are considered to discriminate these 
two commands. Since, commands 1 and 2 and commands 
57, 58 and 61 differ in their first keywords (“launcher” 
and “nose” for commands 1 and 2—“biological”, “envi-
ronmental” and “launcher” for commands 57, 58, 61), 
“launcher” should be considered as a discriminative 
keyword.

Sometimes, two commands have the same discriminative 
keywords with different locations. In such cases, the location 
of keywords discriminate two commands. For example, as 
Table 1 shows, both commands 46 and 54 have discrimi-
native keyword “temperature”. However, in command 46, 
this keyword is located at the beginning of the command 
while it is located at the end of command 54. Therefore, in 
this case, the location of the keyword discriminates the two 
commands.

According to Table 1, the voice commands can be divided 
into three groups based on the number of their discrimina-
tive keywords. Commands type I are decoded using only 
one discriminative keyword. In the commands type II, two 
discriminative keywords are used for decoding them. Com-
mands type III are decoded using three discriminative key-
words. The rule-based language model is proposed based 
on these three types of commands. In addition, there are 
some exceptions for some voice commands. The general 
rules have been modified for these commands to cover those 
exceptions. The different exceptions types and the main gen-
eral rules for decoding three types of commands and differ-
ent types of exceptions are proposed in the following.
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Table 1  Discriminative 
keyword(s) of input voice 
commands

Number Voice command Discriminative keyword(s)

1 Launcher separation Launcher & separation
2 Nose separation Nose
3 Open main parachute Main
4 Open drogue parachute Drogue
5 Open drogue chute Drogue
6 Flight computer on Flight & computer & on
7 Flight computer off Flight & computer & off
8 Analogue video record on Analogue & on
9 Analogue video record off Analogue & off
10 Digital video record on Digital & video & on
11 Digital video record off Digital & video & off
12 Issuing commands on Issuing & on
13 Issuing commands off Issuing & off
14 Data acquisition on Acquisition & on
15 Data acquisition off Acquisition & off
16 Power supply on Power & on
17 Power supply off Power & off
18  Instrument on Instrument & on
19 Instrument off Instrument & off
20 Toolbox on Toolbox & on
21 Toolbox off Toolbox & off
22 Data telemetry on Data & on
23 Data telemetry off Data & off
24 Video telemetry on Video & on
25 Video telemetry off Video & off
26 Digital telemetry on Digital & telemetry & on
27 Digital telemetry off Digital & telemetry & off
28 Telecommand on Telecommand & on
29 Telecommand off Telecommand & off
30 GPS consolidated on GPS or consolidated & on
31 GPS consolidated off GPS or consolidated & off
32 Radio tracking on Tracking & on
33 Radio tracking off Tracking & off
34 Navigation on Navigation & on
35 Navigation off Navigation & off
36 Control computer flight on Control & on
37 Control computer flight off Control & off
38 Supervisor on Supervisor & on
39 Supervisor off Supervisor & off
40 Supervision and monitoring on Monitoring & on
41 Supervision and monitoring off Monitoring & off
42  Acoustic register on Acoustic & on
43 Acoustic register off Acoustic & off
44 Atmosphere control on Atmosphere & on
45 Atmosphere control off Atmosphere & off
46 Temperature management on Temperature or management & on
47 Temperature management off Temperature or management & off
48 Canister on Canister & on
49 Canister off Canister & off
50 Bio-Lab on Bio-lab & on
51 Bio-Lab off Bio-lab & off
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2.6.1  Different exceptions types

2.6.1.1 Exception 1 The command is determined due to 
just one discriminative keyword, but it contains more than 
one keyword. Some of them are discriminative keywords 
of other commands. In such cases, the rules are modified 
to cover this exception and decode the command, correctly.

2.6.1.2 Exception 2 Some discriminative keywords 
have very similar pronunciations. Thus, any recognition 
error (a deletion/ addition/ substitution) can convert these 
keywords to each other. For example, “drogue” and “ana-
logue” have similar pronunciation. In addition, it is pos-
sible to detect “main” instead of “management”. In these 
cases, the rules are modified to consider the probability of 
pronouncing the other discriminative keyword and thus, 
the other voice command. Therefore, it is possible to com-
pensate the recognition errors in the detecting keywords. 
It means that if the detected keyword is not the same as 
the pronounced keyword, the input voice command is 
decoded, correctly.

2.6.2  Rules for commands type I

The main general rule for commands type I is as follows:

If (CurrentKeyword==discriminative keyword) && (there is no previous and
future detected keywords))

DecodedCommand=table1.column2(row.column3(content == 
discriminative keyword));

End

As it is clear from the above rule, when there is only 
one detected keyword (a discriminative keyword), the 
decoded command is the second column content of that 

row of Table 1, which its third column content is the same 
as the detected keyword.

2.6.3  Rules for commands type II

Commands of type II divided into two groups. Commands 
that contains on/off as the second discriminative keyword 
and commands that does not. For example, the command 
“launcher separation” is of the second group. The main gen-
eral rule for commands type II is as follows:

If (CurrentKeyword==discriminative keyword1) 
If (there is no future detected keyword)

DecodedCommand=“Command is not detected”; 
or 

table1.column2(row.column3(content==
discriminative keyword1));

else If (FutureKeyword==discriminative keyword2)
DecodedCommand=table1.column2(row.column3(content==
discriminative keyword1&discriminative keyword2));

Else
Store discriminative keyword 1 as previous keyword;
Look for the suitable rule according to the second 
discriminative keyword;

End
End

In the above rule, which is very general (in order to cover 
the exceptions, our rule-based language model is more spe-
cial than this form), at the first condition the possibility of 
existing other detected keywords after the current one is 
checked. If there is no keyword, two cases can be consid-
ered. The second discriminative keyword is very effective 
for decoding the command or not. In the first case, the com-
mand is not detected. In the second case, the commands, 
which their discriminative keyword is the first keyword, will 
be put ahead. For example if the first discriminative key-
word is “launcher” and there is no detected keyword after 
it, the input command will be decoded to “launcher separa-
tion”; because, it is expected the user to utter this command 

Table 1  (continued) Number Voice command Discriminative keyword(s)

52 Oxygen Oxygen
53 Carbon Dioxide carbon or dioxide
54 Internal temperature Temperature
55 Moisture Moisture
56 Pressure Pressure
57 Biological parameters Biological
58 Environmental parameters Environmental
59 Flight path, navigation, control and 

guidance parameters
(Flight & navigation & parameters) or (flight & 

navigation & guidance) or (flight & control & 
parameters)

60 Flight profile parameters Flight & parameters
61 Launcher parameters Launcher & parameters
62 Display camera videos Display or videos
63 Monitoring parameters Monitoring & parameters
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more probably in comparison with command “launcher 
parameters”. However, one can decode the input command 
to “launcher parameters” due to less risk of executing this 
command (if it is decoded wrongly).

If there is another discriminative keyword after the first 
one, the rule will check it. If it is discriminative keyword 
2, as is expected, the input speech will be decoded to the 
command with discriminative keywords 1 and 2. Otherwise, 
discriminative keyword 1 will be stored and the rule-based 
language model searches the suitable rule according to the 
second discriminative keyword.

2.6.4  Rules for commands type III

Only seven commands of 63 commands are of type III. One 
of the rules for decoding these seven commands is men-
tioned here as an example for special rules which cover 
exceptions. For example, rule for commands 6 and 7 is as 
follows:

If (CurrentKeyword=='flight')
If(there is no future detected keywords)

If (‘flight’ is not at the beginning of the command)
If((PreviousKeywords=='computer')OR(PreviousKeywords== 'control') 
OR (PreviousKeywords == 'canister'))

DecodedCommand='Control computer flight off';
Else If (there is no previous detected keywords)

DecodedCommand='Control computer flight off';
End

Else
DecodedCommand='Flight computer off';

End
Else If (‘flight’ is not at the beginning of the command)

If((PreviousKeywords=='computer')OR(PreviousKeywords== 'control') 
OR (PreviousKeywords == 'canister'))

Store ‘flight’ as the previous keyword.
Extract next detected keyword.
If(CurrentKeyword== ‘on’))

DecodedCommand='Control computer flight on';
Else If((PreviousKeywords=='flight')AND(CurrentKeyword == 
'parameters')

DecodedCommand='flight profile parameters';
Else

DecodedCommand='Control computer flight off';
End

End
Else 

Store ‘flight’ as the previous keyword.
End
Else

Extract next detected keyword.
If(CurrentKeyword=='on')

DecodedCommand='Flight computer on';
Else If(CurrentKeyword=='telemetry')

Store ‘data’ as the previous keyword.
Else

DecodedCommand='Flight computer off';
Store ‘flight’ as the previous keyword.

End
Go to the beginning of the rule-based language model.

End
End

End
End

The main user interface of the VCD system is depicted 
in Fig. 2.

As Fig. 2 shows, the user interface of the VCD system 
is composed of four tabs. The first tab “system” gives user 
some information about the system. In addition, user can 
exit from the system via this tab. The second tab provides 
five possibilities for users: Adding all files from a selected 
archive, adding just one file, deleting some files from the 
loaded archive, resetting the list of files and getting a voice 
command from the microphone, in online mode. The third 
tab “Dictionary” provides the possibility of loading a pre-
defined dictionary of keywords or adding some special key-
words for the user. In addition, the user can reset the selected 
keywords list or delete some keywords from the list. The 
last tab “processing” is an option for running the system, 
plotting the results and listening to them (for evaluating the 
correctness of the decoded commands).

3  Non‑native database for aerospace applications

Voice commands in a vehicular system are divided into two 
main groups. The sent commands from ground station to the 
vehicular system and inter vehicular system commands. In 
this paper, the most well-known commands are considered 
as depicted in Table 1.

The mentioned commands contain five flight commands 
(commands 1–5), 46 sub-system commands (commands 
6–51), five capsule commands (commands 52–56) and seven 
panel commands (command 57–63). As said in the previous 
section, just 47 keywords from all 78 keywords have been 
selected as the discriminative keywords. These 47 discrimi-
native keywords are “Computer, Video, Videos, Launcher, 
Separation, On, Off, Nose, Main, Drogue, Analogue, Digi-
tal, Issuing, Commands, Acquisition, Data, Power, Supply, 
Instrument, Toolbox, Telemetry, Telecommand, GPS, Con-
solidated, Radio, Tracking, Navigation, Control, Supervisor, 
Monitoring, Acoustic, Atmosphere, Temperature, Manage-
ment, Canister, Bio-Lab, Oxygen, Carbon, Dioxide, Mois-
ture, Pressure, Parameters, Biological, Environmental, Guid-
ance, Display, Flight. Since the VCD system is evaluated 
in a non-native platform (Persian speakers who speak in 
English), and there is not any available non-native database 
contains the mentioned commands, a non-native database is 
recorded for training and testing the proposed system.

In our application, speakers utter the voice commands 
discretely and formally. Thus, the type of speech in our work 
is formal speech. It is one of the simplest forms of speech 
in comparison with the continuous and spontaneous speech. 
Different speakers have different properties. Their ages, edu-
cation level and gender are the most important properties 
in preparing a spoken database. There are 20 speakers (10 
male and 10 female speakers). Their age has a range from 16 
to 54. The education level of these 20 speakers are various 
from student to M. S. (Master of Science). In Table 2, (A) 
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S. and (B) S. are abbreviating forms of Associate and Bach-
elor of Science, respectively. Each speaker utters 137 com-
mands and keywords. Thus, 2740 spoken utterances have 
been recorded. Since each utterance has duration equal to 
5 s, the duration of the whole database is 3 h and 48 min.

One of the main parts of preparing a spoken database 
is segmentation. The main goal of speech segmentation 

is determining the boundary between different segments 
of utterances. These segments could be phone, diphone, 
triphone, syllables, word and other meaningful units. Word 
unit is considered as the main unit of segmentation in this 
project. Labeling the prepared non-native database based 
on phone unit, is a very time consuming and costly task. 
Additionally, it is uneconomical to do this time consuming 

Fig. 2  The main user interface 
for the VCD system

Table 2  Experimental conditions

Train set for phone-based HMMs The whole TIMIT database (train set and test set except SA1 and SA2 in each 
directory-about 5040 spoken utterances)

Train set for word-based HMMs The spoken utterances of 16 speakers of the non-native database (2192 spoken 
utterances equal to 3 h speech)

Test set The spoken commands of the other 4 speakers of the non-native database (252 
voice commands)

Minimum keyword length 3 phonemes
Maximum keyword length 14 phonemes
Number of discriminative keywords 47
Number of voice commands for each speaker 63
Feature vector extracted from each speech frame 39 MFCC normalized through CMVN method
Number of states of each phone-based HMM 3 states + 2 emitting states
Number of states of each word-based HMM 6 states + 2 emitting states
Number of Gaussian Mixture Models (GMMs) in each state 16
Garbage model Left-to-right 3 state HMM with 16 Gaussian mixtures per state
Method for calculating the score of the garbage model for a 

special keyword
Normal harmonic [3]
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task for a dataset customized for a very special application. 
Thus, a very small fraction of the database (about 10 min) 
is labeled based on phone unit and is used for adapting the 
phone-based HMMs (trained on TIMIT) according to the 
non-native database properties. 100 sentences of the non-
native database [Five sentences of each speaker (from 20 
speakers presented in Table 2)] make up the 10-min adap-
tation set. Those five sentences are selected for adaptation, 
which contains all possible phones that there exist phone 
models correspond to them. In this paper, the manual seg-
mentation is used for segmenting and labeling the spoken 
sentences. The manual segmentation refers to a process in 
which, an expert segments and labels spoken utterances. 
He/she uses only the spectrogram form of the utterances 
and the voice content of them.

The whole database has been labeled in word and a frac-
tion of it (about 10 min) is labeled in phone. The phone-
labeled fraction will be used for adaptation. In order to 
record the database, a user interface has been implemented 
in MATLAB. The main window of this user interface is 
presented in Fig. 3.

The user has to enter his/her ID, which is a unique code. 
Then, he/she determines his/her gender and clicks “Record 
next command”. A dialogue box informs the user to utter 
the voice command for about 5 s and another dialogue box 
informs him/her to stop. If the user needs to know the list 
of sentences and how pronounce them, he/she can click 
“help”. Then, two windows will be opened. One contains 
the whole sentences list and the other makes it possible for 
user to select a special sentence and listen to its pronuncia-
tion. After completing the recording for a user, an expert 
listens to them to delete the extra and false spoken utter-
ances and wants the user to utter again some sentences, if 
is necessary.

4  Experimental results

In this section, the results of evaluating the proposed 
framework for VCD are discussed. All systems have been 
tested on the prepared non-native database. The phone-
based and word-based HMMs have been trained on TIMIT 
(Lamel et al. 1989) and the prepared non-native database, 
respectively. The experiments conditions are presented in 
Table 2 and the implemented methods are discussed in 
Table 3.

For evaluating the implemented methods, four evalua-
tion measures have been used: True Detection Rate (TDR), 
False Alarm Rate (FAR), Miss Rate (MR) and Real Time 
Factor (RTF).

True detection rate in the field of VCD refers to decode 
a voice command, truly. It calculates the ratio of the 
number of true decoded commands to the whole number 
of voice commands. The following equation shows this 
calculation: 

False alarm rate in the field of VCD refers to decode 
a voice command, falsely. It calculates the ratio of the 
number of false detection of voice commands to the whole 
number of voice commands. The following equation shows 
this calculation: 

Miss rate refers to the number of non-detected voice 
commands to the whole number of voice commands. The 
following equation shows this calculation: 

RTF is a common metric of measuring the speed of an 
automatic speech recognition system. If it takes time P to 
process an input of duration I, RTF is computed as: 

The proposed VCD system is evaluated in two ways. 
First, the results of using adaptation methods are compared 

(2)
TDR = Total True decoded commands∕

Total number of voice commands

(3)
FAR = Total False decoded commands∕

Total number of voice commands

(4)
MR = Total number of non-decoded commands∕

Total number of voice commands

(5)RTF = P∕I

Fig. 3  The user interface for dataset recording

Table 3  Implemented methods

Method name Description

Ph-VCD The proposed phone-based VCD system
Ph-VCD-MAP The proposed Ph-VCD adapted based on MAP
Ph-VCD-MLLR The proposed Ph-VCD adapted based on MLLR
Wrd-VCD The proposed word-based VCD system
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with those of Ph-VCD method without adaptation. Then, 
the best adaptation method is compared with the Wrd-
VCD. These evaluations are presented in the following of 
this section.

4.1  The results of evaluating adaptation methods

Figure 4 shows the evaluation results for three methods (Ph-
VCD, ph-VCD-MAP and Ph-VCD-MLLR) based on three 
evaluation measures (TDR, FAR, MR). When a miss rate is 
occurred, the speaker could pronounce the command again 
and expect that this time the VCD system detect it. Thus, the 
TDR and FAR are calculated for the cases that speaker is 
permitted to pronounce the miss commands, repeatedly, until 
all of the commands will be detected. These calculations 
have been done based on statistical conditions. The results 
are depicted in Fig. 5. Since the MAP adaptation method 
performed weaker than the MLLR method, just the results 
of MLLR adaptation method have been reported.

As Figs. 4 and 5 shows, the ph-VCD system has a very 
low TDR and FAR due to the differences between the 
test and train platforms. Using adaptation methods will 
improve the performance of the system. However, the MAP 

adaptation just improves the TDR and not the FAR. The 
MLLR method increases TDR about 21%, for the case that 
the speakers repeat the miss commands repeatedly, until they 
will be detected. Additionally, it decreases the FAR about 
21% for the case that the speakers repeat the miss commands 
repeatedly, until they will be detected.

4.2  The results of evaluating Wrd‑VCD

Figure 6 shows the evaluation results for three methods 
(Ph-VCD, ph-VCD-MLLR and Wrd-VCD) based on three 
evaluation measures (TDR, FAR, MR). Again, the TDR and 
FAR for the case that speaker is permitted to pronounce the 
miss commands repeatedly, until all of the commands will 
be detected, have been calculated. The results are presented 
in Fig. 7.

As Figs. 6 and 7 shows, the Wrd-VCD system has a very 
higher performance in comparison to Ph-VCD and Ph-VCD-
MLLR. It is due to this matter that the train and test plat-
forms in Wrd-VCD system are the same. The TDR of the 
Wrd-VCD system is about 40% greater than that of the Ph-
VCD-MLLR system. Although the FAR of the Wrd-VCD 
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Fig. 4  The evaluation results for Ph-VCD based on TDR, FAR and 
MR
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Fig. 5  The evaluation results for Ph-VCD (after pronouncing not-
detected commands) based on TDR, FAR
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Fig. 6  The evaluation results for Wrd-VCD system based on TDR, 
FAR and MR
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Fig. 7  The evaluation results for Wrd-VCD (after pronouncing not-
detected commands) based on TDR, FAR
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system is not improved, the MR of the system decreased, 
considerably (about 42%).

Based on time complexity evaluations, the RTF of the Ph-
VCD is about 6.7 times faster than real time. It means that 
each 5-s commands takes about 0.75 s to detect. The RTF of 
the Wrd-VCD is about 4.2 times faster than real time. Each 
5-s command in the Wrd-VCD takes about 1.2 s to detect. 
Thus, the Wrd-VCD is about 0.45 s slower than the phone-
based one. However, both systems response considerably 
faster than real time with an acceptable false alarm rate.

The proposed framework in this paper differs from the 
other VCD systems (Fezari et al. 2012; Gupta et al. 2014; 
Hoque et al. 2014; Morris et al. 1993; Weinstein 1995) in 
the number and length of the voice commands. Although, 
it decodes more commands (at least six times more) with 
longer length (at least two times more), it performs as well 
as the other VCD systems.

5  Conclusion

In this paper, a VCD system for aerospace applications is 
proposed. The VCD system is composed of two parts: the 
keyword spotter and the voice command decoder. The output 
of the first part, which is the input to the second part, is some 
discriminative keywords with their exact locations in the 
input voice command. In the second part, a rule-based lan-
guage model is proposed which decodes the input command 
based on the discriminative keywords and their locations. 
The output of the second part is the output of the system: 
the decoded voice commands. In addition to these contribu-
tions, a non-native database for aerospace applications is 
prepared which is about 3 h and 48 s. The whole database 
is labeled based on word unit. A fraction of the database 
(about 10 min) is labeled based on phone unit for adapting 
the phone-based HMMs trained on TIMIT (a native English 
database).

The mentioned keyword spotter is trained based on 
phone and word units using HMM-based method. The 
phone-based keyword spotter is trained on TIMIT and 
then, adapted using MLLR and MAP adaptation methods 
to compensate the differences between train and test plat-
forms. The word-based keyword spotter is trained on 3 h of 
the prepared non-native database. Ph-VCD and its adapted 
versions (Ph-VCD-MAP and Ph-VCD-MLLR) and Wrd-
VCD are evaluated using four evaluation measures: True 
detection rate (TDR), false alarm rate (FAR), miss rate 
(MR) and real time factor (RTF). The experimental results 
show that the Wrd-VCD decodes the voice commands with 
true detection rate equal to 88% and false alarm rate equal 
to 12% in average. Additionally, using speaker adaptation 
methods in the Ph-VCD improves the true detection and 
false alarm rates about 21 and 21%, respectively. Based on 

time complexity evaluations, each five-second commands 
takes about 0.75 and 1.2 s, in the word-based and Ph-VCD, 
respectively, to detect. Thus, the Wrd-VCD is about 0.45 s 
slower than the phone-based one. However, both systems 
response considerably faster than real time with an accept-
able false alarm rate. Compared with the other existent 
VCD systems, although the proposed VCD system decodes 
more commands (at least 6 times more) with longer length 
[at least two times longer (if “word” is considered as the 
length unit)], it performs as well as them.

The keyword spotter plays an important role in the perfor-
mance of the VCD system. Improving the detection rate of 
the keyword spotting part using better features or exploiting 
more accurate training methods, for example discriminative 
methods, will be considered in the future works. Addition-
ally, increasing the variety of the database utterances will 
result in more complete dataset, which will be used for train-
ing more accurate keyword spotter. Preparing more suitable 
database will be considered in the future works.
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