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1  Introduction

Language identification is a trendy research problem for 
many years. In fact, there is a biannual competition named 
the National Institute of Standards and Technology (NIST) 
Language Recognition (LRE) competition which is running 
since 1996, resulting in a good number of publications deal-
ing with the problem of language identification from speech 
(Torres-Carrasquillo et al. 2010; Matejka et al. 2006; Singer 
et al. 2012). There has also been a fair amount of research 
done using other data sets such as VoxForge data set (Mon-
tavon 2009; Marc 1996). However, the major thrust of most 
recent research is on improving the performance of a NIST-
LRE task.

Mainstream research in language identification has 
involved very few Indian languages, Hindi and Tamil nota-
bly. India is a multi lingual country which has 22 official 
languages (based on the majority of speakers’ speaks) and 
1650 unofficial languages. All the 22 official languages 
contain more than a million of speakers (Chandrasekaran 
2012; Jain and Cardona 2007). Among the Indian languages, 
Dravidian languages such as Kannada, Malayalam, Tamil 
and Telugu comes under the category spoken by the south 
Indian people. It is also true that the process of identifying 
them is complex since they share many commonalities. For 
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both cepstral coefficients and prosodic features, a language 
identification rate of around 87% is obtained, which is about 
18% above the baseline system using Mel-frequency ceps-
tral coefficients (MFCCs). It is observed from the results 
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instance, Kannada and Telugu share the same script, and 
thus they have same phoneme set. Moreover, Kannada and 
Telugu have adopted a fair number of Sanskrit words as their 
own and they share 80% of the phonemes from Devanagari. 
On the other hand, Tamil evolved independently from San-
skrit. Malayalam is the language spoken by Kerala people 
and believed to have evolved from Tamil. All these issues 
and similarities lead to significant challenges for the cor-
rect identification of Dravidian languages. Tackling these 
challenges is the motivation for the work presented in this 
paper. The most successful approach in language identifica-
tion is parallel phoneme recognition and language modeling 
(PPRLM) which generates a stream of phonemes from the 
language. It uses n-gram language models to model the pho-
notactics. It is computationally expensive and not suitable 
for the languages where they share same phonemes such as 
Kannada and Telugu. Hence, feature based approach has 
been proposed with cepstral coefficients such as Mel fre-
quency cepstral coefficients (MFCCs), shifted delta cepstral 
(SDC) values and their combination with prosodic features 
and the same are considered for this work. To map the non-
linearity being observed among the selected languages ANN 
is used.

The rest of the paper is laid out as follows: In Sect. 2 
relevant literature is reviewed and a theoretical framework 
for our contribution is established. Section 3 elaborates the 
proposed methodology which includes the details of the 
database, feature extraction process, and methods used in 
this work. The results of these experiments are presented 
in Sect. 4. Section 5 concludes with a look towards future 
applications and extensions of this work.

2 � Literature survey

When it comes to the task of language identification, there 
are three approaches that have been explored in past litera-
ture: The first one is the phonotactic method of language 
identification, known as phoneme recognition and language 
modeling (PRLM). This method involves identification of 
phonemes in speech and putting together groups of 2 or 3 
consecutive phonemes (bi-grams or trigrams respectively). 
Each such group is then looked up in a dictionary for rec-
ognizing its language. This method is analogous to how 
humans perceive and understand spoken language. Humans 
put together such phonemes and identify them as words, 
which more often than not are unique to a language. In lit-
erature, this method has been shown to yield better results 
(Matejka et al. 2005; Zissman 1995; Li and Ma 2005). How-
ever, this performance comes at a price. Using a phonotactic 
system requires the use of computationally intensive pro-
cedures for identification of phonemes (Pinto et al. 2008; 
Graves et al. 2013). Moreover, such procedures are usually 

specific to each language. So, it is important to know which 
language the speech clip is in (which is not related to lan-
guage identification task). For the above reasons, there has 
been a trend in literature to replicate the performance of pho-
notactic systems using other methods, for instance, GMM 
tokenizer (Torres-Carrasquillo et al. 2002). This method 
speeds up the process, however, it fails to meet the PRLM 
performance in identifying the language.

The second approach involves the use of spectral features 
such as MFCCs and their associated features such as SDCs 
(Shifted Delta Cepstral coefficients) (Torres-Carrasquillo 
et al. 2002; Allen et al. 2005). When it comes to speech, 
sounds generated by humans are modulated by the shape 
of vocal tract, the tongue and so on. This shape determines 
the type of sound or phoneme produced. The shape of oral 
cavity manifests itself in the envelope of short-time power 
spectrum of the speech signal. The extraction procedure of 
MFCCs captures exactly this. Further, SDC based features 
are used with GMM-UBM model for the task of language 
identification (Torres-Carrasquillo et al. 2002, 2010). Recent 
experiments done by extracting deep bottleneck features for 
identifying the spoken language shows that neural networks 
are also useful for the task of language identification (Jiang 
et al. 2014).

The third approach for language identification uses pro-
sodic information such as syllable duration, rhythm, pitch 
and energy parameters etc. The idea of using prosody is 
essential and there are a few recent works that have explored 
the viability of prosody for the task of language identifica-
tion (Raymond et al. 2010; Martínez et al. 2012). In this 
work, investigation is continued on this line of thought. It is 
found that for identification of Dravidian languages, prosody 
is a significant factor. We make a distinction between natural 
speech and read speech, where we find that prosody is a 
significant feature for identification of natural speech. The 
reason for this is, Dravidian languages majorly share a com-
mon vocabulary and script. However the major distinction 
is in speaking pattern that includes intonation, prolongation, 
nasalization, stress, pattern and so on. In addition to prosody 
zero crossing rate (ZCR) also found to be helpful in recog-
nizing the language.

In addition to the approaches mentioned above, there are a 
few works designed based on i-vector, deep neural networks 
(DNNs), convolutional neural networks (CNNs), and so on. 
The features such as i-vector front-end features are found to 
be well suited for speaker verification systems. The works of 
language identification (LID) have motivated to use them as 
LID some times depends on the speaker as well (Brümmer 
et al. 2012; Li et al. 2013; Sturim et al. 2011). The whole 
utterance is considered as an input to form an i-vector which 
is further, optimized to a feature vector of size 400–600 
dimensions (Dehak et  al. 2011a, b). However, i-vector 
representation has a major drawback that they may not be 
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suitable if the input is shorter utterance (Lopez-Moreno et al. 
2016). The present research is highly motivated to utilize the 
advantages of deep neural networks (DNNs) as they found to 
outperform over the present era. They have been well used 
in visual object recognition (Ciresan et al. 2010), acoustic 
modeling (Hinton et al. 2012; Mohamed et al. 2012), natural 
language processing (Collobert and Weston 2008), and many 
other fields (Deng and Dong 2014). The basic system has 
been found with DNNs by Lopez-Moreno et al. (2014). They 
have considered passing the entire speech signal of various 
languages through DNN and found better accuracy when 
compared to the i-vectors. One more advantage is that they 
are capable of handling a large amount of data, unlike other 
approaches. The same causes complexity issues and not suit-
able for small data. The combination of DNN with i-vectors 
has also been experimented to achieve better performance 
(Ranjan et al. 2016). Later, they modified the number of 
words per phase to train the DNN. The use of convolutional 
neural networks (CNNs) is also found in some works to 
identify the language (Ganapathy et al. 2014). The major-
ity of the works mentioned above are mostly based on the 
phoneme or word structure. Moreover, they need a massive 
amount of data for experimentation. Since the phonemes 
are almost similar in the case of Dravidian languages, it is 
necessary to think outside the box.

Dravidian languages are a part of south Indian languages 
that contains four different languages and can be classi-
fied them as two sets named as {Kannada, Telugu}, and 
{Malayalam, Tamil}. They share many commonalities such 
as script, phoneme structure, pronunciation, grammar, etc. 
Moreover, all the above four languages are evolved from 
Sanskrit. The PPRLM is a model which is designed mainly 
based on phonemes of different languages. Since Dravidian 
languages are sharing same phoneme structure, it is difficult 
to classify them using PPRLM.

In this experiment, prior to the feature extraction, a novel 
silence removal algorithm is proposed to avoid unuseful 
silence portion. Later, the combination of spectral and pro-
sodic features is used with the ANN classifier to improve the 
performance compared to the existing work. Instead of using 
all prosodic features, polynomial fitting is done to select the 
representative features. Principle component analysis (PCA) 
is used for reduction of dimensionality which leads to less 
computational time. Result analysis is done on the real time 
speech taken from telephonic recordings instead of speech 
recorded in studio environments.

3 � Proposed methodology

The process of the proposed work for Dravidian language 
classification system (DLCS) is shown in Fig. 1. The process 
starts with database collection, followed by preprocessing, 

feature extraction, optimization, and comparison of results 
using original and optimized feature vectors. The method 
proposed in this paper makes use of two different sets of 
features used for the purpose of Dravidian language Identi-
fication, namely, spectral and prosodic features. As spectral 
features, the first 13 Mel Frequency Cepstral Coefficients 
(MFCCs) are extracted from the speech frame. MFCC fea-
tures are the quintessential features for any human speech 
processing task and are typically used to implement baseline 
systems for a wide array of problems, including language 
identification. Since SDCs have shown their importance in 
language identification and are useful for estimating the tem-
poral variation, seven SDC coefficients are added to these 
MFCC features to evaluate the variation in the performance.

It is a well-known fact that different languages have dif-
ferent pronunciation patterns, spoken at different speeds, 
involve different levels of stress or emphasis on phonemes 
during speaking lead to pitch variations and so on (Atal and 
Rabiner 1976). Indeed, these factors capture the dynamics 
of human speech that add a unique quality to each persons 
and (as it is proposed in this work) each languages speech 
representation. The specifics of feature extraction shall now 
be presented, followed by details about the actual classifica-
tion phase.

3.1 � Corpora

Two different data sets have been considered for the 
experiments conducted in this work. The first one is IIIT-
Hyderabad INDIC data set (Prahallad et al. 2012). This 
database is mainly designed to motivate the researchers to 
work on language processing. At present, it has the speech 
clips for selected languages of Indian subcontinent such as 
Bengali, Hindi, Kannada, Malayalam, Marathi, Tamil and 

Fig. 1   The proposed methodology for Dravidian language classfica-
tion system
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Telugu. Since the experiments are related to Dravidian lan-
guages, the relevant data set has been separated. Each lan-
guage of four contains 1000 sentences spoken by selected 
five native speakers based on their pleasantness in voice. 
The average length of the clip is around 6 s. Common words 
are identified based on the general requirements of humans. 
The speech has been recorded in the studio environment, and 
care has been taken to avoid noise and other distractions. It 
is important to note the speech looks like a read speech in 
this data set and do not contain many prosodic variations. 
Further details of the IIIT-Hyderabad dataset has been given 
in Table 1.

The second data set is manually collected from the TV 
and radio programs. An effort has been put to collect the 
dataset based on the audio recordings of radio and televi-
sion chat programs. The recordings are for each of the four 
Dravidian languages mentioned above. The television shows 
deal with diverse topics to remove any dependencies on topic 
specific dialects. All the recordings are a speaker, gender, 
and content independent. The natural speech (as opposed to 
a read speech) has been collected to retain the prosody. As 
natural database is very important, it has been collected and 
further details are given in Table 2.

3.2 � Pre‑processing

In preprocessing two tasks are considered: one is silence 
removal and the second one is energy valley based segmen-
tation. The following two paragraphs describe the same in 
detail.

Prior to the extraction of any features, the unwanted 
silence portion of the utterances has to be removed as it 

does not contain any useful information. There are various 
methods proposed in the literature using Short Time Energy 
(STE) and Zero Crossing Rate (ZCR) (Donald et al. 1989; 
Young et al. 1997). The noise is a signal which looks like 
whisper sounds of a phoneme set. It is added to the signal 
due to surrounding sound even can be found even in studio 
recordings. The traditional energy and zero crossing rate 
(ZCR) may not give accurate results in such cases. A novel 
approach has proposed in this work for silence removal. 
The features such as MFCCs have been extracted from con-
secutive frames of length 25 ms and feeded as an input to a 
two layer neural network, trained to classify each window 
as silent or non-silent. The outcome of silence removal is 
depicted in Fig. 2. Silent frames of the Fig. 2 a are dis-
carded and non-silent frames are concatenated in order (as 
shown in Fig. 2 b). An accuracy of 98.3% in identifying 
non-silence frames from the given speech signal which 
successfully separating all the silence regions compared 
to traditional approaches. The detailed process of silence 
removal is explained in Algorithm 1. In general, silence 
can be removed from a speech by applying a threshold to 
energy. It is also true that the whisper sound and noise in 
the silence portion have the same energy. The thresholding 
based techniques may not be useful in such cases. It is found 
that the features named as Mel frequency cepstral coeffi-
cients (MFCCs) carry different information for silence and 
non-silence portions. Hence, we extracted the MFCCs from 
silence and non-silence portions and considered them as two 
classes. The artificial neural networks (ANNs) have been 
used as classifiers. This approach is found to be better in all 
the cases to segment silence and non-silence portions when 
compared to the traditional approach. The silence portion 
recognition rate is around 98.3% with this approach whereas, 

Table 1   The complete details of IIT-H INDIC database

Sl. no. Language Region No. of 
utter-
ances

No. of 
speak-
ers

Duration 
(min)

1. Kannada Karnataka 1000 5 95
2. Malayalam Kerala 1000 5 103
3. Tamil Tamilnadu 1000 5 92
4. Telugu Andhra 

Pradesh
1000 5 110

Table 2   The complete details about the collected dataset

Sl. no. Language Region No. of utterances Duration 
(in min)

1. Kannada Karnataka 1500 250
2. Malayalam Kerala 1500 250
3. Tamil Tamilnadu 1500 250
4. Telugu Andhra Pradesh 1500 250

a

b

Fig. 2   An example signal for representing the silence removal: a 
original speech signal and b speech signal after silence removal
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the traditional approach is not even crossing 70%. The basic 
network structure and the process of MFCC extraction are 
inherited and modified accordingly to make them suitable 
for this work.

of the features mentioned in this work must be observed 
over a certain portion of the recorded speech sample. This 
portion is typically much smaller than the full speech 

Fig. 3   Diagrammatic rep-
resentation of energy valley 
segmentation

The second task is segmentation based on energy val-
leys’, which is considered to extract features from variable 
length frames rather conventional fixed length frames. Each 

length. In this work, the energy valley based segmentation 
procedure involves finding the energy minima separated (at 
least) by a minimum length interval (manually set) (Ellis 
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2005). It is desired that each window captures the vowel 
part of a speech sample, however, prolonged or protracted 
that may be. Fixing the window size would involve making 
an assumption about the approximate speaking rate, which 
defeats this purpose. The portion of speech between two 
consecutive energy minima forms a segment using energy 
valleys as the de-limitation points for segment lengths (as 
shown in Fig. 3).

3.3 � Feature extraction

In this experiment the combination of spectral features such 
as MFCC and SDC along with prosodic features have been 
considered. This subsection explains the reason and step-
wise process of extracting them.

3.3.1 � MFCC features

This work uses an MFCC extraction algorithm based on Ras-
tamat routines explained in Huang et al. (2001). Since the 
MFCCs are highly correlating human perception process, 
they have been considered as baseline features for many 
speech tasks. The Rasta features have been considered to 
retain the information even in noise conditions. The segment 
obtained by energy valleys’ based segmentation is further 
divided into 25 ms frames with an overlap of 10 ms. The 
average of the features obtained for that segment has been 
considered as segment level features. For each segment, the 
feature dimension length is 13.

3.3.2 � SDC features

These are the variant features of MFCC stacking cepstra 
Buttkus (2000) and � cepstral (Kumar et al. 2011) features 
which are computed at different speech frames to construct 
shifted delta cepstral (SDC) features. Four parameters 
(n, p, d, k) are required to define SDC where the total num-
ber of cepstral coefficients are denoted with n, p is the time 
shift, d is the time advance and span of feature is determined 
by k. For a given utterance with nv number of cepstral fea-
tures, [nv − (k − 1) × p − d] number of SDC features can be 

extracted. The process of SDC feature extraction is shown 
in Fig. 4. SDC feature (�) at the time t is given as:

where j lies between 0 to k − 1.

3.3.3 � Prosodic features

The prosodic features namely pitch contour, energy contour, 
zero crossing rate (ZCR), and duration between consecutive 
energy valleys in the speech signal have been considered 
(to capture the rate of speech). Pitch contour captures the 
characteristics that are pertaining to articulation. Energy 
contour captures stress patterns in speech. The energy val-
leys in speech serve as delimiters for phonemes or vowels in 
speech (Sreenivasa Rao and Nandi 2015). Thus, the duration 
between two energy valleys serves as a correlate to estimate 
the speaking rate. This subsection details the process that 
has been considered to extract the prosodic features which 
is quiet different from other existing approaches.

3.3.3.1  Pitch contour  Initially, the fundamental frequency 
(F0) or pitch1 is computed from each segment. From each 
segment, the pitch value is computed to draw the contour, 
also known as pitch contour. The concept of auto-correla-
tion method is used to obtain the F0 value (Loizou 1998). 
On an average for each segment, about 500 F0 values are 
obtained. Further, a Legendre polynomial is fit to these 
values. Legendre polynomials of order 16 have been used 
while fitting to the obtained F0 values. The decision to use 
the polynomials with least number of coefficients that on an 
average gives a good fit, for about 500 samples. The coef-
ficients of these 16 Legendre polynomials form a 16-dimen-
sional feature vector.
3.3.3.2  Energy contour  The energy contour is obtained by 
tracking the variation in amplitude of the signal over time. 
The group of multiple consecutive amplitudes together con-
sidered to obtain the Root Mean Square (RMS) value (i.e., 

(1)��(t) = �(t + jp + d) − �(t + jp − d)

Fig. 4   SDC feature extraction 
with parameters (n-p-d-k)

1  The terms ’pitch’ and ’F0’ are interchangeably used in the article.
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energy) instead of using raw amplitude values. Doing so 
yields about 500 RMS values per segment. Order 16 Leg-
endre Polynomials are fit to this (as seen in Fig 5), to approx-
imate the energy contour. The 16 coefficients thus obtained 
are appended to the prosody feature vector.

3.3.3.3  Zero‑crossing rate contour  Zero crossing rate 
(ZCR) is the rate of sign changes along a signal. The pro-
cedure involves finding the number of sign changes in each 
small window (based on the down-sampling) of the prosody 
segment. A contour is obtained for the variation of these 
values over the entire prosody segment. This contributes 
another 16 Legendre polynomials for the feature vector 
which form a 48-dimensional feature vector with three fea-
tures.

3.3.3.4  Duration  In order to capture the rate of speech, 
the duration of the segment under consideration is also 
appended to the prosodic feature vector.

At the end of the feature extraction process two different 
feature vectors have been obtained. The spectral feature vec-
tor contains 20 values (13−MFCC + 7−SDC). The prosodic 
feature vector contains 49 values (16−pitch + 16−energy + 
16−ZCR + 1−duration). Further PCA is applied on each 
prosodic feature set that gives a prominent feature values. 
In this work first ten prominent value are considered after a 
thorough analysis.

3.4 � ANN classifier

As the speech data is non-linear in nature an efficient tool 
is needed to map the non-linearity. Gaussian mixture model 
(GMM) is labelled as state-of-art classifier for most of the 
speaker recognition applications. From literature (Torres-
Carrasquillo et al. 2002), it is observed that GMM is capable 
in identifying the language and also helps to tokenize the 
phonemes. GMM with universal background model [UBM] 
is also used to model the language using maximum a poste-
riori (MAP) estimation. However, GMM always assumes the 
data in normal distribution which is always not proper and 

GMMs are parametric estimation models. Hence, an attempt 
has been made in this work by using artificial neural net-
works (ANNs) for language identification. ANN is assumed 
to be effective to map the non-linear data. Two ANNs are 
used here: one is to classify based on spectral features and 
the other is for prosodic features. The structure of ANNs is 
shown in Fig. 6.

Feed forward back propagation neural network (BPNN) 
is considered with one input, hidden and output layers. The 
number of neurons in input layer is equal to the size of input 
feature vector. The number of hidden neurons is equal to the 
1.5 times than that of the number of input neurons (Gnana 
and Deepa 2013). Output layer contains four neurons for 
four language classes. Based on weighted probability ANN 
labels the target language class. The classification procedure 
is explained in the following subsection.

3.4.1 � Classification procedure

Figure 7 represents in simple terms, the proposed classifi-
cation procedure. We use a system of two classifiers, one 
that uses spectral features and the other one uses prosodic 
features that are obtained from each energy valley based 
segments. Each of the classifiers gives a class label based 
on the input features it receives. Best of the two approaches 
are considered to combine the two discrete outputs where if 
either of the classifiers classifies the speech sample correctly 
then it is treated as the correctly classified speech sample. 
This can be approximated by an evidence based, weighted 
voting system (Dietterich 2000), where each classifier output 

Fig. 5   Energy contour fit (line shows the Legendre fit)

Fig. 6   ANN classifier
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receives a different weight for each class label it produces. 
The weight is simply the validation/test set accuracy of that 
classifier, for that class. The predicted results are represented 
with the support of confusion matrix.

4 � Result analysis

Initially, a baseline system that uses MFCC features for clas-
sification is developed with a neural network classifier. For 
the results quoted in Table 3, the IIIT-INDIC database is 

used. This system was evaluated at an utterance level and 
the the confusion matrix obtained is shown in Table 3. The 
process of feature extraction and classification procedure is 
elaborated in Algorithm 2 for better understanding.

The neural network was trained using a training set of 
about 50,000 feature vectors. For validation, a separate set 
of about 20,000 feature vectors is used. Note that this set 
was completely different and mutually exclusive with the 
training set and training is continued till the validation error 
value reduced to below a threshold (0.1, averaged across all 
training examples).

It is found that accuracy is a little lesser on the validation 
data set, as expected. However overall, the accuracy averages 
out to about 70% at the feature level. It is worth noting that 
Kannada was identified with much better accuracy than the 
rest (86% as opposed to 57.9% for Telugu). This is probably 
due to the fact that the Kannada speakers voice is with little 
higher pitch than the others, and this finds reflection in the 
features we have used. In the following experiments, pitch 
normalization has been performed to reduce the discrepancy 
due to pitch variation.

Fig. 7   Flowchart represents 
classification procedure for 
both the spectral and prosodic 
features

Table 3   Confusion matrix for language classification using MFCC 
features

Bold values indicate the identification rate of a given class

Target/accuracy (%) Kannada Malayalam Tamil Telugu

Kannada 73.60 6.10 7.90 12.90
Malayalam 4.10 72.00 16.20 7.80
Tamil 5.30 19.70 65.10 9.80
Telugu 8.80 8.10 19.70 68.80
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Even more interesting observation is that there seem to 
be two pairs of languages that have maximum confusion 
between each other. Kannada seems to be mistaken for 
Telugu (8.8%) more often than Tamil (5.3%) or Malayalam 
(4.1%). This also hold true for Telugu, where the confu-
sion with Kannada (12.5%) is even more clear as opposed 
to Tamil (9.8%) and Malayalam (7.8%). The reason for this 
confusion pair could be that Kannada and Telugu languages 
share the same script and as such, have similar sounds. Since 
MFCC features essentially reflect how humans produce and 
perceive speech, the fact that Kannada and Telugu share the 
same script (and thus the same phoneme set) might lead to 
mutual confusion.

Similarly, it is found that Malayalam is mistaken for 
Tamil (19.7%) much often than Kannada (6.1%) or Telugu 

(8.1%). Same holds for Tamil, which was mistaken for 
Malayalam (16.2%) more than Kannada (7.9%) or Telugu 
(14.4%). Based on the observations, both Tamil and Telugu 
show markedly different pronunciations of certain letters 
such as L. The MFCC features could be picking up this dis-
similarity, which is being manifested in the form of high 
confusion between the two.

At the word level, a majority voting based approach is 
used to make a decision as to which language the entire 
word belongs to. However, the threshold that qualifies as a 
majority must be empirically defined. Based on our experi-
ments, it is found that the variation of accuracy in classifi-
cation with respect to the threshold is related to the recall 
at the feature vector level for each class. The results are 
tabulated in Table 4. The drop in classification accuracy on 
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increasing the threshold from 50 to 60% is probably due to 
Telugu examples getting misclassified since the recall for 
Telugu is 57% which is a little below 60%. The significant 
drop on increasing the threshold further, to 70%, is due to 
both Tamil and Malayalam not winning the majority vote, 
since their recall percentages are 66.5% (Tamil) and 65.6% 
(Malayalam) respectively.

All the experiments presented until now, have been per-
formed on what could be argued to be an artificial data set, 
consisting of read speech. Moreover, it was recorded in a 
studio setting and is thus of very high quality. If a data set 
consisting of natural speech as in radio or TV chat shows is 
used, the results degrade even further. In fact, even with a 
threshold of just 50% to win a majority vote, classification 
accuracy is 68.3% on the radio data set, as opposed to 100% 
on the IIIT-Hyderabad data set. Prosodic features were tried 
next. Firstly, the hypothesis that the IIIT-Hyderabad INDIC 
data set is tested, which consists of read speech in monoto-
nous tone would not yield a good classification accuracy 
based on prosodic features, as against the radio data set con-
sisting of natural speech. Table 5 summarizes the results.

The hypothesis made earlier was found to be correct. 
Therefore, in our further experiments, the radio data set was 
used since the aim of this project is to improve classification 

accuracy for language identification, on natural speech using 
prosodic features. As explained in the Sect. 3, prosodic fea-
ture vectors have 49 features. This leads to long training and 
testing time. In an effort to cut down on both of these, Prin-
cipal Component Analysis (PCA) was used to find a lower 
dimensional representation of the original feature vectors, 
that could hopefully, provide the same performance. The 
original 49 features were projected onto a 30 dimensional 
feature space and all experiments were repeated. An average 
accuracy of 12.50% on IIITH-INDIC data set and 41.50% 
on radio data set is achieved with prosodic features alone. 
The reduced dimensional set is used for this experimenta-
tion and it is further processed on the combinational feature 
set with two classifiers. One set contains MFCCs and SDCs 
while the other set contains prosodic features with PCA and 
without PCA. Since the accuracy is a performance of the 
entire system, overall accuracy is computed at every equal 
error rate (EER) instead of Cavg (Nanavati 2002).

The audio clips are divided into 5, 2.5 and 1.25 s. This is 
done to compare the performance of the system with shorter 
clips. If it is better at shorter clips then automatically the 
processing speed of the system increases. In this case, no 
need to analyze the lengthy audio clips. A small portion of 
1∼2 s is sufficient to determine the language. The results of 
various combinational features are given in Table. 5. The 
table contains mainly three columns: first one represents fea-
ture set considered, the second one shows the results before 
applying the technique of PCA and the third one represents 
the results after applying it. The same results are displayed 
if the feature set is spectral alone (e.g.: see row-1). This is 
because PCA is not applied on spectral features. It is seen 
that application of PCA not only results in shorter feature 

Table 4   MFCC based 
classification accuracy at 
different thresholds

Majority thresh-
old (%)

Classification 
accuracy (%)

50 100
60 93
70 75

Table 5   The performance obtained for Dravidian language identification using different combination of features

∗[x, y] indicates the length of feature vector before and after PCA
P Pitch contour fit based on auto-correlation, E energy contour fit, Z zero crossing rate and bold font indicates better results

Method Before PCA (%) After PCA (%)

5 s input samples 2.5 s input 
samples

1.25 s input 
samples

5 s input samples 2.5 s input 
samples

1.25 s 
input 
samples

MFCCs [13,13]∗ 68.30 68.30 62.50 68.30 68.30 62.50
MFCCs+SDCs [20,20] 72.90 71.40 66.30 72.90 71.40 66.30
P+E [32,20] 47.50 32.50 31.90 47.50 36.30 37.50
E+Z [32,20] 45.00 40.00 34.40 25.00 22.50 26.30
Z+P [32,20] 37.50 30.00 25.60 25.00 25.00 25.00
MFCC+P+E [45,33] 82.50 77.50 71.30 80.00 78.80 72.00
MFCC+SDC+ P+E [52,40] 86.70 83.40 78.50 81.30 80.20 73.60
MFCC+E+Z [45,33] 72.50 73.80 68.10 70.00 70.00 62.50
MFCC+SDC+ E+Z [52,40] 77.00 73.20 71.80 72.40 71.90 66.10
MFCC+Z+P [45,33] 80.00 77.50 68.80 70.00 70.00 62.50
MFCC+SDC+ Z+P [52,40] 82.60 80.40 71.30 76.80 74.30 69.70
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vectors but as in the case of “MFCC+SDC+P+E” we see 
an improvement in identification performance for the shorter 
input samples of length 2.5 and 1.25 s. This is especially 
valuable since greater success on shorter clips increases fea-
sibility for a real-time system as maybe required by many 
applications.

5 � Conclusion and future work

The present work investigates the viability of prosodic 
features for the task of naturally spoken language identi-
fication of Dravidian language set. To reduce the compu-
tational complexity Legendre polynomial fitting is done 
and for further reduction, PCA is applied to construct a low 
dimensional feature vector. The silence removal is done 
using ANNs that gave better performance when compared 
to traditional approaches. The segmentation is done based 
on energy valleys’ instead of fixed length frames. Different 
combinations are considered to combine these features with 
MFCCs and SDCs to compare and analyze the performance 
of the system. ANNs are considered to classify the two sets 
of four languages.

While the results are encouraging, there is scope for 
improvement. As future work, a vowel specific and sylla-
ble specific analysis and classification can yield valuable 
insights, especially for Dravidian languages where it is 
known that these pronunciations vary across languages. 
Recent developments in the task of automated vowel onset 
point detection gives a language independent technique for 
segmenting out the vowels present in a utterance. This opens 
up the possibility of near phonatactic performance without 
the processing overhead or language specificity involved. 
This possibility holds exciting prospects. Multi-level clas-
sification also helps to recognize the various sets initially, 
and further, to recognize the language.

References

Allen, F., Ambikairajah, E., & Epps, J. (2005). Language identification 
using warping and the shifted delta cepstrum. In IEEE 7th work-
shop on multimedia signal processing, pp. 1–4. IEEE.

Atal, B., & Rabiner, L. (1946). pattern recognition approach to voiced-
unvoiced-silence classification with applications to speech rec-
ognition. IEEE Transactions on Acoustics, Speech, and Signal 
Processing, 24(3), 201–212.

Brümmer, N., Cumani, S., Glembek, O., Karafiát, M., Matějka, P., 
Pešán, J., Plchot, O., Soufifar, M., Villiers, E. D., & Cernockỳ, 
J. H. (2012). Description and analysis of the brno276 system for 
lre2011. In Odyssey 2012-the speaker and language recognition 
workshop.

Buttkus, B. (2000). Spectral Analysis and Filter Theory in Applied 
Geophysics: With 23 Tables. Berlin: Springer Science & Busi-
ness Media.

Chandrasekaran, K. (2012). Indeterminacies in howatch’s st. benet’s 
trilogy. Language in India, 12(12).

Childers, D. G., Hahn, M., & Larar, J. N. (1989). Silent and voiced/
unvoiced/mixed excitation (four-way) classification of speech. 
IEEE Transactions on Acoustics, Speech and Signal Processing, 
37(11), 1771–1774.

Ciresan, D. C., Meier, U., Gambardella, L. M., & Schmidhuber, J. 
(2010). Deep big simple neural nets excel on handwritten digit 
recognition []. Retrieved July 03, 2014, from: http://arxiv.
orgpdf/1003.0358.

Collobert, R., & Weston, J. (2008). A unified architecture for natu-
ral language processing: Deep neural networks with multitask 
learning. In Proceedings of the 25th international conference on 
machine learning, pp. 160–167. ACM.

Dehak, N., Kenny, P. J., Dehak, R., Dumouchel, P., & Ouellet, P. 
(2011). Front-end factor analysis for speaker verification. IEEE 
Transactions on Audio, Speech, and Language Processing, 19(4), 
788–798.

Dehak, N., Torres-Carrasquillo, P. A., Reynolds, D., & Dehak, R. 
(2011). Language recognition via i-vectors and dimensional-
ity reduction. In Twelfth annual conference of the international 
speech communication association.

Deng, L., Dong, Y., et al. (2014). Deep learning: Methods and appli-
cations. Foundations and Trends®. Signal Processing, 7(3–4), 
197–387.

Dietterich, T. G. (2000). Ensemble methods in machine learning. In 
Multiple classifier systems, pp. 1–15. Springer.

Ellis, D. (2005). Reproducing the feature outputs of common programs 
using matlab and melfcc.

Ganapathy, S., Han, K., Thomas, S., Omar, M., Segbroeck, M. V., & 
Narayanan, S. S. (2014). Robust language identification using con-
volutional neural network features. In Fifteenth annual conference 
of the international speech communication association.

Gnana S. K., & Deepa, S. N. (2013). Review on methods to fix number 
of hidden neurons in neural networks. In Mathematical Problems 
in Engineering.

Graves, A., Mohamed, A. R., & Hinton, G. (2013). Speech recogni-
tion with deep recurrent neural networks. In IEEE international 
conference on acoustics, speech and signal processing (ICASSP), 
pp. 6645–6649. IEEE.

Hinton, G., Deng, L., Dong, Y., Dahl, G. E., Mohamed, A. R., Jaitly, 
N., et al. (2012). Deep neural networks for acoustic modeling in 
speech recognition: The shared views of four research groups. 
IEEE Signal Processing Magazine, 29(6), 82–97.

Huang, X., Acero, A., Hon, H. W., & Reddy, R. (2001). Spoken lan-
guage processing: A guide to theory, algorithm, and system devel-
opment. Upper Saddle River: Prentice Hall PTR.

Jain, D., & Cardona, G. (2007). The Indo-Aryan Languages. Abingdon: 
Routledge.

Jiang, B., Song, Y., Wei, S., McLoughlin, I. V., & Dai, L. R. (2014). 
Task-aware deep bottleneck features for spoken language iden-
tification. In Proceedings of the 15th annual conference of the 
international speech communication association (INTERSPECH), 
Singapore.

Kumar, K., Kim, C., & Stern, R. M. (2011). Delta-spectral cepstral 
coefficients for robust speech recognition. In IEEE international 
conference on acoustics, speech and signal processing (ICASSP), 
pp. 4784–4787. IEEE.

Li, H., Ma, B., & Lee, K. A. (2013). Spoken language recognition: 
From fundamentals to practice. Proceedings of the IEEE, 101(5), 
1136–1159.

Li, H., & Ma, B. (2005). A phonotactic language model for spoken 
language identification. In Proceedings of the 43rd annual meet-
ing on association for computational linguistics, pp. 515–522. 
Association for Computational Linguistics.

http://arxiv.orgpdf/1003.0358
http://arxiv.orgpdf/1003.0358


1016	 Int J Speech Technol (2017) 20:1005–1016

1 3

Loizou, P. (1998). A matlab software tool for speech analysis. Dallas: 
Author.

Lopez-Moreno, I., Gonzalez-Dominguez, J., Martinez, D., Plchot, O., 
Gonzalez-Rodriguez, J., & Moreno, P. J. (2016). On the use of 
deep feedforward neural networks for automatic language identi-
fication. Computer Speech and Language, 40, 46–59.

Lopez-Moreno, I., Gonzalez-Dominguez, J., Plchot, O., Martinez, D., 
Gonzalez-Rodriguez, J., & Moreno, P. (2014). Automatic lan-
guage identification using deep neural networks. In IEEE inter-
national conference on acoustics, speech and signal processing 
(ICASSP), pp. 5337–5341. IEEE.

Martínez, D., Burget, L., Ferrer, L., & Scheffer, N. (2012). ivector-
based prosodic system for language identification. In IEEE inter-
national conference on acoustics, speech and signal processing 
(ICASSP), pp. 4861–4864. IEEE.

Matejka, P., Burget, L., Schwarz, P., & Cernocky, J. (2006). Brno uni-
versity of technology system for nist 2005 language recognition 
evaluation. In The IEEE Odyssey speaker and language recogni-
tion workshop, pp. 1–7. IEEE.

Matejka, P., Schwarz, P., Cernockỳ, J., & Chytil, P. (2005). Phonotactic 
language identification using high quality phoneme recognition. 
In Interspeech, pp. 2237–2240.

Mohamed, A. R., Dahl, G. E., & Hinton, G. (2012). Acoustic modeling 
using deep belief networks. IEEE Transactions on Audio, Speech, 
and Language Processing, 20(1), 14–22.

Montavon, G. (2009). Deep learning for spoken language identification. 
In NIPS workshop on deep learning for speech recognition and 
related applications.

Nanavati, T. (2002). Biometrics. New York: Wiley.
Ng, R.W., Leung, C.C., Lee, T., Ma, B., & Li, H. (2010). Prosodic 

attribute model for spoken language identification. In IEEE inter-
national conference on acoustics speech and signal processing 
(ICASSP), pp. 5022–5025. IEEE.

Pinto, J., Yegnanarayana, B., Hermansky, H., & Doss, M. M. (2008). 
Exploiting contextual information for improved phoneme recogni-
tion. In IEEE international conference on acoustics, speech and 
signal processing (ICASSP), pp. 4449–4452. IEEE.

Prahallad, K., Kumar E. N., Keri V., Rajendran, S., & Black, A. W. 
(2012). In INTERSPEECH TheIIIT-HIndic speech databases.

Ranjan, S., Yu, C., Zhang, C., Kelly, F., & Hansen, J. H. (2016). Lan-
guage recognition using deep neural networks with very limited 

training data. In IEEE international conference on acoustics, 
speech and signal processing (ICASSP), pp. 5830–5834. IEEE.

Rao, K. S., & Nandi, D. (2015). Language Identification Using Excita-
tion Source Features. Berlin: Springer.

Singer, E., Torres-Carrasquillo, P., Reynolds, D. A., McCree, A., Rich-
ardson, F., Dehak, N., & Sturim, D. (2012). The mitll nist lre 2011 
language recognition system. In IEEE international conference on 
acoustics speech and signal processing (ICASSP), pp. 209–215.

Sturim, D., Campbell, W., Dehak, N., Karam, Z., McCree, A., Reyn-
olds, D., Richardson, F., Torres-Carrasquillo, P., & Shum, S. 
(2011). The mit ll 2010 speaker recognition evaluation system: 
Scalable language-independent speaker recognition. In IEEE 
international conference on acoustics, speech and signal process-
ing (ICASSP), pp. 5272–5275. IEEE.

Torres-Carrasquillo, P. A., Reynolds, D., & Deller, J. R. Jr. (2002). 
Language identification usingGaussian mixture model tokeniza-
tion. In IEEE international conference on acoustics, speech, and 
signal processing (ICASSP) (Vol. 1, pp. I–757). IEEE.

Torres-Carrasquillo, P. A., Singer, E., Kohler, M. A., Greene, R. J., 
Reynolds, D. A., & Deller Jr., J. R. (2002). Approaches to lan-
guage identification using Gaussian mixture models and shifted 
delta cepstral features. In Interspeech.

Torres-Carrasquillo P. A., Singer E., Gleason T., McCree A., Reynolds 
D. A., Richardson F., & Sturim, D. (2010). The mitll nist lre 2009 
language recognition system. In IEEE international conference on 
acoustics speech and signal processing (ICASSP), pp. 4994–4997. 
IEEE.

Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., 
Moore, G., Odell, J., Ollason, D., & Povey, D. (1997). In The 
HTK book (Vol. 2. Entropic Cambridge Research Laboratory 
Cambridge).

Zissman, M. A. (1996). Comparison of four approaches to automatic 
language identification of telephone speech. IEEE Transactions 
on Speech and Audio Processing, 4(1), 31.

Zissman, M. A. (1995). Language identification using phoneme rec-
ognition and phonotactic language modeling. In International 
conference on acoustics, speech, and signal processing (ICASSP) 
(Vol. 5, pp. 3503–3506). IEEE.


	Dravidian language classification from speech signal using spectral and prosodic features
	Abstract 
	1 Introduction
	2 Literature survey
	3 Proposed methodology
	3.1 Corpora
	3.2 Pre-processing
	3.3 Feature extraction
	3.3.1 MFCC features
	3.3.2 SDC features
	3.3.3 Prosodic features
	3.3.3.1 Pitch contour 
	3.3.3.2 Energy contour 
	3.3.3.3 Zero-crossing rate contour 
	3.3.3.4 Duration 


	3.4 ANN classifier
	3.4.1 Classification procedure


	4 Result analysis
	5 Conclusion and future work
	References


