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Abstract In natural language processing, a crucial sub-

system in a wide range of applications is a part-of-speech

(POS) tagger, which labels (or classifies) unannotated

words of natural language with POS labels corresponding

to categories such as noun, verb or adjective. Mainstream

approaches are generally corpus-based: a POS tagger learns

from a corpus of pre-annotated data how to correctly tag

unlabeled data. Presented here is a brief state-of-the-art

account on POS tagging. POS tagging approaches make

use of labeled corpus to train computational trained mod-

els. Several typical models of three kings of tagging are

introduced in this article: rule-based tagging, statistical

approaches and evolution algorithms. The advantages and

the pitfalls of each typical tagging are discussed and ana-

lyzed. Some rule-based and stochastic methods have been

successfully achieved accuracies of 93–96 %, while that of

some evolution algorithms are about 96–97 %.

Keywords Natural language processing � POS tagging �
Hidden markov models � Support vector machine � Neural
networks � Gene expression programming

1 Introduction

Part-of-speech tagging is a basic problem in natural lan-

guage processing (NLP). Potential applications for part-of-

speech (POS) tagging exist in many areas including speech

recognition, speech synthesis, machine translation and

information retrieval (Greene and Rubin 1971; Varile and

Zampolli 1997; Voutilainen 2003; Karkaletsis et al. 2015).

POS tagging tries to tag (or label) each word in a sentence

with the correct POS.

In POS tagging, each word or punctuation mark in the

text is assigned with its tag. Different tagging systems can

use different sets of tags. Typically a tag describes a word

class and some word class specific features, such as number

and gender.

Most POS tagger involves two problems:

(1) Finding the exact tags for each word. This can be

easy if the word is in a word tag lexicon, but if the

word is unknown, this may be tough to do.

(2) Choosing between the possible tags. This is called

syntactic disambiguation, and it has to be solved for

each word that is ambiguous in its POS.

Ambiguous words are very common in most languages,

for example the English word set ‘‘can’’ be either a noun,

an adjective, or a verb.

A lot of work and research has been going on in this area

with great success (Jamatia et al. 2015). Most previous

works applied different kinds of machine learning algo-

rithms to POS tagging. Two factors that determine the tag

of a word are its lexical probability and its contextual

probability (Voutilainen 2003; Sun et al. 2008). Some

approaches have been adopted, in most reports which can

mainly fall into rule-based approaches and statistical

approaches (Greene and Rubin 1971; Sun et al. 2008).
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Rule-based approaches apply language rules to improve

the accuracy of tagging (Brill 1992). However, the monu-

mental manual work required and the need to have quali-

fied people with a working knowledge of linguistics make

this approach too inefficient to be practical.

Another rule-based approach ‘‘Transformation-Based

method’’ was introduced in Ref. (Brill 1995). Brill pio-

neered a rule-based tagging approach using the transfor-

mation-based learning (TBL) methodology where the rules

are not manually constructed, but learned from corpora. The

three-phased process starts with an annotator to create the

initial state by assigning a tag to each word in the corpus.

Statistical tagging uses large amount of data to establish

the language of each situation and neither require knowl-

edge of the rules of the language nor try to deduce them.

Most of these systems are based on Decision Tree

(Magerman 1995), Hidden Markov model (HMM) (Rabi-

ner 1989; Carlberger and Kann 1999; Thede and Harper

1999; Lee et al. 2000; Brants 2000), Maximum Entropy

Model (Ratnaparkhi 1996) or Support Vector Machines

(SVM) (Giménez and Marquez 2004).

Using intelligent computing is another choice. A third

and rather new approach is tagging with neural networks

(Lippmann 1989; Schmid 1994; Marques and Lopes 2001),

genetic algorithms (Araujo 2002) and gene expression

programming (Lv et al. 2010). In the area of speech

recognition neural networks have been used for a decade

now. They have shown performances comparable to that of

HMM systems or even better (Lippmann 1989; Schmid

1994). Evolutionary algorithms are among the most effi-

cient methods to deal with complex optimization problems

(Goldberg 1989). They have been applied to different

issues of natural language processing such as query trans-

lation (Davis and Dunning 1995), inference of context free

grammar (Smith and Witten 1995) and parsing (Araujo

2001; Bernd Bohnet and Joakim Nivre 2012). The POS

tagging model with GA is the use of an evolutionary

algorithm to find the tagging of new sentences and can

achieve an accuracy of 96 % (Araujo 2002).

Gene Expression Programming (GEP) is a revolutionary

member in the family of intelligence computing introduced

by Candida in 2001 (Ferreira 2001). GEP has achieved a

great progress in dressing the problem of machine learning

and unknown things prediction. For the first time lv applied

GEP to POS tagging, and obtained a high accuracy of

97.4 % (Lv et al. 2010).

With these methods, efficient and fast taggers have been

developed. The best reported taggers have attained a high

accuracy of 96–98 %. However, although the percentage is

high, it is not so good.

Taking these figures into account one may think that

POS tagging is a solved and closed problem being this

accuracy perfectly acceptable for most NLP systems. So

why waste time in finding a new tagger with a higher

accuracy? What does an increasing of 0.3 % in accuracy

really mean? We think that there is an important reason for

thinking that there is still work to do in the field of auto-

matic POS tagging:

A corpus may have thousands of sentences, and each

sentence may have an average of around 30 words. The

rate of 97 % means that there is one word tagged in error

per sentence, 100 in a 100-sentence document, and 1 mil-

lion in a corpus with 10,000 documents. Since the POS

tagging is one of the earlier steps in many natural language

processes. Some NLP tasks are very sensitive to POS

disambiguation errors which can be found in the domain of

Word Sense Disambiguation (Wilks and Stevenson 2000)

and Information Retrieval (Krovetz 1997). Starting with an

error in each sentence could be a severe drawback, espe-

cially considering that the propagation of this error could

grow more than linearly.

There are two major problems which keeping tagging

accuracy from 100 %: ambiguous words and unknown

words. The ambiguity problem stems from the fact that the

English word can be a noun, a finite verb or an infinitive.

For example, consider this sentence: ‘We can can the can’

(Voutilainen 2003). The same word can is used in three

different syntactic ways: as an auxiliary, a verb, and a

noun. For a machine to determine what tag goes with

which can is a difficult problem. It is not a difficult prob-

lem for a human. When knowing the word’s context and

the syntax of the sentence, disambiguation ceases to be a

problem (Martinez 2011).

The other obstacle in achieving 100 % accuracy in POS

tagging is the set of words the tagger had not encountered

in its training corpus. This is known as the unknown words

problem. The accuracy rates of the methods mentioned

above are limited to no more than 95 % while dealing with

unknown words. Syntactic parsers, whose dependence on

the output of the tagger is critical, will be stumped when

encountering a word without a tag. Even with these limi-

tations, taggers are being used in information retrieval (IR),

question answering systems, partial parsing, lexical

acquisition, information extraction (IE), and text data

mining (Manning et al. 1999).

2 Tagging methods

This section presents the main approaches which are fre-

quently used for POS-tagging. Of particular relevance are

the exact features which are used by each tagger for the

disambiguation of ambiguous and unknown words, so these

will be treated in some detail. In Sect 2.1, a rule-based

approaches ‘‘Transformation-Based method’’ was intro-

duced and the performance of TBL model was reported.
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HMM and SVM model were analyzed in Sects 2.2 and 2.3

which represent the stochastic method. After that, two

typical evolution algorithms model: Neural Network and

Genetic Expression Programming model were spread out

and discussed in subsection D and F.

2.1 POS tagging with transformation-based

learning

Transformation-based learning tagging is a typical rule-

based tagging where the rules are not manually con-

structed, but learned from corpora. The TBL paradigm as

applied to POS tagging was first described in (Brill 1995).

The TBL method is a machine learning technique which

takes a tagged corpus as input from which it can learn how

to correctly tag a test sample. The tagger learns a set of

rules for assigning tags from the training data which gives

the least possible errors and applies them to test data.

The algorithm relies on the fact that for the task it is

trivial to devise a very simple tagging mechanism which

achieves quite reasonable results. Such a method can be

used to create an initial annotation of the text. Of course

while such an annotation will have a large percentage of

tags correct, there will still be a substantial proportion

which is incorrectly tagged. The TBL algorithm aims to

correct these errors by successively applying rules which

correct such errors based on contextual and word-form-

derived information.

The learning phase follows with the use of a set of

predefined rule (transformation) templates. By instantiating

each template with data from the annotated corpus, a set of

rules is created. Each rule is then applied to the corpus that

has been tagged by the annotator. The output is compared

to the manually annotated corpus, which is considered to

be the ‘truth’. In this step, transformations are learned and

listed. These transformations are applied one at a time to

the output of the annotator and again compared to the truth.

In essence, a single transformation is learned when the

‘learner’ tries every possible transformation, while keeping

a tally of the number of tagging errors after each trans-

formation is tried. The best performing transformation or

rule (i.e., the one that ‘resulted in the greatest error

reduction’) is selected. The learning phase ends when there

are no transformations that would reduce the error beyond

some predefined threshold.

This approach produces results very close to those

which use far more mathematically complex algorithms.

Brill reports an overall accuracy of 96.6 % on the Penn

Treebank WSJ corpus using 900,000 words of training data

(split as 600,000 for learning contextual rules and 350,000

for learning rules for unknown words). The only drawback

of this scheme is the long training time required, since in

each iteration the counts for each possible rule must be

regenerated, as previous rule applications will have prob-

ably changed the score of that rule since counts were last

generated.

One of the most successful approaches to deal with this

problem was that devised by Ngai and Florian (2001),

which vastly reduces the training time with no reductions

in accuracy. The basic idea is to avoid repetition by gen-

erating and storing good and bad counts for each rule ‘‘r’’

once at the beginning, and updating the counts only if they

are modified by the application of another rule.

2.2 Hidden markov model

A HMM (Dan Garrette and Jason Baldridge 2013; Owoputi

et al. 2013) is a typical statistical tagging model that can be

used to solve classification problems that have an inherent

state sequence representation. The model can be visualized

as an interlocking set of states. These states are connected

by a set of transition probabilities, which indicate the

probability of traveling between two given states. A pro-

cess begins in some state, then at discrete time intervals,

the process ‘‘moves’’ to a new state as dictated by the

transition probabilities. In an HMM, the exact sequence of

states that the process generates is unknown (i.e., hidden).

As the process enters each state, one of a set of output

symbols is emitted by the process. Exactly which symbol is

emitted is determined by a probability distribution that is

specific to each state. The output of the HMM is a sequence

of output symbols.

A complete and excellent description of the equations

used in the standard Markov model for part-of-speech

tagging is found in (Charniak et al. 1993). A text of n

words is seen as a sequence of random variables W1…n =

W1W2…Wn, and the corresponding tagging is also a

sequence of random variables T1…n = T1T2…Tn. A par-

ticular sequence of values of W1…n (T1…n) is denoted w1…n

(t1…n). The definition of the tagging problem is then:

f ðw1...nÞ ¼ argmax
t1...n

Pðt1...njw1...nÞ ð1Þ

where the operator ‘‘argmax’’ computes the tagging max-

imizing the probability, according to the model, that word

sequence w1...n is tagged t1...n. Making the two assumptions

(Carlberger and Kann 1999):

Pðwijt1...i;w1...i�1Þ ¼ PðwijtiÞ ð2Þ
Pðtijt1...i�1;w1...i�1Þ ¼ Pðtijt1...i�1Þ ð3Þ

That is, the word itself only depends on its tag, and the

tag only depends on the i-1 preceding tags in the text. The

tagging problem can now be formulated as formulary 4.

f ðw1...nÞ ¼ argmax
t1...n

Xn

i¼1

Pðtijt1...i�1ÞPðwijtiÞ ð4Þ
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An unattractive feature of this formulation is that the

quantities P(wi|ti) are very small and difficult to estimate.

Since the reversed conditional probabilities P(ti|wi) are

much more attractive in this respect, the following is a

plausible alternative:

f ðw1...nÞ ¼ argmax
t1...n

Xn

i¼1

Pðtijt1...i�1ÞPðtijwiÞ ð5Þ

Both of these equations (and in particular, their corre-

sponding first order Markov model equations) have been

used in different stochastic taggers, but in Charniak et al.

(1993), the two equations were compared, and Eq. (1) was

found to be significantly better when tagging texts with

quite a large training text. If all the probabilities are known,

the optimal solution to the tagging problem using Eq. (1) is

most efficiently computed with dynamic programming

using the so called Viterbi algorithm (Viterbi 1967). This

algorithm avoids the polynomial expansion of a breadth

first search by trimming the search tree at each level.

In recent years, different kinds of Markov model had

been adopted in POS tagging. In which two methods are

worth mentioned.

Merialdo (1994) conducted several experiments which

are the use of untagged text in the training of a simple

triclass Markov model. Two approaches in particular are

compared and combined: using text that has been tagged by

hand and computing relative frequency counts, using text

without tags and training the model as a hidden Markov

process, according to a Maximum Likelihood principle.

Training with the tagged corpus used Random Field (RF),

and training with the untagged corpus used maximum

likelihood (ML). Both approaches are used to determine

the probability of a sequence of tags. The ML was done

using the forward–backward (FB) algorithm. In the first

experiment using tagged text, The RF was used for training

and the Viterbi algorithm for tagging. Using 42,000 tagged

sentences (approximately 1 million words) an accuracy of

97 % was reported. In the second experiment, untagged

text was used (40,000 sentences). The training was done

using ML and the tagging using the Viterbi algorithm. The

reported accuracy was around 88.4 %.

The second POS tagger is the Trigrams ‘n’ Tags (TnT)

created by (Brants 2000). The tagger makes use of a

combination of smoothing using context-independent lin-

ear interpolation and word features like suffixes and capi-

talization. He reports 96.6 % accuracy with an added 0.5 %

(97.1 %) accuracy when the model is tested and trained

with data from one annotator; that is, data tagged manually

by one and the same person (Brants 2000). Brants makes a

point of stating that his tagger does as well as maximum

entropy taggers, but faster.

A few other POS taggers based on HMMs have been

proposed in the last 15 years (Rabiner 1989; Carlberger

and Kann 1999; Thede and Harper 1999; Lee et al. 2000).

Although none of them have achieved 100 % accuracy,

several kinds of taggers using HMMs are wildly used in

POS tagging (Yuan Tian and David Lo 2015).

2.3 Support vector machine-based POS tagging

Support vector machines (SVMs) were first applied to POS

tagging in Nakagawa et al. (2001). An SVM is a binary

classification algorithm based on a geometric interpretation

of the feature values for each instance. As detailed in

(Cristianini and Shawe-Taylor 2000), given a set of train-

ing instances each consisting of a vector of binary or

numeric feature values and a true classification y e {-1, 1},

an SVM learns a classification function f(x) which can be

used to classify a test instance with feature vector x. In

binary classification problems, the classification rule is then

sgn (f(x)). The classification rule f(x) is dependent on what

is known as the kernel function, which effectively maps the

data into a higher dimensional feature space allowing the

correct classification of instance which have non-linearly

separable feature values in the original feature space.

Another SVM-based tagger extend binary support vector

machines to cover multiclass classification using a strategy

known as one-per-class binarisation (Giménez and Mar-

quez 2004). A SVM is constructed for each POS which

contains ambiguous lexical items (reportedly 34 for the

Penn Treebank), and in the classification stage, the most

confident prediction from all of the SVMs is selected as the

tag for the word.

The contextual features used in Giḿenez and M‘ar-

quez’s tagger include unigrams, bigrams and trigrams of

words and POS, derived from the tokens appearing in a

context window of two tokens on either side of the target.

POS features for ambiguous words which have not yet been

tagged can be replaced with ambiguity classes. These

nominal features are binarised to act as input to the SVM in

the usual way: a nominal feature with k possible values is

represented by k binary features each of which is true when

the original feature takes one particular value and false

otherwise. The accuracy reported for SVMTool is 97.16 %

for all tokens and 89.01 % for unknown tokens.

2.4 POS tagging with neural networks

In the area of speech recognition neural networks have

been used for a decade now. They have shown perfor-

mances comparable to that of HMM systems or even better

(Lippmann 1989). POS prediction is another area, closer to

POS tagging, where neural networks have been applied

successfully. Nakamura et al. (1990) trained a 4-layer feed-

forward network with up to three preceding POS tags, as

input to predict the word category of the next word. The
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prediction accuracy was similar to that of a trigram based

predictor. Using tile predictor, Nakamura’s tagger is able to

improve the recognition rate of their speech recognition

system from 81.0–86.9 %.

Figure 1 shows the structure of the Net-Tagger without

hidden layer; the arrow symbolizes the connections

between the layers.

In the output layer of the multilayer perceptron network

(MLP), each unit corresponds to one of the tags in the

tagset. The network learns during the training to activate

that output unit which represents the correct tag and to

deactivate all other output units in the trained network, the

output unit with the highest activation indicates which tag

should be attached to the word that is currently processed.

The input of the network comprises all the information

which the system has about the parts of speech of the

current word, the preceding words and the following

words. More precisely, for each POS tag posj and each of

the p ? 1 ? f words in the context, there is an input unit

whose activation inij represents the probability that wordi

has part of speech posj.

For the word which is being tagged and the following

words, the lexical POS probability p(posj|wordi) is all we

know about the part of speech. This probability does not

take into account any contextual influences. So, we get the

following input representation for the currently tagged

word and the following words:

inij ¼ p posjjwordi

� �
; if i� 0 ð6Þ

For tile preceding words, there is more information

available, because they have already been tagged. The acti-

vation values of the output units at the time of processing are

here used instead of the lexieal POS probabilities:

inij tð Þ ¼ outj t þ ið Þ; if i\0 ð7Þ

The Net-Tagger (Schmid 1994) was trained on a 2 mil-

lion word subpart of the Penn-Treebank corpus. Its perfor-

mance was tested on a 100,000 word subpart which was not

part of the training corpus. The training of the tagger took

one day on a Sparcl0 workstation and the tagging of

100,000 words took 12 min on the same machine.

In Table 1, the accuracy rate of the Net-Tagger is

compared to that of a trigram based tagger (Kempe 1993)

and a HMM tagger (Cutting et al. 1992) which were trained

and tested on the same data.

The accuracy of Net-Tagger can achieve a little higher

than that of the trigram tagger and HMM tagger. The

robustness on small training corpora is as good as that of

the HMM tagger. Thus, the Net-Tagger combines advan-

tages of both of these methods. The Net-Tagger has the

additional advantage that problematic decisions between

tags are easy to detect, so that in some cases an additional

tag can be given in the output. In this way, the final deci-

sion can be delayed to a later processing stage, e.g. a

parser. A disadvantage of the presented method may be its

lower processing speed compared to statistical methods.

2.5 POS tagging with GEP

In Lv et al. (2010), Lv introduce a rather new evolutionary

algorithm, GEP, for POS tagging. GEP is similar to GAs

(Araujo 2002) and it differs from GAs mainly in chromo-

some encoding. GEP encodes individuals as chromosomes

and implement them as liner stings with fixed lengths

(Ferreira 2001; Zuo et al. 2002). The separation of geno-

type and phenotype has endowed GEP with more flexibility

and power of exploring the entire search space. The

chromosomes of GEP are simple and linear. It can be

operated by the genetic process easily, and it has the

capability to handle complex problems (Ferreira 2003;

Zhou et al. 2003; Zuo et al. 2004; Jing et al. 2005;

Karakasis and Stafylopatis 2008). GEP has been applied in

the problem of machine learning and unknown things

prediction and has achieve a great progress (Ferreira 2003;

Zhou et al. 2003; Zuo et al. 2004; Jing et al. 2005;

Karakasis and Stafylopatis 2008).

A GEP tagger is able to learn from a training corpus to

produce an expression which observes the pattern of the

Fig. 1 The structure of the net-tagger

Table 1 The comparison of taggers

Method Accuracy (%)

Net-tagger (Goldberg 1989) 96.22

Trigram tagger (Kempe 1993) 96.06

HMM tagger(Cutting et al. 1992) 94.24
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tags in corpus. Chromosome is generated from the tags in

trained corpus. The evolution procedure remains the dif-

ferent contexts of each tag. The table can be computed by

the training text and recording the different contexts and

the number of occurrences of each of them for every tag in

the training text.

Figure 2 shows the scheme of GEP training. The evo-

lution process is run for each sentence in the text to be

tagged. Evolution steps aim to maximize the total proba-

bility of the tagging of the sentences in the test corpus. The

process finishes either if the fitness deviation lies below a

threshold value or if the evolutionary process has been

running for a maximum number of generations.

Evaluation of the performance of GEP has been under-

taken, compared to various taggers. They compare the

results on brown corpus of several different versions of

intelligent algorithms: neural networks (Lippmann 1989;

Schmid 1994; Marques and Lopes 2001) or genetic algo-

rithms (Araujo 2002). They also give the performance of

HMM method on Brown Corpus (Brants 2000).

The details of the brown corpus are as follows: the

number of the words is 1,000,000; the number of sentences

is 50,000; the number of tags is 80. The brown corpus was

segmented into two parts, the training set of 90 % and the

test set of 10 %, in the way that each sentence in the test set

was extracted from every ten sentences.

From Table 2, it can be figured out that comparing with

GA, neural network and HMM taggers the advantage of

GEP can be obtained in a very efficient way in pos tagging.

GEP tagger comes from GAs tagger, but is more efficient

than it. The main disadvantage of GEP tagger is that it will

spend a little time and spaces for data training just as GA

and neural networks tagger do (Table 2). Accuracy rate on

brown corpus.

3 Other taggers

The following are some other taggers worth be listing:

• Decision trees and statistical decision tree taggers

produce output that is easier to interpret. A classical

supervised algorithm of the machine learning field has

been applied (Magerman 1995), in order to automati-

cally acquire a language model for POS tagging based

on statistical decision trees. This learning algorithm

uses more complex contextual information than usual

n-gram models and it can easily accept other kinds of

information. However, critical for this type of tagger is

the use of the correct set of questions in the decision

part of the process (Màrquez et al. 2000).

• Finite state transducers seems a natural formalism to

use for POS tagging which requires the sequential

processing of inputs. In the context of POS tagging, the

states represent the sequence of tags, and the output

from the states is the words associated with the tags.

See Sánchez-Villamil et al. (2004) for details.

• GAs tagger (Araujo 2002) use a genetic algorithmwhich,

after the ‘‘evolution’’ of sequences of the taggers for the

words in the text, select the best individual as solution.

Gas tagger has developed a genetic algorithm that works

with a population of potential tagging for each input

sentence in the text. The evolution of individuals is based

on a training table composed of contexts extracted from

an in advance labelled training text.

4 Conclusions

POS tagging is a well-studied problem in natural language

processing, in which the aim, given a natural language text,

is to a label each word in that sample with a POS tag such

as noun, verb or adjective. There are three main types of

approaches to POS tagging: rule-based, stochastic methods

and intelligent algorithm.

The feasibility of training computers to perform this task

has been due to the development of annotated corpora, for

example, the Brown corpus, Bank of English and the Penn

Treebank. The annotations in a corpus provide ‘word–tag’

pairs which can be used to build a model and provide the

expectations of which tag would accompany word wi in the

target corpus.

A typical rule-based method, TBL tagging is analysed.

The TBL method uses the rules learned from the corpus

and is a machine learning technique which takes a tagged

corpus as input from which it can learn how to correctly tag

Training
text

Training
table GEP Test text

Tagged text

Fig. 2 Genetic expression programming train scheme

Table 2 Comparison on brown corpus

Tagger type Accuracy rate (%)

GEP 97.40

Neural networks 96.26

GA 96.0

HMM 96.62
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a test sample. It reports an overall accuracy of 96.6 % on

the Penn Treebank WSJ corpus using 900,000 words of

training data.

Stochastic methods, more than rule-based methods, have

used annotated corpora for POS tagging.

Two of the well understood and used stochastic methods

were discussed: Markov models and SVM methods. These

approaches and many others have performed with accura-

cies ranging from 96–97 %. It is believed that this is the

level of accuracy that can be attained with the present

annotated corpora due to annotation inconsistencies.

Rather new approaches with intelligent algorithm then

are introduced. Net-Tagger and GEP tagger are detailed.

Neural network and gene expression programming have

shown their advantages on dressing the problem of machine

learning and unknown things prediction. When they are

applied on POS tagging, they can achieve a rather high

accuracies (96.22 % for Net-Tagger, 97.4 % for GEP

tagger).

As intelligent computing algorithms for POS tagging, a

disadvantage of the intelligent methods may be their lower

processing speed compared to statistical methods for their

preceding training cost. In the light of the high speed of

present computer hardware, however, this does not seem to

be a serious drawback.

A number of opportunities exist for future research. It is

possible that some of the modifications added which kept

performance at an approximately constant level would

actually result in better performance in downstream

applications such as chunk parsing. Another area of

potential research in this domain is that if unlexicalised

tagging were considered, it is possible that new distinctions

in the tag set could be far more productive, since the

baseline tagger would have more valuable information.
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