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Abstract Numerous efforts have focused on the problem of

reducing the impact of noise on the performance of various

speech systems such as speech coding, speech recognition

and speaker recognition. These approaches consider alter-

native speech features, improved speech modeling, or

alternative training for acoustic speechmodels. In this paper,

we propose a new speech enhancement technique, which

integrates a new proposed wavelet transform which we call

stationary bionic wavelet transform (SBWT) and the maxi-

mum a posterior estimator of magnitude-squared spectrum

(MSS-MAP). The SBWT is introduced in order to solve the

problem of the perfect reconstruction associated with the

bionic wavelet transform. The MSS-MAP estimation was

used for estimation of speech in the SBWT domain. The

experiments were conducted for various noise types and

different speech signals. The results of the proposed tech-

nique were compared with those of other popular methods

such as Wiener filtering and MSS-MAP estimation in fre-

quency domain. To test the performance of the proposed

speech enhancement system, four objective quality mea-

surement tests [signal to noise ratio (SNR), segmental SNR,

Itakura–Saito distance and perceptual evaluation of speech

quality] were conducted for various noise types and SNRs.

Experimental results and objective quality measurement test

results proved the performance of the proposed speech

enhancement technique. It provided sufficient noise reduc-

tion and good intelligibility and perceptual quality, without

causing considerable signal distortion and musical back-

ground noise.

Keywords Bionic wavelet transform · Stationary bionic

wavelet transform · Maximum a posterior estimator of

magnitude-squared spectrum · Speech enhancement

1 Introduction

Enhancing speech signal corrupted by uncorrelated additive

noise is still remaining as a challenging task for researchers

due to shortcoming of existing speech enhancement tech-

niques in real world noise conditions. The noise presence

affects the performance of speech processing systems. These

systems include voice coders, speech recognition, hearing

aids and mobile phones. The speech enhancement objective

is to improve the intelligibility and perceptual quality of

speech by minimizing the effect of noise. Existing tech-

niques for this task include Wiener filtering (Deller et al.

2000; Haykin 1996), spectral subtraction (Deller et al. 2000;

Boll 1979), wavelet transform (WT) (Seok and Bae 1997;

Bahoura and Rouat 2001, 2006; Cohen 2001; Lu and Wang

2003; Chen and Wang 2004; Hu and Loizou 2004), etc.

An emerging tendency in the speech enhancement

domain consists of using a filter bank based on a specific

psychoacoustic model of human auditory system (critical

bands). The principle behind this is based on the fact that

embedding the model of psychoacoustic of human auditory

system in filter bank can improve the perceptual quality

and the intelligibility of speech. Moreover, it is well known

that the human auditory system can roughly be described as

a non-uniform band-pass filter bank and humans are cap-

able to detect the original speech signal in noisy

environments without noise prior knowledge (Taşmaz and

Erçelebi 2008). Different frequency transformations

(scales) are proposed for considering the hearing percep-

tive aspect (Mel, Bark, ERB, and so on). It is worth
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mentioning that the majority of the perceptual speech

enhancement approaches are based on the wavelet packet

transform (Johnson et al. 2007). Moreover, the wavelet

packet transforms were efficiently combined with others

denoising methods for improving the performance of

speech enhancement techniques based on wavelets.

Therefore, many hybrid speech enhancement systems used

both WT and others tools such as Wiener filtering (Mah-

moudi 1997), spectral subtraction (Shao and Chang 2007)

and Ephraim and Malah approach (Taşmaz and Erçelebi

2008). Daqrouq et al. (2010) have investigated the uti-

lization of wavelet filters via multistage convolution by

reverse biorthogonal wavelets in high and low pass band

frequency parts of speech signal. Speech signal is decom-

posed into two pass bands of frequency; high and low, and

then the noise is removed in each band individually in

different stages via wavelet filters. This approach provides

better outcomes because it does not cut the speech infor-

mation, which occurs when utilizing conventional

thresholding (Daqrouq et al. 2010). In Vaz et al. (2013) was

proposed a method for speech enhancement of data col-

lected in extremely noisy environments, such as those

found during magnetic resonance imaging (MRI) scans.

Vaz et al. (2013) have proposed a two-step algorithm to

perform this noise suppression. First, they used proba-

bilistic latent component analysis in order to learn

dictionaries of the noise and (speech + noise) portions of

the data and used these to factor the noisy spectrum into

estimated speech and noise components. Second, they

applied a wavelet packet analysis in conjunction with a

wavelet threshold that minimizes the KL divergence

between the estimated speech and noise to achieve further

noise suppression (Vaz et al. 2013).

In this paper, we propose a new technique of noise reduc-

tion and speech enhancement. This technique integrates a new

proposed WT which we call stationary bionic wavelet trans-

form (SBWT) and the maximum a posterior estimator of

magnitude-squared spectrum (MSS-MAP) (Yang and Loizou

2011). According to (Yang and Loizou 2011), statistical

estimators of the magnitude-squared spectrum (MSS) are

derived based on the assumption that the MSS of the noisy

speech signal can be computed as the sum of the (clean) signal

and noise magnitude-squared spectra. maximum a posterior

(MAP) and minimum mean square error (MMSE) estimators

are derived based on a Gaussian statistical model. The gain

function of theMAPestimatorwas found to be the same as the

gain function used in the ideal binary mask that is extensively

used in computational auditory scene analysis. As such, it was

binary and assumed the value of 1 if the local signal-to-noise

ratio (SNR) exceeded 0 dB, and assumed the value of 0

otherwise. By modeling the local instantaneous SNR as an

F-distributed random variable, soft masking techniques were

derived integrating SNR uncertainty. The soft masking tech-

nique, in particular, which weighted the noisy magnitude-

squared spectrumby the a priori probability that the local SNR

exceeds 0 dB. The obtained results in (Yang andLoizou 2011)

was shown to be identical to the Wiener gain function. The

obtained results in (Yang and Loizou 2011) indicated that the

estimators proposed in (Yang and Loizou 2011) yielded sig-

nificantly better speech quality than the conventional

minimum mean square error spectral power estimators, in

terms of yielding lower residual noise and lower speech

degradation.Concerning the SBWT(Talbi andAicha 2014), it

is introduced in order to solve the problem of the perfect

reconstruction associated with the bionic wavelet transform

(BWT). The MSS-MAP estimation (Yang and Loizou 2011)

was used for estimation of speech in the SBWT domain.

The rest of this paper is organized as follows: Sect. 2

describes the proposed speech enhancement technique by

giving a detailed overview of the SBWT and the different

steps followed in this technique. In Sect. 3, we will deal

with MSS-MAP in SBWT domain. Section 4 is devoted to

the evaluation metrics. In Sect. 5 are presented results and

discussions. Finally, the conclusion is given in Sect. 6.

2 The proposed technique

In this work, we propose a new speech enhancement

technique, which integrates a new proposed wavelet

transform which we call SBWT and the MSS-MAP. The

SBWT is introduced in order to solve the problem of the

perfect reconstruction associated with the BWT. The MSS-

MAP estimation was used for speech estimation in the

SBWT domain. The block diagram of the proposed tech-

nique is presented in Fig. 1.

Fig. 1 The block diagram of

the proposed technique
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As shown in Fig. 1, this proposed technique consists at

first step in applying the SBWT to the noisy speech signal.

Then each of the obtained noisy stationary bionic wavelet

coefficients, wi; 1� i� 8, is denoised separately in order to

obtain eight denoised stationary bionic wavelet coeffi-

cients, ŵi; 1� i� 8. The denoising of each coefficient

wi; 1� i� 8 is perfomed by using the technique based on

the MSS-MAP estimation (Yang and Loizou 2011).

Finally, the denoised speech signal is obtained from the

application of the inverse of SBWT, SBWT−1, to the

denoised coefficients, bwi; 1� i� 8.

2.1 The bionic wavelet transform

Yao and Zhang (2001) have proposed the BWT as an

adaptive wavelet transform designed specifically to model

the human auditory system. The term ‘bionic’ means that the

BWT is rooted in an active biological mechanism (Johnson

et al. 2007). In addition, the BWT decomposition is both

perceptually scaled and adaptive (Johnson et al. 2007). The

initial perceptual aspect of this transform comes from the

logarithmic spacing of the baseline scale variables, which

are designed to match basilar membrane spacing (Johnson

et al. 2007). Then, two adaptation factors control the time-

support used at each scale, based on a non-linear perceptual

model of the auditory system (Johnson et al. 2007). The

basis of this transform is the Giguerre–Woodland non-linear

transmission line model of the auditory system (Giguere

1993; Giguere and Woodland 1994), an active-feedback

electro-acoustic model incorporating the auditory canal,

middle ear and cochlea (Johnson et al. 2007). The model

yields estimates of resistance and the time-varying acoustic

compliance along the displaced basilar membrane, as a

physiological acoustic mass function, cochlear frequency-

position mapping, and feedback factors representing the

active mechanisms of outer hair cells. The net result can be

seen as a technique for estimating the time-varying quality

factor Qeq of the cochlear filter banks as a function of the

input sound waveform. Giguere and Woodland (1994),

Zheng et al. (1999), and Yao and Zhang (2002) have given

all details on the elements of this model. The adaptive nature

of the Bionic Wavelet Transform is insured by a time-

varying linear factor T(a, τ) which represents the scaling of

the cochlear filter bank quality factor Qeq at each scale over

time. Incorporating this directly into the scale factor of a

Morlet mother wavelet, the following formula is obtained:

XBWT a; sð Þ ¼ 1

T a; sð Þ ffiffiffi
a

p
Z

x tð Þ ~u� t � s
a � T a; sð Þ
� �

e�jw0
t�s
að Þdt

ð1Þ
Where a and τ represent respectively scale and time shift

variables and ~u is expressed as follow:

~u tð Þ ¼ e
� t

T0

� �2

ð2Þ
The function ~u tð Þ is the amplitude envelope of the

Morlet mother wavelet and the factor w0 represents the

base fundamental frequency of the unscaled mother

wavelet. Here this parameter is taken as w0 = 15, 165.4 Hz
for the human auditory system, per the original work of

Yao and Zhang (2002). The factor T0 represents the initial

time-support. The discretization of the scale variable a is

performed using pre-determined logarithmic spacing across

the desired frequency range, in order that the center fre-

quency at each scale is expressed as follow (Johnson et al.

2007):

wm ¼ w0= 1:1623ð Þm;m ¼ 0; 1; 2; . . . ð3Þ
For this implementation, based on original work of Yao

and Zhang for cochlear implant coding (Yao and Zhang

2002), coefficients at 22 scales, m = 7, …, 28, are computed

using numerical integration of the continuous wavelet

transform. These 22 scales correspond to center frequencies

logarithmically spaced from 225 to 5300 Hz. The adaptation

factor T(a, τ) for each time and scale is calculated using the

following formula (Johnson et al. 2007):

T a;sþDsð Þ¼ 1

1�G1
Cs

Csþ XBWT a;sð Þj j
� �

� 1þG2
o
osXBWT a;sð Þ�� ��� 	

ð4Þ
where G1 is the active gain factor representing the outer hair

cell active resistance function, G2 is the active gain factor

representing the time-varying compliance of the Basilar

membrane, and Cs = 0.8 is a constant that represents non

linear saturation effects in the cochlear model (Johnson et al.

2007). Practically speaking, the partial derivative of Eq. (4)

is approximated using the first difference of the previous

points of the BWT at that scale (Johnson et al. 2007). From

the Eq. (1), we can see that the duration of the amplitude

envelope of the wavelet is affected by the factor T(a, τ)
which does not affect the frequency of the associated com-

plex exponential. Therefore, one useful manner for thinking

of the BWT is as a mechanism for adapting the time support

of the underlying wavelet according to the quality factor Qeq

of the corresponding cochlear filter model at each scale. Yao

and Zhang (2002) have proved that the bionic coefficients,

XBWT(a, τ) can be computed as a product of the original WT
coefficients XWT(a, τ) and a constant K(a, τ) which is a

function of the adaptation factor T(a, τ). For the Morlet

mother wavelet, this adaptive multiplying factor can be

formulated as follow:

XBWT a; sð Þ ¼ K a; sð ÞXWT a; sð Þ ð5Þ
with
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K a; sð Þ ¼
ffiffiffi
p

p
C

T0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ T2 a; sð Þp ð6Þ

where C is a normalizing constant calculated from the

integral of the squared mother wavelet. This representation

yields an efficient computational technique for calculating

BWT coefficients directly from the original WT coeffi-

cients without requiring at each scale and time, to compute

numerical integration of Eq. (1) (Johnson et al. 2007).

There are diverse key differences between a filterbank

based wavelet packet transform (WPT) using an

orthonormal wavelet such as the Daubechies family, as

used for the comparative baseline technique and the dis-

cretized continuous wavelet transform (CWT) using the

Morlet mother wavelet, used for the BWT. One is that the

WPT is perfectly reconstructable, while the discretized

CWT is an approximation whose exactness depends on the

placement and number of frequency bands selected.

Another difference is that the frequency support of the

orthonormal wavelet families used for WPTs and DWTs

covers a broader bandwidth while the Morlet wavelet

consists of a single frequency with an exponentially

decaying time support. The Morlet mother wavelet is thus

more “frequency focused” along each scale, which is what

allows the direct adaptation of the time support, the central

mechanism of the adaptation of the BWT.

2.2 Stationary bionic wavelet transform (SBWT)

As previously mentioned, in this work, we have used in our

speech enhancement system, a new wavelet transform

which we call SBWT. This new transform is obtained by

replacing the discretized CWT used in the BWT compu-

tation, by the stationary wavelet transform (SWT). In

Fig. 2, are given the different steps of the SBWT compu-

tation and also the steps of the computation of its inverse,

SBWT−1. According to this figure, the stationary bionic

wavelet coefficients are obtained by multiplying the sta-

tionary wavelet coefficients by the K factor (Eq. (6)). These

stationary wavelet coefficients are obtained from the

application of the SWT to the input signal. The steps of the

SBWT computation are the same steps followed in the

BWT computation but the unique difference consists in

replacing the discretized CWT by SWT. The reconstructed

signal is obtained by multiplying at first step, the stationary

bionic wavelet coefficients by 1/K and then applying the

SWT−1 to the resulting coefficients.

In the implementation of SWT and SBWT, we have used
the Daubechies mother wavelet with ten vanishing

moments (https://www.nag.co.uk/numeric/MB/manual_

22_1/pdf/C09/c09aa.pdf).

In Tables 1 and 2, are listed the values of max(|x − y|)
between the original speech signal, x and the reconstructed

Fig. 2 The stationary bionic wavelet transform (SBWT) and its

inverse, (SBWT−1)

Table 1 Case of female voice

Speech signal max(|x − y|)

SBWT BWT

Scale number 8 22 30 (Talbi et al. 2010)

Signal1 7.0342e-06 0.0694 0.0676

Signal2 9.7201e-06 0.1428 0.1429

Signal3 1.5658e-05 0.1877 0.0700

Signal4 1.4170e-05 0.2062 0.0705

Signal5 1.4137e-05 0.0527 0.0418

Signal6 1.1788e-05 0.1633 0.1614

Signal7 1.4955e-05 0.2305 0.2294

Signal8 1.0856e-05 0.1629 0.0636

Signal9 1.2150e-05 0.1585 0.1014

Signal10 2.1509e-05 0.0677 0.0623

Table 2 Case of male voice

Speech signal max(|x − y|)

SBWT BWT

Scale number 8 22 30 (Talbi et al. 2010)

Signal1 1.7974e-05 0.1897 0.0667

Signal2 1.4011e-05 0.2449 0.1523

Signal3 1.1984e-05 0.1983 0.1205

Signal4 1.4847e-05 0.1893 0.0430

Signal5 1.1492e-05 0.3015 0.0730

Signal6 0.0068 0.2495 0.1389

Signal7 1.7819e-05 0.2730 0.1255

Signal8 1.4949e-05 0.1897 0.1340

Signal9 1.4087e-05 0.1550 0.0713

Signal10 1.2989e-05 0.1743 0.0875
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speech signal, y obtained after application of the BWT or

the SBWT and its inverse. The original signal x is obtained
by applying the MSS-MAP (Yang and Loizou 2011) to the

noisy speech signal (Fig. 4). The Fig. 4 shows the different

steps of the procedure followed in this paper to verify the

perfect reconstruction of the transform, BWT or SBWT.

2.2.1 Stationary wavelet transform (SWT)

In both discrete wavelet transform (DWT) and WPT, after

filtration the coefficients will down sampled, that prevents

redundancy and allow using the same pair of filter in dif-

ferent levels. And so, these transforms will suffer from the

lack of shift invariance, which means that small shifts in

the input signal can cause major variations in the distri-

bution of energy between coefficients at deferent levels and

may causes some error in reconstruction (Mortazavi and

Shahrtash 2008). This problem is carried out by eliminating

the down sampling steps after filtration at each level in

SWT. By eliminating down sampling, the number of

coefficients at each level is as long as original signal.

Figure 3 shows decomposition of a signal by SWT up two

levels. In decomposition of a signal through a filter bank, if

down sampling operators were eliminated, for the next

level of decomposition the high and low pass filters must

be modified. For this, the low pass and high pass filters at

each level will be up sampled by putting zero between each

filter’s coefficients of previous level that called a trous

algorithm (Mortazavi and Shahrtash 2008; Shensa 1992).

Denoising a signal by SWT has the same three steps as

DWT (Mortazavi and Shahrtash 2008).

It is worth mentioning that for computing the Error, max

(|x − y|) and verifying the perfect reconstruction of the two

transforms (BWT and SBWT), we first have enhanced the

speech signal by MSS-MAP based technique (Yang and

Loizou 2011). The application of this technique is per-

formed because the clean speech signal is generally not

available but we know only the noisy speech signal. So to

compute the error between the original signal and the

reconstructed signal, we first have to suppress the noise

corrupting this original signal and we have chosen MSS-

MAP (Yang and Loizou 2011) for this aim.

In Fig. 4, the noisy speech signal is obtained by cor-

rupting the clean speech signal by the noise. which is

selected to be the car noise with SNR = 10 dB. Hence the

values listed in Tables 1 and 2, are obtained in that case.

These values show clearly that the use of SBWT permits to

have a lower Error between the original signal x and the

reconstructed signal y, than that obtained in case of using

BWT. The latter introduces some distortions on the

reconstructed speech signals compared to the original

speech signals and this especially when the number of

scales is N = 22. For the BWT, the error between the

original signal and the reconstructed signal (Table 1), is

reduced when using N = 30 instead of N = 22.

3 Maximum a posterior estimator of magnitude-
squared spectrum in SBWT domain

Generally, conventional speech enhancement techniques

based on thresholding in wavelet domain may introduce

some degradation on the original speech signal. This

especially occurs for unvoiced sounds. Therefore many

speech enhancement systems based on wavelets use others

tools such as Wiener filtering, spectral subtraction and

MMSE-STSA estimation (Taşmaz and Erçelebi 2008;

Ephraim and Malah 1984). The latter is used with the

undecimated wavelet packet-perceptual filterbanks in the

speech enhancement system proposed by Taşmaz and

Erçelebi (2008). In that system (Taşmaz and Erçelebi

2008), is first performed the perceptual filterbank (CB-

UWP) (critical bands–undecimated wavelet package)

decomposition of the degraded speech signal by applying

the undecimated wavelet packet perceptual transform to

this signal. Seventeen critical sub-bands are obtained from

this decomposition and this is done by referring to psy-

choacoustic model (Taşmaz and Erçelebi 2008). Each of

these critical sub-bands is denoised by using the speech

enhancement technique proposed by Ephraim and Malah

(1984). The estimation of the clean speech signal is finally

obtained by the CB-UWP reconstruction from the denoised

subband signals. This speech enhancement principle

Fig. 3 Filter bank implementation of SWT

Fig. 4 The procedure of verifying the perfect reconstruction of the

wavelet transform (BWT or SBWT)
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proposed in (Taşmaz and Erçelebi 2008), is used in this

work (Fig. 1) and the CB-UWP decomposition is replaced

by the SBWT decomposition and the MMSE-STSA esti-

mation is replaced by MSS-MAP estimation. Such as in the

speech enhancement system proposed in (Taşmaz and

Erçelebi 2008), each of stationary bionic wavelet coeffi-

cient, wi; 1� i� 8 (Fig. 1) obtained from the application of

SBWT to the noisy speech signal, is processed as a noisy

speech signal and is denoised using MSS-MAP introduced

by Yang and Loizou (2011).

As previously mentioned the SBWT is introduced to

solve the problem of the perfect reconstruction associated

with BWT. Moreover, the SBWT among all wavelet

transforms (Biswas et al. 2014; Singh and Mutawa 2016),

tends to uncorrelated data (Bahoura and Rouat 2006) and

simplifies noise cancellation. Moreover, the application of

MSS-MAP in SBWT domain (Fig. 1) for denoising the

noisy sub-bands, wi; 1� i� 8, introduces better adaptation

for noise and speech estimations compared to the appli-

cation of the MSS-MAP to the entire noisy speech signal.

All these facts motivate us to propose this new speech

enhancement technique (SBWT/MSS-MAP).

4 The evaluation metrics

To test the performance of the proposed speech enhance-

ment technique, the objective quality measurement tests,

SNR, segmental signal-to-noise ratio (SSNR), Itakura–

Saito distance and perceptual evaluation of speech quality

(PESQ), were used.

4.1 Signal-to-noise ratio

The following formula was used to calculate the SNR of

enhanced speech signals:

SNR dBð Þ ¼ 10 � log10
PN�1

n¼0 x2 nð ÞPN�1
n¼0 x̂ nð Þ � x nð Þð Þ2

 !
ð7Þ

where x(n) and x̂ nð Þ are respectively, the original and the

enhanced signals and N is the number of samples in the

original signal.

4.2 Segmental signal to noise ratio

The frame based segmental SNR is an objective measure of

speech quality. It is computed by averaging frame level

estimates as follows:

SSNR dBð Þ ¼ 1

M

XM�1

m¼0

10 � log10
PNmþN�1

n¼Nm
x2 nð ÞPNmþN�1

n¼Nm
x̂ nð Þ � x nð Þð Þ2

 !
ð8Þ

where x(n) and x̂ nð Þ represent respectively the original and

the enhanced signals, M is the number of frames, N is the

number of samples in each short time frame and Nm is the

beginning of the m-th frame. Since the SNR can become

very small and negative during silence periods, the SSNR

values are limited to the range of [−10, 35 dB].

4.3 Itakura–Saito distance

The Itakura–Saito distance measure, based on the dissim-

ilarity between the clean and the enhanced speech, is

calculated between sets of linear prediction coefficients

(LPC) estimated over synchronous frames. This measure is

greatly affected by spectral dissimilarity due to mismatch

in formant locations, with little contribution from errors in

matching spectral valleys. Such behavior is desirable since

the auditory system is more sensitive to errors in formant

position and bandwidth than to spectral valleys between

peaks. In this work, the average Itakura–Saito measure (as

defined by Eq. (9)) across all speech frames of a given

sentence, was calculated for evaluating the speech

enhancement technique.

ISd a; bð Þ ¼ a� bð ÞTR a� bð Þ
� �

= aTRa
� 	 ð9Þ

where a and b represent respectively the LPC of the clean

speech signal and the LPC of the enhanced speech signal

x̂ nð Þ and R represents the matrix of autocorrelation. The

symbol T represents the transpose symbol.

4.4 Perceptual evaluation of speech quality

The perceptual evaluation of speech quality (PESQ) algo-

rithm is an objective quality measure that is approved as

the ITU-T recommendation P.862 (Rix et al. 2001). It is a

tool of objective measurement introduced to predict the

results of a subjective mean opinion score (MOS) test. It

was proved (Hu and Loizou 2008; Zavarehei et al. 2006)

that the PESQ correlated better with MOS than the tradi-

tional objective speech measures.

5 Results and discussions

In this section, ten Arabic speech sentences produced by a

female speaker and ten others are produced by a male

speaker. These sentences are artificially corrupted in

additive manner with different noise types (white, F16

cockpit, Tank, Pink and Car noises) at different values of

SNR. These noises were taken from the AURORA data-

base (Hirsch and Pearce 2000). The used Arabic sentences

(Table 3) are material phonetically balanced and they are

sampled at 16 kHz.
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The noisy speech signals were enhanced by using the

proposed technique (SBWT/MSS-MAP), the technique

based on MSS-MAP estimation (Yang and Loizou 2011),

the Wiener Filtering (Loizou 2007) and the speech

enhancement technique based on discrete fourier transform

(DFT), proposed in (Hendriks et al. 2013).

Figures 5, 6, 7 and 8 show the curves obtained from the

SNR, the SSNR, the Itakura–Saito distance (ISd) and

PESQ computations for the different techniques: the tech-

nique based on MSS-MAP estimation (Yang and Loizou

2011), the proposed technique (SBWT/MSS-MAP),

Wiener Filtering (Deller et al. 2000; Haykin 1996) and

DFT-domain based single microphone noise reduction

(Hendriks et al. 2013).

The results obtained from SNR computation and in case

of Volvo noise corrupting the speech signal, show that all

speech enhancement techniques improve the SNR

Table 3 The list of the used Arabic speech sentences

Arabic speech sentences

Female speaker Male speaker

ضرلأانمظفحأ نللاربخلاعيذي

نيرفاسملانيأ كتلاسرملاسلإابلمكأ

اهرمثبعتمتسيمللا ةربإتطقس

اننامزمهيذؤيس عفتنيملنم

مهلةودقتنك اهتاكحضنعلفغ

امئاصرازا مهلامفشناذاملو

شبكلاطبغولاك اننوناقواناياوزنيأ

لوقبهتعذلله اعلدمثوروملاداص

ادئاقوايلاوفرع مكئابآهبن

امكنمانلابلااخ مقوهرهظأ

Fig. 5 Speech signal corrupted by volvo noise

Fig. 6 Speech signal corrupted by volvo noise

Fig. 7 Speech signal corrupted by volvo noise

Fig. 8 Speech signal corrupted by volvo noise
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(SNRf [ SNRi). Moreover, the proposed technique out-

performs all the techniques used in our evaluation precisely

the technique based on MSS-MAP (Yang and Loizou

2011) and the technique DFT domain based single-micro-

phone noise reduction (Hendriks et al. 2013) which in turn

outperforms the two others techniques: MSS-MAP and

Wiener filtering.

The results obtained from SSNR computation and in

case of volvo noise corrupting the speech signal, show that

all speech enhancement techniques improve the SSNR

(SSNRf [ SSNRi). Moreover, the proposed technique

outperforms all the techniques used in our evaluation pre-

cisely the technique based on MSS-MAP (Yang and

Loizou 2011) and technique DFT domain based single-

microphone noise reduction (Hendriks et al. 2013) which in

turn outperforms the two others techniques: MSS-MAP and

Wiener.

According to the results obtained from ISd computation

and in case of Volvo noise corrupting the speech signal, the

proposed speech enhancement technique (SBWT/MSS-

MAP) gives the lowest values of ISd compared to others

techniques. Therefore in term of ISd, the proposed tech-

nique (SBWT/MSS-MAP) outperforms the three others

techniques: MSS-MAP, Wiener and DFT-domain based

single noise reduction (Hendriks et al. 2013).

According to the results obtained from PESQ compu-

tation and in case of Volvo noise corrupting the speech

signal, the proposed technique (SBWT/MSS-MAP) and the

technique DFT-domain based single noise reduction

(Hendriks et al. 2013), outperform the two others tech-

nique: Wiener and MSS-MAP. For the higher values of

SNRi, the values of the PESQ after enhancement (PESQf),

obtained from the application of the proposed technique

(SBWT/MSS-MAP), are almost the same the values

obtained from the application of the technique DFT-do-

main based single noise reduction (Hendriks et al. 2013).

Whereas For the lower values of SNRi, the technique DFT-

domain based single noise reduction (Hendriks et al. 2013)

outperforms the proposed technique (SBWT/MSS-MAP).

The Fig. 9 illustrates an example of speech enhancement

using the proposed technique.

This figure shows clearly that the proposed technique

efficiently reduces the noise while preserving the quality of

the original speech signal.

The evaluation of the different techniques [SBWT/MSS-

MAP, MSS-MAP (Yang and Loizou 2011) and DFT-do-

main based single-microphone noise reduction (Hendriks

et al. 2013)], is also performed on a speech sentence taken

from TIMIT Database and corrupted by the noise. This

speech sentence is the English sentence.

“She had your dark suit in greasy wash water all year”

and is pronounced by a female voice. This sentence is

corrupted by car noise with different values of SNR.

In Tables 4, 5, 6 and 7, are listed the results obtained

from the computation of the SNR, the SSNR, the ISd and

the PESQ and this for the case of volvo noise.

The results obtained from SNR, SSNR and ISd com-

putation (Tables 1, 2 and 3) show that the proposed

technique (SBWT/MSS-MAP) outperforms the two tech-

niques: MSS-MAP (Yang and Loizou 2011) and DFT-

Table 4 SNR computation (case of volvo noise)

SNRi

(dB)

SNRf (dB)

Method

MSS-MAP

(Yang and

Loizou 2011)

(SBWT/

MSS-MAP)

DFT-Domain based single-

microphone noise reduction

(Hendriks et al. 2013)

−5 9.1904 12.16981 6.7524

0 13.7894 16.4734 11.5116

5 18.3689 18.8809 15.8715

10 22.6764 23.1859 21.4899

15 26.2160 26.8156 26.3789

Fig. 9 An example of denoising speech signal corrupted by car noise:

a clean speech, b noisy speech (SNR = 10 dB), c denoised speech

signal using the proposed technique (SBWT/MSS-MAP)

Table 5 SSNR computation (case of volvo noise)

SSNRi

(dB)

SSNRf (dB)

Method

MSS-MAP

(Yang and

Loizou 2011)

(SBWT/

MSS-MAP)

DFT-Domain based single-

microphone noise reduction

(Hendriks et al. 2013)

−6.3572 7.1139 7.2774 4.3178

−3.2400 11.0879 11.2451 8.3123

0.4822 15.1413 15.4914 12.0685

4.8450 18.7229 19.1495 17.7213

9.1621 21.8488 22.3828 21.9582
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domain based single-microphone noise reduction (Hen-

driks et al. 2013).

The results obtained from PESQ computation (Table 4)

show that the DFT-domain based single-microphone noise

reduction (Hendriks et al. 2013) outperforms the two

techniques: the proposed technique (SBWT/MSS-MAP)

and the MSS-MAP technique (Yang and Loizou 2011).

We have also used others speech signals and an other

denoising technique in our evaluation. This technique is

supervised and online nonnegative matrix factorization

(NMF) based noise reduction and was proposed in (Mo-

hammadiha et al. 2013). Figures 11, 12, 13 and 14 show

the different curves obtained from the SNR, the SSNR, the

ISd and PESQ computations for the different values of

SNR before speech enhancement. These results are

obtained from the application of the proposed technique

(SBWT/MSS-MAP) and the others three techniques [the

DFT domain based single-microphone noise reduction

technique (Hendriks et al. 2013), the technique MSS-MAP

(Yang and Loizou 2011) and supervised and online NMF

based noise reduction technique (Mohammadiha et al.

2013; Girish et al. 2015)] to a speech signal (Fig. 10)

corrupted by different types of noise. This speech signal is

sampled at 16,000 Hz and pronounced in English language

by a male voice.

According to the curves in Fig. 11 and in term of SNR

computing, when the SNR before denoising, SNRi is

higher, the proposed technique outperforms the others

denoising techniques. Although, when the SNRi is lower,

the best technique is supervised and online NMF based

noise reduction technique (Mohammadiha et al. 2013).

According to the curves in Fig. 12 and in term of seg-

mental SNR computing, the proposed technique

outperforms the others denoising techniques.

According to the curves in Fig. 13 and in term of ISd

computing, the proposed technique and MSS-MAP based

one (Yang and Loizou 2011) outperform the others

denoising techniques.

According to the curves in Fig. 14 and in term of PESQ

computing, when the perceptual evaluation of speech

quality before denoising (PESQi) is higher, the DFT

Domain based single-microphone noise reduction tech-

nique (Hendriks et al. 2013) outperforms the others

0 0.5 1 1.5 2 2.5 3 3.5
-1

0

1

0 0.5 1 1.5 2 2.5 3 3.5
-1

0

1

Fig. 10 An example of speech signal corrupted by volvo noise and

used for evaluating the four techniques including the proposed one

(SBWT/MSS-MAP)

Fig. 11 Signal to noise ratio after denoising (SNRf) versus signal to

noise ratio before denoising (SNRi): case of a speech signal (Fig. 10)

corrupted by volvo noise

Table 6 ISd computation(case of volvo noise)

ISdi ISdf

Method

MSS-MAP

(Yang and

Loizou 2011)

(SBWT/

MSS-MAP)

DFT-Domain based single-

microphone noise reduction

(Hendriks et al. 2013)

0.1009 0.0171 0.0026 0.0397

0.0855 0.0031 2.5812e-04 0.0103

0.0572 4.1817e-04 3.6254e-04 9.0442e-04

0.0231 1.3195e-04 9.3145e-05 1.1662e-04

0.0050 3.3776e-05 1.6663e-05 8.4648e-06

Table 7 PESQ computation (case of Volvo noise)

PESQi PESQf

Method

MSS-MAP

(Yang and

Loizou 2011)

(SBWT/

MSS-MAP)

DFT-Domain based single-

microphone noise reduction

(Hendriks et al. 2013)

2.7811 3.1591 3.2993 3.4530

3.1403 3.4478 3.5466 3.7164

3.5639 3.7728 3.8505 3.9573

3.8282 3.9647 3.9998 4.1910

4.2065 4.0719 4.0517 4.2520
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denoising techniques. Although, when the PESQi is lower,

the supervised and online NMF based noise reduction

technique (Mohammadiha et al. 2013) outperforms the

others techniques. In higher values of PESQi, the proposed

technique is better than the two techniques MSS-MAP

(Yang and Loizou 2011) and supervised and online NMF

based noise reduction (Mohammadiha et al. 2013).

Figures 15, 16, 17 and 18 show others examples of

speech enhancement using the proposed technique.

Where SNRi and SNRf are respectively signal to noise

ratios before and after enhancement. SSNRi and SSNRf are

respectively segmental signal to noise ratios before and after

Fig. 12 Segmental signal to noise ratio after denoising (SSNRf)

versus segmental signal to noise ratio before denoising (SSNRi): case

of a speech signal (Fig. 9) corrupted by volvo noise

Fig. 13 Itakura–Saito distance (ISdf) versus Itakura–Saito distance

(ISdi): case of a speech signal (Fig. 9) corrupted by volvo noise

Fig. 14 Perceptual evaluation of speech quality after denoising

(PESQf) versus perceptual evaluation of speech quality before

denoising (PESQi): case of a speech signal (Fig. 9) corrupted by

volvo noise

0 0.5 1 1.5 2
-1

0

1

0 0.5 1 1.5 2
-1

0

1

0 0.5 1 1.5 2
-1

0

1

Fig. 15 A speech signal taken from Timit Database and corrupted by

tank noise, enhanced by the proposed technique (SNRi = 10 dB,

SNRf = 16.7383 dB, SSNRi = 1.7965 dB, SSNRf = 7.6179 dB,

ISdi= 0.0182, ISdf= 3.7397e-04, PESQi= 2.6675, PESQf= 3.1143)
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enhancement. ISdi and ISdf are respectively Itakura–Saito

distances before and after enhancement. PESQi and PESQf

are respectively PESQ before and after enhancement.

Figures 19 and 20 illustrate another example of speech

denoising using the proposed technique (SBWT/MSS-

MAP). In Fig. 20 are illustrated the spectrograms of the

clean speech signal, the noisy speech signal and the

enhanced speech signal.

The spectrogram (b) shows that the type of noise cor-

rupting the speech signal is low pass because it is localized

in low frequencies regions. The spectrogram (c) shows that

the noise which is a car noise, is suppressed efficiently by

using the proposed technique (SBWT/MSS-MAP).

0 0.5 1 1.5 2
-1

0

1

0 0.5 1 1.5 2
-1

0

1

0 0.5 1 1.5 2
-1

0

1

Fig. 16 A speech signal taken from Timit Database and corrupted by

pink noise, enhanced by the proposed technique (SNRi = 10 dB,

SNRf = 15.0956 dB, SSNRi = 1.5896 dB, SSNRf = 6.2249 dB,

ISdi = 0.0768, ISdf = 0.0495, PESQi = 2.2660, PESQf = 2.7800)

0 0.5 1 1.5 2
-1

0

1

0 0.5 1 1.5 2
-1

0

1

0 0.5 1 1.5 2
-1

0

1

Fig. 17 A speech signal taken from Timit Database and corrupted by

white noise and enhanced by the proposed technique (SNRi = 10 dB,

SNRf = 14.5035 dB, SSNRi = 1.4850 dB, SSNRf = 6.0776 dB,

ISdi = 0.5621, ISdf = 0.0495, PESQi = 2.0519, PESQf = 2.7304)

0 0.5 1 1.5 2
-1

0

1

0 0.5 1 1.5 2
-1

0

1

0 0.5 1 1.5 2
-1

0

1

Fig. 18 A speech signal taken from Timit Database and corrupted by

F16 noise, enhanced by the proposed technique (SNRi = 5 dB,

SNRf = 11.4539 dB, SSNRi = 1.7233 dB, SSNRf = 3.2526 dB,

ISdi = 0.4625, ISdf = 0.4826, PESQi = 1.8480, PESQf = 2.4521)

0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

Fig. 19 An example of speech enhancement using the proposed

technique (SBWT/MSS-MAP): Denoising of speech signal (taken

from Timit Database) corrupted by volvo noise with SNR = 10 dB
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Fig. 20 a The spectrogram of

the clean speech signal. b The

spectrogram of the noisy speech

signal (speech signal corrupted

by car noise with

SNR = 10 dB). c The

spectrogram of the enhanced

speech signal
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6 Conclusion

In this paper, we proposed a new speech enhancement

technique, which integrates a new proposed wavelet

transform (which we call SBWT) and the MSS-MAP. The

SBWT is introduced in order to solve the problem of the

perfect reconstruction associated with the BWT. The MSS-

MAP estimation was used for estimation of speech in the

SBWT domain. The performance of the proposed tech-

nique (SBWT/MSS-MAP) was compared to that of the

techniques based on MSS-MAP estimation, the Wiener

Filtering, the speech enhancement technique based on DFT

and the supervised and online NMF based noise reduction

technique. The evaluation was based on four objective

metrics: SNR, SSNR, ISd and PESQ. We have also used in

our evaluation a number of speech signals (ten sentences

pronounced in Arabic language by a male voice and ten

others pronounced by a female voice) and others speech

sentences taken from TIMIT Database. We have also used

different types of noises which are Car, White, F16, Tank

and pink noises. The results obtained from the SNR, SSNR,

ISd and PESQ computations, show that the proposed

technique (SBWT/MSS-MAP) outperforms the technique

based on MSS-MAP estimation and the Wiener Filtering.

When compared with the technique supervised and online

NMF based noise reduction, the proposed technique is

better when the SNR is higher and we have the opposite

when the SNR is lower.
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