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Abstract This paper examines the performance of auto-

matically classifying five tone choices (i.e., falling, rising,

rising-falling, falling-rising, and neutral) of Brazil’s into-

nation model. We tested two machine learning classifiers

(neural network and boosting ensemble) in two configura-

tions (multi-class and pairwise coupling) and a rule-based

classifier. Three sets of acoustic features built from the TILT

and Bézier pitch contour models and a new four-point pitch

contour model we introduced here were investigated. Tone

choices are one of the key elements of Brazil’s prosodic

intonation model. We found the rule-based classifier, which

was built on our four-point model, achieved better results

than the others with an accuracy of 75.1 % and a Cohen’s

kappa coefficient of 0.73. This research proves that it is

possible to classify tone choices with an accuracy reaching

close to the percentage of agreement between two human

analysts. The findings further concluded that our four-point

model was better for classifying Brazil’s tone choices than

both of the TILT or Bézier models.

Keywords Tone choice classification � Machine

learning � Brazil’s prosodic intonation model � ToBI � TILT
model � Bézier model

1 Introduction

The pattern of stress and intonation in a language is called

prosody. There are many application domains that might

benefit from automatic detection of prosody. It can be

utilized in text-to-speech synthesis to model intonation for

computerized and robot speech. Shriberg et al. (2005) and

Escudero-Mancebo et al. (2014) demonstrated that proso-

dic models improve speaker identification and verification.

Irregular prosody is one of the symptoms of autism and

other related developmental disorders (Frith and Happé

1994; Fine et al. 1991; Paul et al. 2005; Shriberg et al.

2001; McCann and Peppé 2003). Computer programs that

detect irregular prosody automatically have been employed

to diagnose autism (Xu et al. 2009; Ringeval et al. 2011;

Oller et al. 2010; Diehl & Paul 2012; Van Santen et al.

2010). Suprasegmental measures derived from the ele-

ments of Brazil’s model have been shown to explain half of

the variance in oral proficiency and comprehensibility

ratings of non-native speakers (Kang et al. 2010; Kang and

Wang 2014). A number of studies have concluded that the

inclusion of prosodic elements enhances automatic speech

recognition (Bocklet and Shriberg 2009; Hämäläinen et al.

2007; Litman et al. 2000; Ostendorf 1999).

This study examines automatic detection of tone choice

which is one of the fundamental elements of Brazil’s

(1997) model of prosody (see Sect. 2 for further details on

Brazil’s model). The purpose of this paper is to determine

the best machine learning algorithm and the associated

acoustic feature set, for classifying tone choice. We ana-

lyzed the accuracy and j of two machine learning classi-

fiers (neural network and boosting ensemble) in two

configurations (multi-class and pairwise coupling) and a

rule-based classifier. We tested three sets of acoustic fea-

tures created from the TILT and Bézier models and a new

four-point model we have introduced in this paper. Then,

we explained how we decided on the classifiers and

acoustic feature sets to test. We also described the methods

employed to determine the best machine learning algorithm

and the best acoustic feature set for classifying the tone
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choice of a termination prominent syllable. Finally, after

presenting the results, we compared the current findings

with those of other research in the field of speech science.

2 Brazil’s intonation model

Prosody is described by a variety of speech models. Bra-

zil’s (1997) model and Pierrehumbert’s (1980) model are

two that are used often in the fields of linguistics and

applied linguistics. Pierrehumbert’s model is often utilized

to model prosody for synthesized speech in text-to-speech

applications (Wennerstrom 2001). Brazil’s model is fre-

quently applied to language teaching (Cauldwell 2012).

Using Brazil’s model is an innovative aspect of the current

study because as far as we know it has not been applied to

computational linguistics before. Brazil’s model defines

pitch concord in an interactive dialog between two persons.

Pitch concord matches the relative pitch of the key (first)

and termination (last) prominent syllables between two

speakers. For instance, high pitch on the termination of one

speaker’s statement is matched with a high pitch on the key

of the next speaker’s statement. Likewise, a mid termina-

tion is paired with a mid key. Pitch concord is a powerful

predictor of speaking proficiency in non-native speakers

(Pickering 1999). If we assume the goal of computational

linguistics is more human-like speech production and

interaction, then it is necessary to explore and adopt a

model with a more thorough interpretation of intonation at

a discourse (i.e., dialog) level.

The basis of Brazil’s theory is the tone unit. Brazil

explains a tone unit as a portion of a discourse that a lis-

tener can distinguish as having a rising and falling pitch

pattern that is distinctive from those of otherwise alike tone

units having other patterns of pitch. Every tone unit has one

or more prominent syllables, which can be identified from

three properties of the syllable: pitch (fundamental fre-

quency in Hz), duration (length in seconds), and intensity

(amplitude in dB) (Chun 2002). Brazil asserts (as others

have) that the importance of prominence is on the syllable,

and not the word. Brazil differentiates prominence from

lexical stress. He explains that lexical stress denotes the

syllable inside content words that is stressed; however,

prominence is the use of emphasis to add more meaning,

importance, or contrast to words in a discourse. Accord-

ingly, a syllable that is typically not stressed (e.g., a

function word) may be accented to make it prominent.

Conversely, a syllable that is customarily stressed lexically

may be delivered with additional pitch, duration, or

intensity to highlight its meaning, importance, or contrast.

Every tone unit contains a key (first) and a termination

(last) prominent syllable. If a tone unit has a single

prominent syllable, then it is considered to be equally the

key and termination prominent syllable. The termination

syllable is also referred to as the tonic syllable. The relative

pitch of the key and termination prominent syllables and

the tone choice of the termination prominent syllable define

the tone unit’s intonation pattern. Brazil postulated three

evenly balanced scales of relative pitch: low, mid, and

high, and five tone choices: falling, rising, rising-falling,

falling-rising, and neutral as illustrated in Fig. 1.

The Brazil model covers both constrained and uncon-

strained speech in monologues and dialogs. Thus, the ele-

ments of the model (e.g., tone choice) apply equally to all

types of speech.

3 Related research

In this section, we will review related research to identify

techniques that can be applied to solving the problem of

classifying tone choice. Brazil’s (1997) model has not been

exploited in the field of computational linguistics. How-

ever, there is a large body of research on classifying ToBI

Pitch Accents and Boundary Tones from which we iden-

tified candidate machine learning classifiers and acoustic

feature sets for our experiments. The tones and break

indices (ToBI) is a system for labeling prosodic events in

speech (Wightman et al. 1992; Beckman and Elam 1997).

ToBI defines three prosodic events: pitch accents, bound-

ary tones, and break indices. Of these, pitch accents and

boundary tones are the most closely related to Brazil’s tone

choices. Pitch accents serve as cues for prominence, while

boundary tones serve as cues for intonational phrasing.

Although pitch accents are cues for prominence, there are

usually more pitch accents in a dialog than there are Bra-

zil’s prominent syllables. Boundary tones match closely

with Brazil’s concept of key prominent syllables (i.e.,

initial boundary tones and phrasal tones) and termination

prominent syllables (i.e., final boundary tones). ToBI

defines eight types of pitch accents and nine types of

boundary tones. There is not a one-to-one correspondence

between Brazil’s tone choices and either pitch accents or

boundary tones. Nonetheless, the methods of classifying

them and Brazil’s tone choices are similar.

We compared several ToBI experiments involving pitch

accents and boundary tones based on the accuracy to

determine the candidate classifiers and feature sets we

utilized in our experiments. We applied three constraints to

the experiments we considered: (1) The experiment had to

involve multiple speakers because single speaker classifi-

cation is somewhat trivial and our goal is speaker inde-

pendent recognition of Brazil’s tone choices; (2) the

experiment had to classify with only acoustic features; and

(3) the experiment had to include five or more classes since

there are five tone choices.
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There are three pitch contour models, which have been

employed in the ToBI investigations. In the TILT model,

intonation is characterized by parameters representing

amplitude, duration, and tilt, where tilt is a measure of the

shape of the pitch contour (Taylor 2000). The Bézier model

is an approximation of pitch contours with Bézier functions

(Escudero-Mancebo and Cardeñoso-Payo 2007). The

Quantized Contour Model (QCM) (Rosenberg 2010a, b)

quantizes the pitch contour of a word in the time and pitch

domains, generating a low-dimensional representation of

the contour. Each of these models produces a set of

acoustic features, which can be classified with machine

learning.

Table 1 presents the accuracy of several recent ToBI

experiments along with what was classified (pitch accent or

boundary tones), the number of classes classified out of the

total number of classes, the number of speakers out of the

total number of speakers, the pitch contour model, and

machine learning classifier. Also indicated is whether the

experiment met two of our constraints, i.e., multiple

speakers and five or more classes. None of the experiments

met our constraint of acoustic features only. All of the

experiments made use of the Boston University Radio

News Corpus (Ostendorf et al. 1995), except Li et al.

(2010). Their corpus data was a set of 20 male and 20

female speakers from an L2 English speech corpus read by

native Mandarin speakers. The speakers were asked to read

29 prompted sentences and instructed to read with a rising

or falling intonation, according to an indicator next to each

sentence.

AuToBI is a tool for automatic ToBI annotation

(Rosenberg 2010a, b). Rosenberg reported on the perfor-

mance of AuToBI in classifying pitch accents and bound-

ary tones utilizing various classifiers and features in 2010

and then again in 2012. In 2010, he described the operation

of AuToBI on the Boston Directions Corpus and the

Columbia Games Corpus. Utilizing SVMs, AuToBI clas-

sified pitch accents of the spontaneous portion of the

Boston Directions Corpus with a combined error rate of

0.284, intonational phrase final tones with 55.0 % accu-

racy, and intermediate phrase ending tones with 68.6 %.

He did not give the pitch accent classification results on the

Columbia Games Corpus, but stated the intonational phrase

final tones were classified with 35.34 % accuracy, whereas

intermediate phrase ending phrase accents were classified

with 62.21 % accuracy. In 2012, Rosenberg examined a

number of features and classifiers to improve the capability

of AuToBI to classify pitch accents and boundary tones. He

found the AdaBoost classifier implemented with weka did

the best at classifying pitch accents (60.91 % accuracy) and

that the Random Forest classifier implemented with weka

was the best at classifying pitch accent (47.44 %) and pitch

accent/boundary tones (74.47 %).

From the experiments that met our constraints, we chose

the neural network and decision tree classifiers as candi-

dates for our experiments. We augmented the decision tree

classifier with boosting. Boosting is a machine learning

ensemble method designed to improve the performance of

decision tree classifiers. We did not choose to use a Naı̈ve

Bayesian classifier because of all machine learning tech-

niques Naı̈ve Bayesian classifiers are typically the weakest

(Caruana and Niculescu-Mizil 2006). We also selected two

classification configurations: multi-class and pair-wise

coupling. In the multi-class configuration, the classifier

makes a 1-of-n choice. Multi-class classifiers generally

function worse than binary classifiers. Pairwise coupling is

a method of breaking a multiple classification problem into

a number of more accurate binary classification problems
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(Hastie and Tibshirani 1998). For feature set models, we

picked the TILT and Bézier model. We did not select the

Quantized Contour Model because the low number of

classes in Rosenberg (2010a, b) experiment may have over-

inflated the accuracy of it compared with the TILT and

Bézier model experiments.

In addition to the candidate classifiers and feature sets

that we identified from the ToBI experiments, we also

considered another classifier and another pitch contour

model. The rule-based classifier is further detailed in

Sect. 4.3. The other pitch contour model, which we call the

four-point model in this paper, was derived for the rule-

based classifier. This pitch contour model is the general-

ization of any pitch contour, i.e., every pitch contour has a

first, last, minimum, and maximum pitch point. Sec-

tion 4.2.1 contains a more in-depth description of the four-

point model.

4 Experimental procedure

In summary, in this paper we have compared the accuracy

and j of two candidate machine learning classifiers (neural

network and boosting ensemble) in two configurations

(multi-class and pairwise coupling) in automatically clas-

sifying the five tone choices of Brazil’s intonation model.

For each of the four combinations of classifier and con-

figuration, we have considered three sets of features

derived from three pitch contour models: TILT, Bézier, and

our four-point model. We have also made comparisons of

these twelve combinations with our rule-based classifier,

which is founded on the four-point model.

4.1 TIMIT corpus

The DARPA TIMIT Acoustic–Phonetic Continuous Speech

Corpus (TIMIT) of read speech provides speech data for the

acquisition of acoustic–phonetic knowledge and for the

development and evaluation of automatic speech recogni-

tion systems (Garofolo et al. 1993). TIMIT contains a total

of 6300 sentences, 10 sentences spoken by each of 630

speakers from 8 major dialect regions of the United States.

The text material in the TIMIT prompts consists of two

dialect sentences, 450 phonetically-compact sentences, and

1890 phonetically-diverse sentences. The dialect sentences

were intended to reveal the dialect of the speakers and were

read by all 630 speakers. The phonetically-compact sen-

tences were designed to provide a good coverage of pairs of

phones, with extra occurrences of phonetic contexts thought

to be either of particular interest or difficult. Each speaker

read five of these sentences and each text was spoken by

seven different speakers. The phonetically-diverse sen-

tences were selected to maximize the variety of allophonic

contexts found in the texts. Each speaker read three of these

sentences, with each sentence being read only by a single

speaker. The corpus includes hand corrected start and end

times for the phones, phonemes, pauses, syllables, and

words.

The TIMIT corpus is composed of constrained (i.e.,

short read sentences) monologic speech. We chose the

TIMIT corpus over others (e.g., Boston University Radio

News Corpus) because of the large number of speakers and

dialects spoken.

The TIMIT corpus includes definitions for 60 phones.

The TIMIT phones are used by other corpora. For our

experiments, we utilized a subset of the corpus consisting

of 84 speakers speaking four dialects. There were 825

utterances in our subset containing 10,512 syllables of

which 994 of those were terminating prominent syllables.

Table 2 presents the distribution of speakers by gender and

dialect.

We augmented the corpus by identifying the prominent

syllables and tone choices on the termination (last)

prominent syllables in the experimental subset using the

syllable demarcations provided with the corpus. The

prominent syllables and tone choices were identified by a

trained linguist who coded them both by listening to the

audio files and by using Praat (Boersma and Weenink

2014), a computerized speech analysis program, to confirm

the movement of the pitch contour. Approximately, ten

percent of the samples were analyzed by a second trained

linguist to confirm the consistency of the coding. The inter-

rater reliability between the two linguists was 85 to 87 %,

which is a satisfactory rate found in other similar studies

(e.g., Kang 2010) utilizing Brazil’s (1997) prosody model.

The two linguists revised any discrepancies and continued

coding the data until there were no more discrepancies. The

first linguist then finished coding the rest of the speech files

alone. This method of annotation has been employed as a

reliable labeling technique extensively in other applied

linguistics studies (Kang et al. 2010; Kang and Wang 2014;

Pickering 1999). The linguist identified the tone choice of

994 terminating prominent syllables in the speech samples.

The distribution of tone choices is depicted in Table 3.

Table 2 Distribution of TIMIT speakers in this research by gender

and dialect

Dialect Male Female Total

New England 7 4 11

Northern 18 8 26

North Midland 23 3 26

South Midland 5 16 21

Total 53 31 84

Int J Speech Technol (2016) 19:95–109 99

123



Initially the analysts examined the pitch contours with

the Multi-Speech and Computerized Speech Laboratory

(CSL) Software (KayPENTAX 2008), while the computer

analyzed them using Praat (Boersma and Weenink 2014).

We discovered significant differences between the pitch

contours displayed by the two. This discrepancy resulted in

substantial disagreement between the tone choices classi-

fied by the computer and those by the human expert. In

addition, further differences in pitch contour were found

even between various versions of Praat. More differences

were identified between the same versions of Praat running

on different computers. Maryn et al. (2009) also reported

this difference among Multi-Speech and CSL Software and

Praat. They declared that pitch and intensity values were

not comparable. Amir et al. (2009) also noted this dis-

crepancy and added that the findings from Multi-Speech

and CSL Software and Praat should not be combined. To

ensure these variations did not affect our results, the ana-

lyst re-conducted the tone choice annotations that were

utilized to train the classifiers using the same version of

Praat of which the computer made use.

4.2 Parameterization of the F0 contours

We investigated three sets of classification features, each

derived from a different model of the pitch contour: four-

point model, TILT model (Taylor 2000), and a model pro-

posed by Escudero-Mancebo and Cardeñoso-Payo (2007),

which consists of Bézier parameters. The pitch contour was

extracted with Praat (Boersma and Weenink 2014).

4.2.1 Four-point model features

The four-point model is of our own design, which we are

proposing here. The four-point model has two sub-models

as depicted in Fig. 2: rise-fall-rise and fall-rise-fall.

The rise-fall-rise sub-model is applied if the maximum

pitch point is earlier in time than the minimum pitch point;

the fall-rise-fall sub-model is applied if the minimum pitch

point is earlier in time than the maximum pitch time. The

features for the sub-models are built on the following four

points (from which the model derives its name): first is the

pitch of the first point in the pitch contour (Hz); last is the

pitch of the last point in the pitch contour (Hz); max is the

maximum pitch in the pitch contour (Hz); and min is the

minimum pitch in the pitch contour (Hz). The features for

the rise-fall-rise sub-model are first-rise (r1), first-fall (f1),

and second-rise (r2) and they are calculated as follows:

r1 ¼ max� first ð1Þ
f1 ¼ max� min ð2Þ
r2 ¼ last � min ð3Þ

The features for the fall-rise-fall sub-model are first-fall

(f1), first-rise (r1), and second-fall (f2) and they are cal-

culated as follows:

f1 ¼ first � min ð4Þ
r1 ¼ max� min ð5Þ
f2 ¼ max� last ð6Þ

We apply this model because it is the generalization of

any pitch contour; i.e., every pitch contour has a first, last,

minimum, and maximum pitch point. In some cases, some

or all of the four points might coincide. For example, the

maximum may also be the first point. Theoretically, the

classifiers should determine the tone choice by the signif-

icance or insignificance of the rises and falls. The signifi-

cance of the rises and falls is determined during the

classifier training. For instance, as depicted in Fig. 3, in the

Table 3 Distribution of tone

choices
Tone Choice Count

Fall 432

Rise 141

Rise-Fall 50

Fall-Rise 37

Neutral 334

)zH( h cti P

Dura�on (sec)

Pi
tc

h 
(H

z)

Dura�on (sec)

first point

maximum point

minimum point

last point
first point

maximum point

minimum point

last point

Fig. 2 Four-point model sub-models: rise-fall-rise (left) and fall-rise-fall (right)
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rise-fall-rise sub-model, if all the rises and falls are

insignificant, then the tone choice is neutral. If r1 is

insignificant, f1 is significant, and r2 is insignificant, the

tone choice is fall.

Table 4 specifies the truth table for all possible combi-

nations of significant and insignificant rise and falls, which

are illustrated in Fig. 3. In the last row of Table 4, all of the

rises and falls are significant so the tone choice could be

either fall-rise or rise-fall. In these two cases, the tone

choice of the last two significant rise and fall was applied,

i.e., f1 and r2 for the rise-fall-rise sub-model and r1 and f2

for the fall-rise-fall sub-model.

4.2.2 TILT model features

TILT is one of the more popular models for parameterizing

pitch contours (Taylor 2000). The model was developed to

automatically analyze and synthesize speech intonation. In

the model, intonation is represented as a sequence of

events, which are characterized by parameters representing

amplitude, duration, and tilt. Tilt is a measure of the shape

of the event, or pitch contour. A popular public domain

text-to-speech system, Festival (The Centre for Speech

Technology Research 2014) applies this model to synthe-

size speech intonation. The model is illustrated in Fig. 4.

Three points are defined: start of the event, the peak (the

highest point), and the end of the event.

Each event is characterized by five RFC (rise/fall/con-

nection) parameters: rise amplitude (difference in pitch

between the pitch value at the peak and at the start, which
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Fig. 3 Examples of how the significance of the rises and falls determines the tone choice

Table 4 Truth table for all possible combinations of significant and

insignificant rise and falls; 0 = rise/fall is insignificant (i.e., it is less

than a threshold); 1 = rise/fall is significant (i.e., it is more than a

threshold)

Rise-fall-rise sub-model Fall-rise-fall sub-model

r1 f1 r2 Tone Choice f1 r1 f2 Tone Choice

0 0 0 Neutral 0 0 0 Neutral

0 0 1 Rise 0 0 1 Fall

0 1 0 Fall 0 1 0 Rise

0 1 1 Fall-rise 0 1 1 Rise-fall

1 0 0 Rise 1 0 0 Fall

1 0 1 Rise 1 0 1 Fall

1 1 0 Rise-fall 1 1 0 Fall-rise

1 1 1 Fall-rise 1 1 1 Rise-fall
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is always greater than or equal to zero), rise duration

(distance in time from start of the event to the peak), fall

amplitude (pitch distance from the end to the peak, which

is always less than or equal to zero), fall duration (dis-

tance in time from the peak to the end), and vowel

position (distance in time from start of pitch contour to

start of vowel). The TILT representation transforms four

of the RFC parameters into three TILT parameters:

duration (sum of the rise and fall durations), amplitude

(sum of absolute values of the rise and fall amplitudes),

and tilt (a dimensionless number which expresses the

overall shape of the event). The TILT parameters are

calculated as follows:

s ¼ start of event ð7Þ
p ¼ peak the highest pointð Þ ð8Þ
e ¼ end of event ð9Þ

arise ¼ difference in pitch between the pitch value

at the peak pð Þ and at the start sð Þ; � 0

ð10Þ

drise ¼ distance in time from start sð Þof the event

to the peak pð Þ
ð11Þ

afall ¼ pitch distance from the end eð Þ to the

peak pð Þ; � 0
ð12Þ

dfall ¼ distance in time from the peak pð Þ to the end eð Þ
ð13Þ

d ¼ duration ¼ drise þ dfall ð14Þ

a ¼ amplitude ¼ arisej j þ afall
�
�

�
� ð15Þ

t ¼ tilt ¼ arisej j � jafallj
2 arisej j þ jafallj
� �þ drise � dfall

2 drise þ dfall
� � ð16Þ

c ¼ pitch contour ¼ fi; fiþ1; . . .; fiþNf g ð17Þ

fi ¼ frequency Hzð Þ of ith point in pitch contour ð18Þ
fv 2 c ð19Þ
v ¼ index of the beginning of the vowel ð20Þ

In our experiments, duration (d), amplitude (a), tilt (t),

and vowel position (v) were the input features to the

classifiers.

4.2.3 Bézier model features

Escudero-Mancebo and Cardeñoso-Payo (2007) proposed

an alternative to the TILT model that is constructed from

the approximation of the pitch contours with Bézier func-

tions as illustrated in Fig. 5.

Similarly we used Bézier functions to approximate the

pitch contour of the terminating prominent syllable, where:

P ¼ pitch contour ð21Þ
Pi ¼ fi; tið Þ ¼ F0 Hzð Þ at time sð Þti ð22Þ
n ¼ Pj j � 1 ð23Þ
b ¼ number ofB�ezier points ¼ 4 ð24Þ

x ¼ 0;
1

b� 1
;

2

b� 1
; 1

� �

ð25Þ

j ¼ 1; 2; 3; 4ð Þ ð26Þ

B xj
� �

¼ pj; xj
� �

ð27Þ

pj ¼ B�ezier approximation of F0 Hzð Þ at time sð Þxj
ð28Þ

BðxÞ ¼
Xn

i¼0

bi;nðxÞPi; 0 � x� 1 ð29Þ

bi;n xð Þ ¼ n

i

� �

xið1� xÞn�i
i ¼ 0; . . .; n ð30Þ

)zH( hctiP

Dura�on (sec)

start

peak

end

Fig. 4 Parameters of the RFC model in the TILT model of a pitch

contour

Fig. 5 Example of the Bézier function fitting stylization from

Escudero-Mancebo and Cardeñoso-Payo (2007)
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The resulting four Bézier parameters (p1, p2, p3, and p4)

are the features on which the tone choice classifiers are

trained.

4.3 Classifiers

We tested two standard machine learning classifiers to

classify tone choices: neural network and boosting. We

employed the Matlab patternnet function with ten hidden

nodes and the Levenberg–Marquardt optimization network

training function to implement the neural network classifier

(MathWorks 2013). Boosting is an ensemble classifier that

combines the outcomes of weak classifiers (typically

decision trees) to improve their accuracy. Boosting was

implemented with the Matlab fitensemble function using

the AdaBoostM1 (binary classifier) or AdaBoostM2 (multi-

class classifier) booster and 100 decision tree learners (i.e.,

weak classifiers).

We also utilized a rule-based classifier that implemented

the four-point model truth table specified in Table 4 above.

The thresholds for significance versus insignificance of

each rise and fall (i.e., rise-fall-rise sub-model: r1, f1, and

r2; fall-rise-rise sub-model: f1, r1, and f2) were determined

during training. A simple brute-force method of trying

every combination of unique rises and falls in the training

data as thresholds determined the set of thresholds (THrfr
* ,

THfrf
* ) that maximized the accuracy as follows:

TC ¼ 1; 2; 3; 4; 5f g corresponding to tone choices

rise; neutral; fall; fall-rise; rise-fallf g
ð31Þ

T ¼ human classified tone choices for training dataf g
ð32Þ

Trfr ¼ human classified tone choices for trainingf
data for rise-fall-rise sub-modelg

ð33Þ

Tfrf ¼ human classified tone choices for trainingf
data for fall-rise-fall sub-modelg

ð34Þ

T ¼ Trfr [ Tfrf ð35Þ

; ¼ Trfr \ Tfrf ð36Þ

N ¼ Trfr
�
�

�
� ð37Þ

M ¼ Tfrf
�
�

�
� ð38Þ

Trfr ¼ t1; . . .; tNf g ð39Þ

Tfrf ¼ t1; . . .; tMf g ð40Þ

ti 2 TC ð41Þ
tr1i ¼ r1 for i-th training sample ð42Þ
tf1i ¼ f1 for i-th training sample ð43Þ
tr2i ¼ r2 for i-th training sample ð44Þ

tf2i ¼ f2 for i-th training sample ð45Þ
Frfr ¼ tr11; tf11; tr21ð Þ; . . .; tr1N ; tf1N ; tr2Nð Þf g ð46Þ

Ffrf ¼ tf11; tr11; tf21ð Þ; . . .; tf1M; tr1M; tf2Mð Þf g ð47Þ

; ¼ Frfr \ Ffrf ð48Þ

r1rfr ¼ tr11; . . .; tr1Nf g ð49Þ

f1rfr ¼ tf11; . . .; tf1Nf g ð50Þ

r2rfr ¼ tr21; . . .; tr2Nf g ð51Þ

R1rfr ¼ !9r1rfr ð52Þ

F1rfr ¼ !9f1rfr ð53Þ

R2rfr ¼ !9r2rfr ð54Þ

I ¼ R1rfr
�
�

�
� ð55Þ

J ¼ F1rfr
�
�

�
� ð56Þ

K ¼ R2rfr
�
�

�
� ð57Þ

r1i 2 R1rfr ð58Þ

f1j 2 F1rfr ð59Þ

r2k 2 R2rfr ð60Þ

krfr Frfr; r1i; f1j; r2k
� �� �

¼ rule-based classifier

applying rise-fall-rise sub-model of Table 4
ð61Þ

krfr Frfr; r1i; f1j; r2k
� �� �

2 TC ð62Þ

f1frf ¼ tf11; . . .; tf1Mf g ð63Þ

r1frf ¼ tr11; . . .; tr1Mf g ð64Þ

f2frf ¼ tr21; . . .; tr2Mf g ð65Þ

F1frf ¼ !9f1frf ð66Þ

R1frf ¼ !9r1frf ð67Þ

F2frf ¼ !9f2frf ð68Þ

F ¼ F1frf
�
�

�
� ð69Þ

G ¼ R1frf
�
�

�
� ð70Þ

H ¼ F2frf
�
�

�
� ð71Þ

f1f 2 F1frf ð72Þ

r1g 2 R1frf ð73Þ

f2h 2 F2frf ð74Þ

kfrf Ffrf ; f1f ; r1g; f2h
� �� �

¼ rule-based classifier

applying fall-rise-fall sub-model of Table 4
ð75Þ

kfrf Ffrf ; f1f ; r1g; f2h
� �� �

2 TC ð76Þ

X ¼ rule-based classifier tone choices forf
training samples for a sub-modelg

ð77Þ
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Y ¼ human tone choices for training samplesf
for a sub-modelg

ð78Þ

Z ¼ Xj j ¼ Yj j ð79Þ
xi 2 X ð80Þ
yi 2 Ys ð81Þ

ai ¼
1; xi ¼ yi
0; xi 6¼ yi

�

ð82Þ

A X; Yð Þ ¼ Accuracy ¼
PZ

i¼1 ai

Z
ð83Þ

TH�
rfr ¼ arg max1� i� I;1� j� J;1� k�K

A krfr Frfr; r1i; f1j; r2k
� �� �

; Trfr
� �� 	 ð84Þ

TH�
frf ¼ arg max1� f �F;1� g�G;1� h�H

A kfrf Ffrf ; f1f ; r1g; f2h
� �� �

; Tfrf
� �� 	 ð85Þ

4.4 Classifier configurations

We analyzed two different configurations of the neural

network and boosting ensemble classifiers: multi-class and

pairwise coupling. We employed fivefold cross-validation

in each of the experiments to tune the parameters of the

machine learning classifiers (i.e., training) and then test

them. The method for determining the classifier outputs is

described below for each combination of classifier and

configuration.

4.4.1 Neural network multi-class

The multi-class neural network provides five outputs, one

for each of the possible tone choices. The outputs are real

numbers in the range from zero to one. The output with the

highest value is selected as the tone choice. There is one

multi-class neural network for the TILT model; one for the

Bézier; and one for each of the four-point model sub-

models.

4.4.2 Boosting ensemble multi-class

The multi-class ensemble provides one output, which is

from the set {1, 2, 3, 4, 5} corresponding to the set of tone

choices {rise, neutral, fall, fall-rise, rise-fall}. There are

four multi-class ensembles; one for the TILT model; one

for the Bézier; and one for each of the two four-point

model sub-models.

4.4.3 Neural network pairwise coupling

The neural network pairwise coupling configuration con-

sists of ten neural networks trained to classify each

combination of tone choices: rise versus neutral, rise

versus fall, rise versus fall-rise, rise versus rise-fall,

neutral versus fall, neutral versus fall-rise, neutral versus

rise-fall, fall versus fall-rise, fall versus rise-fall, and fall-

rise versus rise-fall. There are ten neural networks for the

TILT model; ten for the Bézier; and ten for each of the

four-point model sub-models. The output of each classi-

fier is a real number between zero and one. The outputs

are treated as probabilities. The probabilities are com-

bined as follows and the one with the highest probability

is the tone choice selected.

T ¼ 1; 2; 3; 4; 5f g corresponding to tone choices

rise; neutral; fall; fall-rise; rise-fallf g
ð86Þ

t 2 T ð87Þ

oi;j ¼ output of classifier trained to

classify tone choice i vs j
ð88Þ

oi;j 2 R ð89Þ

0 � oi;j � 1 ð90Þ

p1 ¼ Pr tone choice ¼ riseð Þ ¼ or;n � or;f � or;fr � or;rf
ð91Þ

p2 ¼ Pr tone choice ¼ neutralð Þ
¼ on;f � on;fr � on;rf � 1� or;n

� �

ð92Þ

p3 ¼ Pr tone choice ¼ fallð Þ
¼ of ;fr � of ;rf � 1� or;f

� �

� 1�on;f
� �

ð93Þ

p4 ¼ Pr tone choice ¼ fall - riseð Þ
¼ ofr;rf � 1�or;fr

� �

� 1�on;fr
� �

� 1�of ;fr
� �

ð94Þ

p5 ¼ Pr tone choice ¼ rise - fallð Þ
¼ 1�ofr;rf

� �

� 1�or;rf
� �

� 1�on;rf
� �

� 1�of ;rf
� �

ð95Þ

t� ¼ arg max1� t� 5pt: ð96Þ

4.4.4 Boosting ensemble spairwise coupling

The boosting ensemble pairwise coupling configuration

consists of ten boosting ensembles trained to classify each

combination of tone choices: rise versus neutral, rise versus

fall, rise versus fall-rise, rise versus rise-fall, neutral versus

fall, neutral versus fall-rise, neutral versus rise-fall, fall

versus fall-rise, fall versus rise-fall, and fall-rise versus

rise-fall. There are ten ensembles for the TILT model; ten

for the Bézier; and ten for each of the four-point model

sub-models. The output of each classifier is from the set {1,

2, 3, 4, 5} corresponding to the set of tone choices {rise,

neutral, fall, fall-rise, rise-fall}. For example, the output of

the rise versus neutral classifier would be either 1 or 2. The

accuracy of the classifier classifying the training data cor-

rectly is treated as the probability that the classifier output
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is correct. The probabilities are combined as follows and

the one with the highest probability is the tone choice

selected.

T ¼ 1; 2; 3; 4; 5f g corresponding to tone choices

rise; neutral; fall; fall-rise; rise-fallf g
ð97Þ

oi;j ¼ output of classifier trained to classify

tone choice i vs j
ð98Þ

oi;j 2 T ð99Þ

ai;j ¼ accuracy of classifier trained to

classify tone choice i vs. j
ð100Þ

Xi;j ¼ tone choices for training samples fromf
classifier classifying tone choice i vs jg

ð101Þ

Yi;j ¼ tone choices for training samples fromf
human classifying tone choice i vs jg

ð102Þ

Zi;j ¼ Xi;j

�
�

�
� ¼ Yi;j

�
�

�
� ð103Þ

xi 2 Xi;j ð104Þ

yi 2 Yi;j ð105Þ

bi ¼
1; xi ¼ yi
0; xi 6¼ yi

�

ð106Þ

ai;j ¼
PZ

i¼1 bi

Z
ð107Þ

t 2 T ð108Þ

pðoi;j; ai;j; tÞ ¼
ai;j; oi;j ¼ t

1� ai;j; oi;j 6¼ t

�

ð109Þ

p1 ¼ Pr tone choice ¼ riseð Þ
¼ p or;n; ar;n; 1

� �

� p or;f ; ar;f ; 1
� �

� p or;fr; ar;fr; 1
� �

� p or;rf ; ar;rf ; 1
� �

ð110Þ

p2 ¼ Pr tone choice ¼ neutralð Þ
¼ p or;n; ar;n; 2

� �

� p on;f ; an;f ; 2
� �

� p on;fr; an;fr; 2
� �

� p on;rf ; an;rf ; 2
� �

ð111Þ

p3 ¼ Pr tone choice ¼ fallð Þ
¼ p or;f ; ar;f ; 3

� �

� p on;f ; an;f ; 3
� �

� p of ;fr; af ;fr; 3
� �

� p of ;rf ; af ;rf ; 3
� �

ð112Þ

p4 ¼ Pr tone choice ¼ fall-riseð Þ
¼ p or;fr; ar;fr; 4

� �

� p on;fr; an;fr; 4
� �

� p of ;fr; af ;fr; 4
� �

� p ofr;rf ; afr;rf ; 4
� �

ð113Þ

p5 ¼ Pr tone choice ¼ rise-fallð Þ
¼ p or;rf ; ar;rf ; 5

� �

� p on;rf ; an;rf ; 5
� �

� p of ;rf ; af ;rf ; 5
� �

� p ofr;rf ; afr;rf ; 5
� �

ð114Þ

t� ¼ arg max1� t� 5pt ð115Þ

4.5 Experimental design

We employed fivefold cross-validation in each of the

experiments. The 84 speakers were randomly allocated to

folds. Speakers were randomly allotted to folds instead of

the utterances to guarantee that training and testing on the

identical speaker did not prejudice the trials. Thirteen

experiments were conducted: one for each combination of

the two classifiers (neural network and boosting ensemble),

two configurations (multi-class and pairwise coupling), and

three sets of features (from the TILT, Bézier, four-point

models), plus one experiment for the rule-based classifier.

5 Results

In 13 experimental setups, we examined the performance

of combinations of three classifiers in two configurations

and three sets of features in automatically classifying the

tone choice of a termination prominent syllable. We cal-

culated accuracy and Cohen’s kappa coefficient (j) (Cohen
1960) to evaluate the thirteen approaches of classifying

tone choice. Accuracy is calculated as follows:

Htest ¼ human tone choices for test samplesf g ð116Þ
Mtest ¼ machine tone choices for test samplesf g ð117Þ
N ¼ Mtestj j ¼ Htestj j ð118Þ
hi 2 H ð119Þ
mi 2 M ð120Þ

ai ¼
1; mi ¼ hi
0; mi 6¼ hi

�

ð121Þ

Accuracy ¼
PN

i¼1 ai

N
ð122Þ

Cohen’s kappa coefficient (j) is calculated as follows:

Pr að Þ ¼ relative observed agreement between

human and machine ¼ Accuracy
ð123Þ

T ¼ 1;2;3;4;5f g corresponding to tone choices

rise; neutral; fall; fall-rise; rise-fallf g
ð124Þ
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t 2 T ð125Þ

bt;i ¼
1; hi ¼ t

0; hi 6¼ t

�

ð126Þ

ct;i ¼
1; mi ¼ t

0; mi 6¼ t

�

ð127Þ

Pr hi ¼ tð Þ ¼
PN

i¼1 bt;i

N
ð128Þ

Pr mi ¼ tð Þ ¼
PN

i¼1 ct;i

N
ð129Þ

Pr eð Þ ¼ probability of chance agreement

between human and machine
ð130Þ

Pr eð Þ ¼
Y5;N

t¼1;i¼1
bt;i

Y5;N

t¼1;i¼1
ct;i

þ
Y5;N

t¼1;i¼1
ð1� bt;iÞ

Y5;N

t¼1;i¼1
ð1� ct;iÞ ð131Þ

j ¼ Pr að Þ � PrðeÞ
1� PrðeÞ ð132Þ

Table 5 displays the accuracy and Cohen’s kappa

coefficient (j) of the three feature models: four-point,

TILT, and Bézier; using two classifiers: neural network and

boosting; in two configurations: multi-class and pairwise

coupling. It also presents these metrics for the rule-based

classifier. The accuracy and Cohen’s kappa coefficient (j)
are the mean of the five folds.

The rule-based classifier, which is built on our four-point

model, classified better than the others with an accuracy of

75.1 % and a Cohen’s kappa coefficient of 0.73 (bolded in

Table 5). We believe this happened because the four-point

model, on which the rule-based classifier is founded, is a

more general model of pitch contour than either the TILT or

Bézier models. Our initial hypothesis was that a more

general model was needed to model the more complex pitch

contours of Brazil’s tone choices.

From a model perspective, our four-point model was the

best with a mean classifier accuracy of 74.1 % and a mean

classifier j of 0.71, followed by the Bézier model (71.0 %,

0.68) and the TILT model (67.4 %, 0.65). The TILT model

may have functioned poorly because it did not account for

Brazil’s fall-rise tone choice. From a machine learning

classifier point of view, the boosting ensemble was better

than the neural network with a mean classifier accuracy of

71.6 versus 69.9 % and a mean j of 0.69 versus 0.67.

The findings of the multi-class configuration versus the

pairwise coupling configuration were mixed. The multi-

class configuration worked better for the neural network in

all models. It also achieved better results with the multi-

class boosting ensemble when our four-point model was

employed. However, the pairwise coupling configuration

improved more in terms of accuracy and j than the multi-

class configuration for the other two models with the

boosting ensemble.

6 Discussion

The study evaluated two machine learning classifiers (i.e.,

neural network and boosting ensemble) in two configura-

tions (i.e., multi-class and pairwise coupling) in automati-

cally classifying the five tone choices of Brazil’s intonation

model. For each of the four combinations of classifier and

configuration, we considered three sets of features drawn

from three pitch contour models: TILT, Bézier, and our

four-point model. We have also compared these twelve

combinations with our rule-based classifier which is

established on the four-point model. We assessed the per-

formance in terms of accuracy and Cohen’s kappa

coefficient.

The outcomes of our study provide evidence that a

computer can classify tone choices of terminating

Table 5 Accuracy and Cohen’s

kappa coefficient (j) for
different feature models,

classifiers, and configurations

Feature Model Classifier Configuration Accuracy (%) j

Four-point Rule-based 75.1 0.73

Neural network Multi-class 74.0 0.72

Pairwise coupling 72.4 0.70

Boosting Multi-class 74.8 0.70

Pairwise coupling 74.0 0.72

TILT Neural Network Multi-class 66.1 0.63

Pairwise coupling 64.1 0.61

Boosting Multi-class 68.6 0.66

Pairwise coupling 70.7 0.68

Bézier Neural Network Multi-class 72.5 0.70

Pairwise coupling 70.0 0.67

Boosting Multi-class 69.9 0.67

Pairwise coupling 71.7 0.69
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prominent syllables with an accuracy of 75.1 % and a j of

0.73 when compared with a human expert. There is no

other research on classifying Brazil’s tone choices auto-

matically to make a comparison at the current stage. Thus,

our work sets the standard for future efforts.

At the same time, the agreement between a computer

and a human found in our study can be compared with the

inter-rater agreement between two humans. A common

inter-rater agreement measure is Cohen’s kappa coefficient.

Escudero-Mancebo et al. (2014) noted that in the current

state of art for ToBI research, j ranges from 0.51 (Yoon

et al. 2004) to 0.69 (Syrdal and McGory 2000). Breen et al.

(2012) reported j values of 0.52 and 0.77 for RaP inves-

tigations. The Rhythm and Pitch (RaP) system is a method

of labeling the rhythm and relative pitch of spoken English.

It is an extension of ToBI that permits the capture of both

intonational and rhythmic aspects of speech (Dilley and

Brown 2005), based on a tone interval theory proposed by

Dilley (2005). In our experiments, as can be seen in

Table 5, j was generally higher than this, ranging from

0.61 to 0.73. Cross-corpora comparisons are dubious, but in

this case we are comparing the human annotation of cor-

pora using two different models of prosody, ToBI and RaP,

with our computer annotation using the Brazil model.

Although not conclusive, it does show that our computer

annotation is in the range of inter-rater agreement between

two humans.

Our study can also be contrasted with other research

from the perspective of models, classifiers, and configura-

tion. From a model view point, our four-point model

functioned the most successfully, followed by the Bézier

model, and the TILT model. The Bézier model performed

better than the TILT model in other studies, too (Escudero-

Mancebo and Cardeñoso-Payo 2007; González-Ferreras

et al. 2012). From the perspective of a machine learning

classifier, the boosting ensemble classifies tone choices

better than the neural network. González-Ferreras et al.

(2012) also support this view that the boosting ensemble is

better than a neural network for classifying ToBI boundary

tones and pitch accents. Unlike our mixed findings of the

multi-class configuration versus the pairwise coupling

configuration, after testing the TILT and Bézier models,

González-Ferreras et al. (2012) reported that pairwise

coupling is better at classifying ToBI boundary tones and

pitch accents than multi-class in every case.

7 Conclusions

These experiments assessed the performance, in terms of

accuracy and Cohen’s kappa, of two machine learning

classifiers (i.e., neural network and boosting ensemble) in

two configurations (i.e., multi-class and pairwise coupling)

of classifying the five tone choices of Brazil’s intonation

model with three sets of features extracted from three pitch

contour models: TILT, Bézier, and our four-point model.

These twelve combinations of classifiers, configurations,

and feature sets were also contrasted with our rule-based

classifier which is founded on the four-point model.

The findings reported in this paper offer empirical evi-

dence that a computer can classify terminating prominent

syllable tone choices specified in Brazil’s (1997) model of

intonation with an accuracy approaching that of two human

analysts. They also demonstrate that our four-point model

is a better one for Brazil’s tone choices than either the

TILT or Bézier model. Automatic classification of tone

choices is an important achievement because tone choices

are one of the key elements of Brazil’s model. Brazil’s

model deals with the intonational and rhythmic aspects of

speech and explains how they convey meaning that goes

beyond what the sentences communicate (Brazil 1997).

Accordingly, automatically classifying tone choices is

another vital step in automatically deducing the intona-

tional and rhythmic facets of speech.

Examining other classifiers (e.g., linear classifiers, sup-

port vector machines, lazy learning algorithms, random

forests, meta-algorithms) as a means of improving tone

choice classification is an area for further study. Since

TIMIT is only read speech we cannot generalize the results

to unconstrained, conversational, or any other type of

speech. Thus, another area to explore is the use of other

training corpora containing spontaneous, dialogic, and

other types of speech.

The results reported in this paper reaffirm the potential

of investigating Brazil’s (1997) intonation discourse theory

as a means of better comprehending natural discourse in

different environments that we found in earlier work.
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Hämäläinen, A., Boves, L., de Veth, J., & Bosch, L. T. (2007). On the

utility of syllable-based acoustic models for pronunciation

variation modelling. EURASIP Journal on Audio, Speech, and

Music Processing, 2007(2), 3.

Hastie, T., & Tibshirani, R. (1998). Classification by pairwise

coupling. The Annals of Statistics, 26(2), 451–471.

Kang, O. (2010). Relative salience of suprasegmental features on

judgments of L2 comprehensibility and accentedness. System,

38(2), 301–315.

Kang, O., Rubin, D., & Pickering, L. (2010). Suprasegmental

measures of accentedness and judgments of language learner

proficiency in oral English. The Modern Language Journal,

94(4), 554–566.

Kang, O., & Wang, L. (2014). Impact of different task types on

candidates’ speaking performances and interactive features that

distinguish between CEFR levels. ISSN 1756-509X, 40.

KayPENTAX. (2008). Multi-Speech and CSL Software. Lincoln Park,

NJ: KayPENTAX.

Levow, G. A. (2005). Context in multi-lingual tone and pitch accent

recognition. In INTERSPEECH (pp. 1809–1812).

Li, K., Zhang, S., Li, M., Lo, W. K., & Meng, H. (2010). Detection of

intonation in L2 English speech of native Mandarin learners. In

2010 7th International Symposium on Chinese Spoken Language

Processing (ISCSLP) (pp. 69–74). IEEE.

Litman, D. J., Hirschberg, J. B., & Swerts, M. (2000). Predicting

automatic speech recognition performance using prosodic cues.

In Proceedings of the 1st North American chapter of the

association for computational linguistics conference (pp.

218–225). Association for Computational Linguistics.

Maryn, Y., Corthals, P., De Bodt, M., Van Cauwenberge, P., &

Deliyski, D. (2009). Perturbation measures of voice: a compar-

ative study between Multi-Dimensional Voice Program and

Praat. Folia Phoniatrica et Logopaedica, 61(4), 217–226.

MathWorks, Inc. (2013). MATLAB Release 2013a. [Computer

program]. Retrieved February 15, 2013.
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