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Abstract The very first cry or the birth cry of an infant

carries significant information about the health of an infant

and hence, it is considered as the vital parameter in

deciding the Apgar count. As an infant grows, the cry

acoustics changes with the integration of vocal tract sys-

tem. Infants are found to produce many sounds apart from

crying, which reflect the learning mechanism of the infants

of the language spoken in his or her surroundings or the

environment. Along with this, infants who have distinct cry

sounds or who require large amount of stimulation to

produce a cry, are found to be at risk of sudden infant death

syndrome (SIDS) or possible neurological disorders. In this

paper, newborn infant cries are analyzed using features

derived from fundamental frequency (F0) contour or pitch

contour, energy of the cry signal in different frequency sub-

bands and unvoicing present in the infant’s cry. For the

extraction of fundamental frequency, modified autocorre-

lation method is used and shown to perform better than

traditional autocorrelation-based method. To identify the

significance of these features in identifying the reason of

crying, ANOVA analysis is applied on these features. It is

observed that the F0 features are not of significance in the

newborn cry analysis and presence of unvoicing in the

infant’s cry varies with the maturity of central nervous

system (CNS) and is a discriminative feature of prime

importance in newborn’s cry analysis. In birth cries, the

mean percentage of unvoicing is 84.4 % which drops to

67.7 % in normal infants (20 days–3 months). Birth cry

analysis shows that there is very less voicing and hence,

less vibration of the vocal folds.

Keywords Infant’s cry � Newborn � Fundamental

frequency (F0) � ANOVA

1 Introduction

Infant cry analysis is a multidisciplinary area, where con-

tributions have been made by the paediatrics, linguists,

psychologists, neuroscientists and the engineers. Though,

most of the contributions in this field are from the domain

of paediatrics, now-a-days interest is taken by researchers

from other domains for infant cry research. Infant cry

analysis is necessary to understand the needs of the infants

and identifying the pathological infants in the initial stages

so that they can be treated in the initial stages of disease

and can be protected from possible temporary or permanent

disorders. In newborns, the cry characteristics, such as,

kitten-like cry is an indicator of the possibility of infant

suffering from genetic disorders. Similarly, a hoarse cry is

an indicator of cramped muscles. Another important aspect

in infant cry analysis is the identification of infants who at

risk of sudden infant death syndrome (SIDS) (Corwin et al.

1995). SIDS is the condition in which an infant die all of a

sudden and the reason of death remains unidentified even

after autopsy. Hence, research in infant cry analysis may

prove helpful in developing some applications or devices

which can monitor the activities of the infants and help the

parents.

The work done in infant cry analysis is mostly towards

the analysis and classification of cry types. Cry has been

& Anshu Chittora

anshu_chittora@daiict.ac.in

Hemant A. Patil

hemant_patil@daiict.ac.in

1 Dhirubhai Ambani Institute of Information and

Communication Technology (DA-IICT), Infocity,

Gandhinagar, Gujarat, India

123

Int J Speech Technol (2016) 19:919–928

DOI 10.1007/s10772-016-9379-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s10772-016-9379-8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10772-016-9379-8&amp;domain=pdf


divided in different cry types such as hunger, pain, pleasure

and birth cries. Estimation of fundamental frequency (F0)

for infant cry signal is proposed in (Petroni et al. 1994).

Another method, which was used for F0 estimation, is

average magnitude difference function (AMDF) along with

simple inverse filter tracking (Manfredi Claudia et al.

2006). Research has been done in the area of classifying

normal infant’s cries from the pathological infant’s cries

(Chittora and Patil 2015a). Most of the work is done

towards classifying normal infant’s cries from the cries of

deaf infant/infant with hearing disorder. The spectral fea-

ture set, namely, Mel frequency cepstral coefficients

(MFCC) has been used as a state-of-the-art feature set for

the classification task with various classifiers (Garcia and

Garcia 2003; Reyes Galaviz Orion Fausto et al. 2008).

Another feature set used for the normal and deaf babies

classification is short-time Fourier transform (STFT) fea-

tures with time delay neural networks (TDNN), general

regression neural networks (GRNN) and multi layer per-

ceptron (MLP) neural networks (Hariharan et al. 2012).

Three class classifications is performed for classification of

normal, deaf and asphyxiated infants using features such as

MFCC and wavelet-based features (Saraswathy et al.

2012). Classification of normal and asphyxia is also

attempted using MFCC features in Ali et al. (2012).

Classification of asthma and HIE infant cries is reported in

Chittora and Patil (2014, 2015b). In (Lederman Dror 2002),

the work is done to classify normal and infants with cleft

palate, preterm infants and sick infants (cri-du-chat and

down’s syndrome) using MFCC, linear prediction coeffi-

cients (LPC), linear prediction cepstral coefficients (LPCC)

and fundamental frequency (F0) features using hidden

Markov models (HMM). MFCC feature set has also been

used to analyze cries of infants suffering from hypothy-

roidism (Zabidi et al. 2009). In last few decades, attempts

have been made to classify and analyze different infant cry

types. The cry types defined by several researchers for

infants are hunger, pain, pleasure, discomfort, fear, anger

and birth cry. Classification of fear, anger and pain cries

using MFCC features is reported in Petroni et al.

(1995, 2009). Hunger vs. no hunger and pain vs. no pain

cries are classified using MFCC feature set with support

vector machines (SVM) classifier and NN ensembles

(Barajas-Montiel and Reyes-Garcia 2005; Singh et al.

2013). Analysis of pain and manipulation cries (cry during

cloth changing) is performed using pitch (F0), formant

frequencies F1, F2 and F3 (Baeck and Souza 2001).

Some researchers have worked in the analysis of first cry

of the infants. Most of the work in this direction is done by

the medical practitioners and researchers. In (Nicollas et al.

2012) authors have used larynx of two dead newborns to

generate sounds by applying air pressure. Their finding

shows that the role of larynx is same as excised organ, free

of neurologic control. Their role in first cry is not to vibrate

by themselves, however, to generate aerodynamic pertur-

bations generating supraglottic vibrations. Complex inter-

actions are responsible for the nonlinear phenomenon

found in first cry signal. Neurological control and regula-

tion is absent in first cry. In another study, researchers have

used the newborns’ cries to find out the effect of prenatal

exposure to cocaine (Bauer et al. 1994). In this paper,

distinction between first cry and other cry types is reported

using different features and effectiveness of these features

in infant development is presented. In our earlier paper, we

have shown the importance of the feature unvoicing per-

centage in the infant cry for the study of infant cry

pathologies and development (Chittora and Patil 2015c).

However, along with this feature, other features are used in

this paper and found useful in the newborn infant cry

analysis.

The rest of the paper is organized as follows: estimation

of fundamental frequency (F0) using modified autocorre-

lation method is presented in Sect. 2. Feature extraction

and experimental results are explained in Sects. 3 and 4,

respectively. Finally, the paper is summarized in Sect. 6

along with future directions.

2 Fundamental frequency (F0) estimation using
modified autocorrelation method

The autocorrelation method of the pitch estimation is

widely used for pitch estimation in speech-related appli-

cations (Rabiner 1977). In autocorrelation method of pitch

estimation, the speech signal is divided in small frames

because the speech is a non- stationary signal. For a small

frame of speech such as 20–30 ms [comprising of 2–3 pitch

periods (T0)], after pre-processing which includes passing

the signal through a lowpass filter, autocorrelation is found.

Periodicity which is observed in the periodic signal is also

observed in its autocorrelation function. The autocorrela-

tion function is symmetric, distance between two highest

peaks is calculated which is equal to the pitch period (T0)

of the signal. Autocorrelation function method of F0 esti-

mation does not work well for infant cry analysis because

for noisy infant cry signals, sometimes false spurious peaks

are present, which gives misleading false peaks and

thereby, high frequency values. In this paper, fundamental

frequency (F0) contour is estimated using modified auto-

correlation method. In the pre-processing stage, the infant

cry signal is passed through a 4th order Butterworth low-

pass filter with a cutoff frequency of 1 kHz, in order to

remove high frequency harmonics present in the signal.

The filtered signal is then segmented in small frames of

duration 30 ms with an overlap of 50 %. On each of the cry

signal frame, modified autocorrelation method is applied
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and peaks corresponding to the pitch values are identified

and pitch is estimated. In modified autocorrelation method

of pitch extraction, the signal is clipped by a reference level

CL. The clipping level CL is chosen as the 25 % of the

maximum peak sample values. The resulting signal is given

by:

yðnÞ ¼ clc xðnÞ½ � ¼
xðnÞ � CLð Þ; xðnÞ�CL

0; xðnÞj j hCL

xðnÞ þ CLð Þ; xðnÞ�CL:

8
<

:

For the clipped signal y(n), the autocorrelation function

is found using the formula:

R0ðmÞ ¼
XN�1�m

n¼0

yðnÞ � yðnþ mÞ; 0�m�M0;

where N is the length of the sequence, M0 is the number of

autocorrelation points to be computed, m is lag or delay.

Clipping of the signal removes the added noise effects and

hence, it performs better than autocorrelation method of

pitch estimation. From the autocorrelation function applied

on clipped signal, the peaks are identified. The difference

of the peak locations gives the estimate of the pitch or F0 of

the signal. The examples of the modified autocorrelation

method for pitch extraction applied to voiced and unvoiced

segments of the cry signal are shown in Fig. 1. We can

observe that for unvoiced segments, the autocorrelation

function have very less number of peaks and thus, the

segments which have less than 6 number of peaks are taken

as unvoiced segments and pitch is taken as zero for them.

In Fig. 1, the modified autocorrelation method is illus-

trated for the voiced and unvoiced segments. In the pro-

posed method, clipping level was suggested as 64 % of the

maximum peak amplitude. In case of infant cry signals, it

was observed by intensive computer simulation that

keeping such a high threshold for clipping is removing

most of the peaks of the signal, thereby does not work for

pitch (F0) estimation. By iterative method, we decided the

threshold for clipping as 25 % and this is found to give best

results for F0 estimation. To compare the performance of

the F0 extraction with the standard autocorrelation method,

spectrogram is used. In infants, reference glottal flow

waveform for comparing the performance of the F0

methods is not available. The glottal flow waveform cannot

be acquired from the infants by non-invasive methods and

hence, it limits the availability of the glottal flow waveform

for infants. Thus, to compare the performances of the two

F0 estimation algorithms, we used spectrogram. If the

estimated harmonics match with the harmonics present in

the spectrogram, we can say that the algorithm is better.

This decision is made after observing the matching of

harmonics with spectrogram for many infant cry samples in

order to have decision which is statistically significant.

From Fig. 2, it can be observed that the modified auto-

correlation-based method of F0 extraction works better

than state-of-the-art method, i.e., autocorrelation method of

F0 extraction.

3 Feature extraction

Database: In this study, infant cry data was collected from

three hospitals of Visakhapatnam, India. Data was recorded

with a handheld Cenix recorder (Model: VR-P2340) with

external microphone with sampling frequency of 12 kHz

and 12- bit PCM quantization (Buddha and Patil 2007).

The pain cries of normal infants were recorded during

vaccination, birth cries were recorded the nursing home,

hunger cries are recorded when the infant cries because of

hunger (duration of last feed is used as an indicator for the

identification of hunger cry), cries while passing the urine
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was recorded when infant passed the urine in routine

course or while bathing. From one infant, sometimes more

than one cry is also recorded. The duration of the cries

varies from 30 to 50 s. The corpus statistics are given in

Table 1. From this corpus, cry types are separated as shown

in Table 2 for different reasons of crying and age. Most of

infants considered in this study are below 1 month of age.

It is known that our ears are sensitive to two parameters,

namely, loudness and pitch (F0). Loudness is associated

with the amplitude of the signal, it is a perceptual feature

which is recently found to be associated with the strength

of excitation (SoE) (Seshadri and Yegnanarayana 2009).

However, pitch (F0) is also a perceptual feature and is

associated with the F0 of the signal. Hence, to extract

information of these two parameters, energy and F0- related

parameters are estimated and using them different cry

signals are analyzed. For each of the cry sample, F0

contour is calculated using the modified autocorrelation

method and following features are estimated:

1. Minimum of F0 contour

2. Maximum of F0 contour

3. Mean of F0 contour

4. Median of F0 contour

5. Normalized energy of the signal (E)

6. Normalized energy in 0–2 kHz (E1)

7. Normalized energy in 2–4 kHz (E2)

8. Normalized energy in 4–6 kHz (E3)

9. Unvoicing percentage in the total cry (UV ratio)

The normalized energy of the signal is defined as the

energy of signal divided by the length of the signal, i.e.,

E ¼ 1

n
jXðxÞj2;

where E is the normalized energy, n is the number of cry

segments and X(x) is the short-time Fourier transform

(STFT) of the signal. The normalized energy of the signal

is calculated for the three sub-bands, namely, (1) 0–2 kHz,

(2) 2–4 kHz and (3) 4–6 kHz (because the data is recorded

at 12 kHz sampling frequency and hence, the maximum

available bandwidth is 6 kHz). The unvoicing regions are
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Fig. 2 Comparison of pitch

(F0) extraction methods

a autocorrelation method and

b modified autocorrelation

method

Table 1 Corpus statistics for infant cry analysis

Class Number of infants

Newborn full term normal birth 45

Newborn pre-term 36

Table 2 Distribution of cry samples of newborn infant’s cries

S. No. Type of cry Age after birth No. of subjects No. of

samples

1. Full term infant’s birth cry (BC) After birth 16 49

2. Premature infant’s cry (PC) \20 days (mostly\10 days of age) 7 50

3. Newborn hunger cry (H) \10 days age 16 30

4. Newborn pain cry (P) \3 months (mostly\1 month) 17 (4 infants (6 cries) are

older than 1 month)

19

5. Newborn cry due to urination (U) \20 days 12 24

6. Newborn cry due to wet diaper (W) \20 days 4 5

7. Normal after birth (N) S. No. 3–6 combined
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identified as the segments where the number of peaks in

the autocorrelation function is less than 6, thereby giving

zero pitch frequency. The sum of frames with zero pitch

values divided by the total number of frames present in the

cry is considered as the unvoicing ratio of the cry signal.

Different cry types defined in Table 2 are analyzed

using these features and analysis of variance (ANOVA)

analysis is used to find the significance of these features in

various infant cry types. The analysis and the results are

given in the next Section.

4 Experimental results

Different cry features are analyzed for the reasons of

crying of an infant for following cases:

1. Full term birth cry vs. premature newborn’s cry

2. Full term birth cry vs. newborn’s pain cry

3. Full term birth cry vs. newborn’s hunger cry

4. Newborn’s pain cry vs. newborn’s hunger cry

5. Newborn’s pain cry vs. newborn’s cry due to wet

diaper

6. Newborn’s pain cry vs. newborn’s cry during passing

the urine

7. Newborn’s cry due to wet diaper vs. newborn’s cry

during passing the urine

8. Newborn’s hunger cry vs. newborn’s cry due to wet

diaper

9. Newborn’s hunger cry vs. newborn’s cry during

passing the urine

10. Newborn’s birth cry vs. newborn’s other reasons of

crying (hunger\wet diaper\passing urine\pain).

The mean values of the above features along with the

standard deviation are given in Table 3.

For the simplification purpose, the analysis is taken

separately for the F0-based features and remaining features.

4.1 Analysis using fundamental frequency (F0)-

based features

From Table 3 and Fig. 3, it can be observed that the

minimum F0, maximum F0 and median of F0 are almost

similar in all the cases. Thus, these features cannot be used

to characterize or discriminate a particular cry type.

However, mean F0 feature is showing differences in some

cry types such as newborn’s birth cry has mean F0 of

436.22 Hz while this parameter is 411.15 Hz for the nor-

mal newborn’s cry. Differences in the hunger cry and pain

cries of the newborns are also observed. In hunger cries,

the mean value of the F0 is 425.19 ± 55 Hz, mean F0 is

387.48 ± 72 Hz for urination cries. Significant differences

are not found in the different features of F0, based on the T
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reason of crying, except in the two cases mentioned above.

In the birth cries as well, these features do not change with

the gestation age (GA). These parameters are almost sim-

ilar for normal full term as well as for premature babies. In

newborn cries, mean F0 lies in the range of 400–600 Hz

(Michelson and Michelson 1999). Thus, the results

obtained here are in agreement with the previous studies.

The ANOVA analysis of the parameters derived from

the F0 contour also suggests the similar results. The results

of ANOVA analysis are given in Table 4 for all the

features. Here, we have considered 95 % confidence

interval in ANOVA analysis which means features which

give p value less than 0.05 are of significance in the

analysis of those particular cry types.

4.2 Analysis using normalized energy-based

features

Analysis is done for various cry types based on normalized

energy-based features. The mean values and standard
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Fig. 3 Boxplot for the F0

features a mean F0 and

b median F0

Table 4 ANOVA analysis of the newborn infant’s cry

S. No. Class Min F0 Max F0 Mean F0 Med. F0 E E1 E2 E3 UV ratio

1. Full term birth vs. premature 0.62 0.52 0.516 0.88 0.0004 0.85 4.08e28 0.0247 6.21e210

2. Full term birth vs. pain 0.0926 0.68 0.117 0.16 0.0129 6.84e205 0.34 0.0016 2.29e27

3. Full term birth vs. hunger 0.24 0.24 0.41 0.69 0.1191 0.017 0.0015 0.256 5.09e28

4. Pain vs. hunger 0.0881 0.668 0.402 0.33 0.0005 0.021 0.0004 0.0027 0.91

5. Pain vs. wet diaper 0.3463 0.55 0.28 0.23 0.81 0.46 0.66 0.4962 0.06

6. Pain vs. urination 0.107 0.82 0.35 0.65 0.0015 0.03 0.0016 0.0042 0.809

7. Wet diaper vs. urination 0.6331 0.404 0.0899 0.127 0.0036 0.0195 0.0023 0.1372 0.22

8. Hunger vs. wet diaper 0.59 0.26 0.3922 0.34 0.0047 0.0103 0.0029 0.18 0.04

9 Hunger vs. urination 0.8976 0.85 0.039 0.11 0.6792 0.97 0.58 0.70 0.70

10. Newborn birth vs. normal 0.589 0.35 0.035 0.14 0.919 4.29e25 0.037 0.57 2.18e29

Bold values indicate that the feature is of prime importance in distinguishing the two cry types considered
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deviations of the features are also mentioned in the

Table 3. From the Table 3, bar plots are drawn for the

energy features to illustrate their importance in the cry of

an infant.

From Fig. 4, it can be observed that normalized energy

of the pain and wet diaper cries are higher than other cry

types. The energy is lowest in the premature infant’s cries.

The energy of full-term birth cries is higher than the pre-

mature infant’s cries. Comparing the distribution of the

energy of the cry signals in the three frequency bands as

shown in Figs. 5, 6 and 7, we can observe that the pain

cries and wet diaper cries have highest energy in all the

sub-bands. Moreover, most of the energy lies in the

2–4 kHz sub-band in all cries. In premature infants, dis-

tribution of energy is higher in lower frequency bands

compared to normal full term infant’s birth cries (as shown

in Fig. 7), where the distribution of energy is higher in the

mid frequency band (2–4 kHz) (as shown in Fig. 8). In

hunger and urination cries, distribution of energy is more in

lower frequency bands (0–2 kHz) compared to pain and

wet diaper cries where energy in 2–4 kHz band is higher.

In the high frequency bands (4–6 kHz), the distribution of

energy is very low for infant’s cries except for pain and wet

diaper cries as shown in Fig. 7.

Results of ANOVA analysis are shown in Table 4. It can

be observed that the normal infant’s birth cries are distinct

from the premature infant’s cries. Because of higher energy

of normal full term infants, we can distinguish their cries

from premature infants, who have low energy in the cries.

The reason of cry can also be identified from the energy

feature. Hunger cries are found distinct from the pain cries

and wet diaper cries are found different from the crying

during the passing of urine. In case of birth cry and pre-

mature infants’ cries, it is observed that the energy dif-

ference is very high and this result in identification of the

cries by auditory analysis as well. The differences in the

two cry patterns are there in the mid- frequency bands. In

the band 2–4 kHz, the energy of the birth cry is higher than

the pre-mature infant’s cry and in other bands, the distri-

bution of energy is same for both the cries. Birth cries of

normal full term infants and pain cries are characterized by

high energy of the signal as shown in Fig. 8a. ANOVA

analysis in the three frequency bands show that the two cry

can be characterized by the distribution of energy in the

low and high frequency bands. The energy is high in low

and high frequency bands in pain cries compared to birth

cries as shown in Fig. 8b, d.

Analysis of hunger, pain, wet diaper and urination cries

shows that distribution of energy is similar in hunger and

urination cries as well as in pain and wet diaper cries.

These two groups of the cries are distinct from each other

on the basis of total normalized energy as well as energy in

their respective bands. However, it is difficult to

characterize differences in hunger and urination cries using

energy-based features. Similar is the case for the classifi-

cation of pain and wet diaper cries, where the energy in all

the bands is almost similar irrespective of the reason of

crying. Normal full-term birth cries are different from the

other reasons of crying such as hunger, pain, wet diaper

and urination named here as normal cry, on the basis of E1

and E2. In birth cries, E2 is higher than the other reasons of

crying. However, in normal crying (due to other reasons of

crying) energy E1 is higher than birth cries of full term

healthy infants as shown in Fig. 9.
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Fig. 4 Bar plot of mean values of normalized energy values for

different cry types. Y-axis represents the normalized energy of the

signal
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Fig. 5 Bar plot of mean values of E1 for different types of cries. Y-

axis represents the normalized value of feature E1
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Fig. 6 Bar plot of mean values of E2 for different types of cries. Y-

axis represents the normalized value of feature E2
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Fig. 7 Bar plot of mean values of E3 for different types of cries. Y-

axis represents the normalized value of feature E3
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4.3 Analysis using unvoicing ratio of the cry

From Fig. 10 and Table 3, we can observe that the birth

cries are characterized by very high unvoicing ratio.

Compared to cries due to hunger, pain, wet diaper and

urination, this higher unvoicing ratio makes birth cries

distinct from other cry types. This feature is found to be

useful in classifying the reason of crying also where

energy-based features are not working. Similar energy-

level of cries can be classified according to the ratio of

crying present in the cry. Pain and wet diaper cries which

have similar energy in all the frequency bands can be

distinguished by using UV ratio analysis. In pain cries, UV

ratio is higher than the wet diaper cries. Similarly, between

wet diaper and hunger cries, hunger cries are found to have

more unvoicing and can be distinguished from cries due to

wet diaper.

5 Summary and discussions

In this study, newborn infants cries are analyzed for the

various reasons of crying such as hunger, pain, wet diaper

and while passing the urine. These are the various reasons

of crying in a newborn. For the analysis of the cries, fea-

tures used are the F0-based features, energy-based features

and the unvoicing ratio of the cry segments. Some

important results from the above analysis are as follows:

1. Birth cry can be characterized by high energy and

high unvoicing ratio. The reason for this is, as soon as

the newborn come to the external world from the

mother’s warm womb; it is his or her response to the

external stimulation. At birth, there is poor regulation

of central nervous system (CNS) over vocal folds

working. At birth cry, lungs open up for the first time

and breaths air instead of sack fluid (Lester Barry

1985).

2. Most of the energy in birth cry is located in the

frequency band 2–4 kHz. However, normal infant’s

cry is having its maximum distribution of energy in

0–2 kHz (i.e., normal, hunger, urinating). Pain cry is

also having the same characteristics of having higher

E2 than E1.

3. Compared to other infant cry types, pain cries and wet

diaper cries have higher energy distribution in 4–6 kHz

frequency range. Higher energy in higher frequency

ranges asks for the attention of the care taker and

informs that a quick action is required. In the other

words, higher frequency content in the cry reflects

urgency of the attention and discomfort to the infants.

4. Characteristics of hunger cry and cry during passing

the urine found to be similar on all the parameters.

Similarly, pain cries and wet diaper cries have similar

characteristics.

Birth Pain

0.2
0.4
0.6
0.8

1
1.2

E

Birth Pain

0.1

0.2

0.3

0.4

E1

Birth Pain
0

0.2

0.4

0.6

E2

Birth Pain
0

0.1

0.2

0.3

E3

(a) (b) 

(c) (d)

Fig. 8 Boxplots of normalized a E, b E1, c E2 and d E3 for birth and

pain cries
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Fig. 9 Boxplots of normalized a E, b E1, c E2 and d E3 for birth and

normal cries
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Fig. 10 Boxplot for the UV

ratio in the cries
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5. Hunger cry and cry during passing the urine can be

distinguished from each other using mean F0 param-

eter. Remaining parameters are same for them.

6. Unvoicing ratio in infants is an indicator of maturity of

infant’s vocal production system. In birth cry, high

unvoicing indicate that, in birth cry vocal folds

movement is very irregular which results in poor

voiced quality of the cry. With the production of the

birth cry, infant’s neural system integrates and within

few days cries become rhythmic.

7. Wet diaper cries can be distinguished from the pain

cries based on the feature of unvoicing ratio. In pain

cries, it is found to be higher than wet diaper cries.

8. Mean F0 in newborn birth cries is higher than the

normal infant’s cries. There are no significant differ-

ences in the birth cries of newborns and those of

premature infants cries. This indicates that until infant

achieves a minimum gestation age (GA), vocal folds

do not vibrate to produce voiced cry sounds.

9. F0- related features are not useful in identifying the

reason of crying in newborns, though it is a useful

parameter in infant’s (more than 1 month of age) cry

analysis for understanding the reason of cry.

In future, authors would like to come up with classifi-

cation of infant cries using these features. In addition, we

would like to direct our efforts towards finding differences

in male and female infant cries.
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