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Abstract The pitch is a crucial parameter in speech and

music signals. However, due to severe noisy conditions,

missing harmonics, unsuitable physical vibration, the

determination of pitch presents a great challenge when

desiring to get a good accuracy. In this paper, we propose a

method for pitch estimation of speech andmusic sounds. Our

method is based on the fast Fourier transform (FFT) of the

multi-scale product (MP) provided by a feature auditory

model of the sound signals. The auditorymodel simulates the

spectral behaviour of the cochlea by a gammachirp filter-

bank, and the out/middle ear filtering by a low-pass filter. For

the two output channels, the FFT function of the MP is

computed over frames. The MP is based on constituting the

product of the speech and music wavelet transform coeffi-

cients at three scales. The experimental results show that our

method estimates the pitch with high accuracy. Besides, our

proposed method outperforms several other pitch detection

algorithms in clean and noisy environments.

Keywords Pitch estimation � Speech signal � Music

sound � Auditory model � Multi-scale product

1 Introduction

Pitch detection contains important information about

speech, and music sounds in the area of speech analysis,

speech recognition, prosody analysis, music information

retrieval, chord recognition, automatic music transcription,

and onsets detection (Gavat et al. 2002; Klapuri 2004; Bello

et al. 2005; Roy et al. 2011). The acoustic music sounds are

often quasi-periodic, and they present imperfect periodicity

in different ways. Generally, pitch is the subjective per-

ception of a note, and every pitched musical instrument can

produce individual notes with well detectable fundamental

frequencies (F0 s) (Muller et al. 2011).

There have been many methods for pitch determination.

In most cases, the methods of determination are based on

the analysis of spectrum, psychoacoustic model of human

hearing or a combination of them. Comparative studies of

various methods are presented by Hess (Hess 1992; Klapuri

2000), who compared the methodologies and performance

of each method.

In the time domain, many methods of pitch estimation

apply the autocorrelation function (ACF) (Brown and

Zhang 1991), and average magnitude difference function

(AMDF) (Li et al. 2006). Another significant variety, for

instance, the approach introduced by De cheveigné (De

Cheveigné and Kawahara 2002), implements a modified

autocorrelation to analyze the speech signal and applies an

operation of subtraction using in AMDF, a parabolic

interpolation and a cumulative mean normalization, to

lessen error rate. However, the methods based on ACF and

AMDF tend to determine the two times of true period, and

it produces a sub-harmonic error in the spectral domain.

In the frequency domain, the commonly used transfor-

mation is the spectrum, and the cepstrum. The one con-

straint of these techniques, however, is that it attributes the

same weight to all harmonic frequencies, which will be

tending to twice octave error (Klapuri 2000). In addition,

methods based on spectrum autocorrelation have been

proposed, such as logarithmic spectrum ACF (Kunieda

et al. 1996). Unfortunately, a major limitation of these
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methods is that they will result in twice octave error when

predominant harmonics exist. As the above declared

methods deal with harmonic position estimators. Examples

of other more efficient harmonic position estimators are

sub-harmonic to harmonic ratio (SHR) by (Sun 2000), and

sawtooth waveform method (SWIPE) by (Camacho and

Harris 2008).

To recapitulate, existence of salient harmonics, missing

harmonics, and other different challenges finding in speech

and music signals render the efficient estimation of F0 very

hard. Furthermore, the above presented methods are not

able to determinate the F0 of imperfect harmonic sound

signals by the fact that due to the non-stationarity and

quasi-periodicity of the speech sound, the physical vibra-

tion, the harmonics of the signals produced from the

musical instrument cannot be spaced with correct interval,

but marginally shift from perfect positions.

Although a large number of fundamental frequency

determination algorithms have been described in the state-

of-the art for clean sound, fundamental frequency deter-

mination from a noisy sound has been essayed only by a

few researchers (Shimamura and Kobayashi 2001; Shahnaz

et al. 2007; 2008). However, in practical applications, a

fundamental frequency determination task has to be per-

formed using only the given noisy sound. For example, for

speech separation in noisy environments, extraction of

fundamental frequency of the dominant speech is required

as it can be used as a cue for separation of concurrent

speech. In (Mahmoodzadeh et al. 2012), experiments have

been carried out as an attempt to separate signal from a

background noise based on computational auditory scene

analysis (CASA). The fundamental frequency determina-

tion algorithm employed in (Mahmoodzadeh et al. 2012)

for determining the concurrent time–frequency region of

the desired sound is based on instantaneous amplitude

comb filtering and can determinate the F0 of vowels in

noisy environments but the estimates are not accurate

enough.

In the weighted autocorrelation method (Shimamura and

Kobayashi 2001), using the same periodicity property of

AMDF and ACF, the ACF is weighted by the reciprocal of

the AMDF in order to emphasize the true pitch-peak for

noisy sound. Since, under a high level of noise, the global

maximum of AMDF or the global minimum of ACF may

occur at a lag that is a multiple or sub-multiple of true pitch

period, in the weighted ACF, the peaks at non-pitch loca-

tions may be wrongly emphasized more than those at the

true pitch location. This causes inaccurate fundamental

frequency determination at a low SNR. It is worth men-

tioning that most of the fundamental frequency determi-

nation algorithms reported determination performance for

sound corrupted by white noise only. In general, funda-

mental frequency determination performance would

deteriorate significantly in a scenario, where sound is

corrupted by a realistic noise (Prasanna and Yegna-

narayana 2004), but there is a growing demand of many

practical applications in which it is important to determi-

nate fundamental frequency accurately from the sound

corrupted by the realistic noise, such as multi-talker babble

noise with very low levels of SNR.

The objective of this work is to present a robust

approach that effectively overcomes the limitations of the

existing fundamental frequency determination under severe

noisy conditions and simultaneously be efficient in the

clean speech and monophonic music.

To this end, this work presents an efficient method for

pitch estimation of speech and music signals based on

spectrum of multi-scale product of gammachirp auditory

filter-bank (GAMMA-MP). The proposed paper is based on

the auditory structure characteristics, and depends on both

the spectral behaviour of the cochlea and the out/middle ear

filtering. The out/middle ear filtering is designed by a low-

pass filter. The cochlear filter is designed by a gammachirp

filter-bank. The F0 is next deduced in each channel by cal-

culating its fast Fourier transform of multi-scale product

analysis. Then, we extract the best candidate as the F0
determination. In this paper, the F0 is determined in all

voiced segments of the evaluated databases. So, the study of

the voiced decision methods is the objective of future work.

The rest of the paper is organized as follows. Section II

provides the details of the approach. Experimental evalu-

ations and discussions are described in Section III. Finally,

Section IV concludes the research work and presents future

directions.

2 The pitch estimation method of speech
and music sounds

The overall approach is decomposed on two stages. A

block diagram of the proposed approach is depicted in

Fig. 1. In the first stage, a sound signal is analyzed by a

gammachirp filter bank. This processing results in a

decomposition of the sound signal into a time frequency

map. Then, the output sound is split into two channels, the

channel below 1 kHz is filtered by a low-pass filter and the

high-channel sound is half-wave rectified and low-pass

filtered. In the second stage, we compute the multi-scale

product in frequency domain in each channel to extract the

fundamental frequency F0.

2.1 First stage: Auditory feature extraction

The auditory filter modeling corresponds to the mathe-

matical model which tends to simulate the psychophysical

aspects and basic perceptual of the human auditory
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characteristics (Lyon et al. 2010). The concept of funda-

mental frequency has a complex relationship to physical

properties of the speech and makes reference to auditory

perception. Thus, it is natural to apply approaches that

assume human perception. The peripheral auditory model

using time-domain processing of periodicity properties can

simulate many features of pitch perception which are often

considered to be more central (Meddis and O’Mard 1997).

First, the sound signal passes through a second-order

low-pass filter as an out-middle ear filtering (Van Immer-

seel and Martens 1992). The main motivation of using an

out-middle ear filter is to increase the strength of high

frequency harmonics. As a result, the harmonics have rel-

atively the same amplitude. It’s based on the transfer filter

below:

H xð Þ ¼ x2
0

x2
0 þ 0:33x0xþ x2

ð1Þ

where fr ¼ 2p=x0
is the resonance frequency equal to

4 kHz.

Then, we apply a gammachirp filter-bank to simulate the

sound processing in the cochlea. It is an extension of the

gammatone filter with a frequency modulation factor. Also,

it allows to determine an approximation of the basilar

membrane frequency of the cochlear (Patterson et al. 2003;

Irino and Patterson 2006). The impulse response of a

gammachirp filter is defined by the equation below:

g tð Þ ¼ Atk�1e�2pmERB p0ð Þtej2pp0tþjr ln tð Þþju ð2Þ

where t[ 0, r, p0, u, and A are the chirp rate, the

asymptotic frequency, the phase and the amplitude,

respectively. The parameters k, m designate the gamma

envelope. Based on the work of (Tolonen and Karjalainen

2000), the sound is separated into two channels, below and

above 1 kHz. The low-channel sound is low-pass filtered

and the high-channel sound is half-wave rectified and low-

pass filtered. The high channel is phase-sensitive since it

follows the amplitude envelope of the sound in the fre-

quency band above 1000 Hz. Thus, all phase-sensitivity in

our approach is inherently caused by the high channel. This

is different from the standard system where all channels are

phase-sensitive since they follow the envelope of the sound

in the corresponding frequency band.

The ERB(p0) is the equivalent rectangular bandwidth

(ERB) of the gammachirp auditory filters centred around

p0(Wang and Brown 2006). The ERB is presented by the

following equation:

ERB pð Þ ¼ 24:7þ 0:108p: ð3Þ

The ERB-rate scale describes an logarithmic function

which associates the frequency value to the ERBs number.

ERB – rate (p) is presented as follow:

ERB� rate pð Þ ¼ 21:4 log10
4:37

1000
pþ 1

� �
: ð4Þ

The low and high channels have a different time

response. Since high frequency channel has a faster

response than low frequency channel, a channel alignment

is needed in time domain.

2.2 Second stage: Multi-scale product in frequency

domain

In recent years, the wavelet transform (WT) has been

successful used in many speech processing applications.

WT can analyze time–frequency characteristics of sound,

and can track abrupt changes of sound. So it becomes a

powerful tool for F0 determination. The WT shows whether

details of a certain scale are introduced in a sound and

quantifies their respective participation. Generally, the WT

is meant to offer good frequency resolution at low fre-

quencies. They have sets of properties, including: null

moments to determine the useful information, uncorrelated

coefficients to lessen the temporal correlation, and compact

support to ensure local analysis. The quadratic spline

wavelet (QSW) is introduced by Mallat (1999). An

FFT 

Low-pass filtering 
at 1kHz 

MP 
Pitch candidates 
MP 

F0 determination 

FFT 

Out/middle ear filtering 

Gammachirp filter-bank 

Half-wave 
rectification 

mp mp 

Framing (Hann window) 

High-pass 
at 1kHz 

Low-pass 
filtering 

 Sound signal 

Fig. 1 Block diagram of the proposed method for pitch estimation of

sound signal
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appropriately chosen wavelet for discontinuity detection is

a wavelet that is the second derivative of a smoothing

function corresponding to the QSW. We denote a shifted

and dilated version of the QSW by:

W2jþ1;i xð Þ ¼
ffiffiffiffiffiffiffiffi
1=2 j

q
W x� i

�
2 j

� �
ð5Þ

where i, and 2j?1 represent the translation and the dilatation

factors respectively.

We have used the Dyadic WT. It is the special case of

Continuous WT.

The dyadic WT is described by the equation below:

W2jþ1;if xð Þ ¼ f �W2 j;i xð Þ ð6Þ

where j = -1, 0, and 1.

By using multi-scale products (mp), the extrema due to

abrupt transitions are reinforced because of their correlated

presence across scales while those due to noise are sup-

pressed because noise is mostly confined to lower scales.

This idea was first applied to magnetic resonance images

by Xu (1994). In our paper, we integrate information of

some scales to extract feature points.

The MP consists of multiplication of WT coefficients of

the function f(i, sj)at some successive dyadic scales as

follows:

mpðiÞ ¼
Yi
j ¼1

W f ði; sjÞ ð7Þ

where Wf ði; sjÞ is the WT of the sound signalfat scale 2j.

The Fig. 2 recapitulates the steps of the mp.

In each output filter channel, the product mp(i) is divi-

ded into frames with a sliding analysis window d(i).

For the second step, the product mp(i)is divided into

frames by multiplication with a sliding analysis window

d(i):

mpdði; lÞ ¼ mpðiÞdði� jDiÞ ð8Þ

where Di is the overlap, and l is the window index.

Then, we compute the Fast Fourier transform (FFT) of

multi-scale product for each channel.

The effect of the FFT of mp analysis is shown in

Figs. 3 and 4.

The FFT function of each weighted block mpd is given

by:

MPl
dðkÞ ¼

XN
i¼1

mpd i; lð Þe�j2pik=N : ð9Þ

After this, we measure the harmonic summation on the

FFT of multi-scale product (HSMP) in the lth frame. It

consists to summarize the order of dominance for all har-

monic elements at each frame.

The HSMP for the lth peak of the FFT of MP is defined

as:

HSMPðpci; tÞ ¼
Xmpci\pmax

m¼1

MP h mpcið Þ; tð Þ ð10Þ

where pci is a pitch candidate, mpciis the frequency of its

mth harmonic element, and pmax is equal to 1700. The

function h(mpci) transfers mpci to the center frequency of

the nearest FFT of MP bin. Then, we find the frequency

that maximizes the HSMPðpci; tÞ as the fundamental

frequency.

Figure 3 shows a clean voiced speech signal followed

by its multi-scale product (mp) and the fft of mp.

Figure 4 shows a monophonic music signal followed by

its multi-scale product (mp) and the fft of mp.

The Figs. 3 and 4 show the efficiency of the MP method

for pitch estimation. In Fig. 3c and 4c, the obtained signal

shows spectral rays. The first element corresponds to the

fundamental frequency F0. The following rays correspond

to the fundamental frequency harmonics.

Figure 5 represents a noisy voiced speech sound cor-

rupted by a White noise at -5 dB followed by its multi-

scale product (mp) and the fft of mp.

The mp in Fig. 5b lessens the noise effects leading to an

FFT function with clear maxima giving the F0 determina-

tion (see Fig. 5c).

3 Experiments ad evaluation

Performance evaluation of our approach for pitch estima-

tion in the case of Keele database (Meyer et al. 1995) and

monophonic music uses the Musical Instruments Samples

(University of lowa 2012). The Keele database contains 10

speakers sampling frequency of 20 kHz. It contains a ref-

erence fundamental frequency determination and voiced/

unvoiced segmentation of 25.6 ms segments with 10 ms

overlapping. The reference fundamental frequency deter-

mination of Keele database is based on a simultaneously

recorded speech and signal of the laryngograph signal. The

F0 of all compared methods are determined in each refer-

ence voicing frame.

The Musical Instruments Samples consists of 4000

notes, and one hundred and 50 min of sound composed by

mp 

WT s2 WT s3WT s1

Product 

Sound signal 

Fig. 2 Block diagram of the sound signal multi-scale product
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twenty different musical instruments. All the music sound

signals were sampled at a rate of 44.1 kHz and down-

sample it to 10 kHz. The notes are given in sequence

employing a chromatic scale. Each document usually

covers one octave and is identified with the name of the

instrument, the initial and final notes. The documents of

musical database were separate into files containing a

single note without silence. For this purpose, we use an

automatic segmentation method, and then testing the

quality of the segmentation (Ben Messaoud et al. 2015).

We apply the gross pitch error (GPE) criteria and the

root mean square error (RMSE) measures to evaluate the

pitch estimation performance. A GPE is identified when

the estimated fundamental frequency value is 20 %

higher or lower than the reference one. The RMSE is

defined as square root of the average squared estimation

error with estimation errors which are smaller than the

GPE threshold of 20 Hz. It is used for evaluate the speech

sound.

For all compared approaches, we use a default pitch

search range is 50–800 Hz (30–1700 Hz) respectively for

speech signal (music sound). Each of the methods was

asked to give a fundamental frequency determinate every

millisecond, using the default settings of the method. In

Fig. 3 Pitch estimation of speech sound. a Speech sound frame, b multi-scale product analysis (mp), c FFT of mp

Fig. 4 Pitch estimation of music sound. a Music sound frame, b multi-scale product analysis (mp), c FFT of mp
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this work, we follow the recommendations suggested by

the authors of the algorithms:

The SWIPE method is based on a sawtooth waveform in

frequency domain. [p,t] = swipe(x, fs, [50 800], 0.001,

1/96, 0.1, -Inf);

The TEMPO method applies the instantaneous fre-

quency of the results of a filter-bank. It’s tested only with

monophonic music. f0 raw = exstraight source(x, fs);

The YIN algorithm is based on computing the normal-

ized difference function and a parabolic interpolation.

p.min f0 = 50; p.max f0 = 800; p.hop = 20; p.sr = fs;

r = yin(x, p);

The SHR method applies the subharmonic-to-harmonic

ratio. [t, p] = shrp(x, fs, [50 800], 40, 1, 0.4, 1250, 0, 0);

3.1 Results in clean speech and monophonic music

sound

Table 1 presents the GPE estimation and RMSE measures

of the proposed approach (GAMMA-MP), the SWIPE

(Camacho and Harris 2008), the YIN (De Cheveigné and

Kawahara 2002), and SHR (Sun 2000) for speech database.

For all the compared methods, the fundamental fre-

quency determined in each reference voicing frame of

reference Keele database and exactly in the same frames.

The GAMMA-MP shows a reduced GPE rate of 0.64 %

and a low RMSE of 1.68 Hz. It’s obviously more accurate

than the other methods.

Table 2 illustrates the GPE of over estimation and under

estimation of the proposed approach (GAMMA-MP), the

SWIPE (Camacho and Harris 2008), the TEMPO (Kawa-

hara et al. 1999) the YIN (De Cheveigné and Kawahara

2002), and SHR (Sun 2000) for musical instrument

database.

Table 2 shows that GAMMA-MP has the lowest GPE in

both over estimation, and under estimation. SWIPE and

YIN perform better than TEMPO, while SHR produces the

largest GPE over the whole database.

In Table 2, the GAMMA-MP appears as the most accu-

rate approach for pitch estimation of musical instrument.

Table 3 presents the GPE results by instrument group.

We have classed the musical instruments in five groups.

The group bowed contains cello, violin, double bass, and

viola. The group brass contains bass, trumpet, trombones,

tuba, and French horn. The group plucked contains violin,

and double bass. The group woodwinds contain clarinets,

saxophones and flutes. The last group contains piano.

In Table 3, our approach performs better than other

methods except for the plucked, for which TEMPO gives

Fig. 5 Pitch estimation of speech sound corrupted by a -5 dB White noise. a Speech sound frame, b multi-scale product analysis (mp) of the

noisy voiced speech, c FFT of mp

Table 1 Fundamental frequency estimation for speech sound

Methods GPE (%) RMSE (Hz)

GAMMA-MP 0.64 1.68

SWIPE 0.62 3.05

YIN 2.35 3.62

SHR 1.41 1.89

Table 2 Fundamental frequency estimation for musical instrument

Methods Over estimation Under estimation Total

GAMMA-MP 0.12 0.87 0.99

SWIPE 0.10 1.00 1.20

TEMPO 0.83 1.60 2.43

YIN 0.29 1.70 1.99

SHR 5.30 15.00 20.30
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practically no error. On the other hand, SWIPE perfor-

mance on piano is relatively bad compared to correlation

based algorithms. The brass group obtained the fewer GPE

errors. However, the bowed, and plucked group have given

the most GPE errors, it may be caused by pizzicato sounds.

Table 4 shows the GPE for the musical instrument by

octave.

As depicted in Table 4, the GAMMA_MP approach

presents the best performance.

3.2 Results in noisy speech

To test the robustness of our algorithm, we add various

background noises (white, babble, and vehicle) at three

SNR levels to the Keele database speech signals. For this,

we use the noisex-92 database (Varga 1993).

Table 5 illustrates the GPE of GAMMA-MP, SWIPE,

YIN and SHR methods in a noisy environment.

As depicted in Table 5, when the SNR level decreases,

our proposed approach remains robust even at -5 dB in

hard situations.

As seen, the GPE of SWIPE method degrades with the

Babble and white noises at -5 dB. This can be explained by

the fact that the SWIPE method doesn’t consider the weak

voicing state like in the beginning and the end of any

voiced sound. However, our proposed approach has the

highest performances in all cases, which proves our Fig. 5.

3.3 Computational complexity of our approach

The proposed approach has only two channels and does not

attempt directly to follow human resolvability. The

approach produces similar and comparable results to those

Table 3 Fundamental frequency estimation for musical instrument

by instrument group

Methods Piano Bowed Brass Plucked Woodwind

GAMMA-MP 1.05 0.08 0.00 2.63 0.10

SWIPE 2.20 0.19 0.01 8.80 0.14

TEMPO 7.30 2.60 0.00 0.49 1.40

YIN 0.36 1.50 0.03 14.00 1.10

SHR 19.00 25.00 14.00 22.00 8.00

Table 4 Fundamental frequency estimation for musical instrument by octave

Methods 46.2 Hz ± 1/2

octave

92.5 Hz ± 1/2

octave

185 Hz ± 1/2

octave

370 Hz ± 1/2

octave

740 Hz ± 1/2

octave

1480 Hz ± 1/2

octave

GAMMA-MP 0.85 0.74 2.46 0.95 0.03 0.42

SWIPE 1.20 1.00 2.30 0.89 0.13 0.29

TEMPO 15.00 2.80 2.00 1.10 0.52 0.31

YIN 3.20 0.95 5.30 1.80 0.69 0.96

SHR 37.00 0.60 1.80 27.00 70.00 81.00

Table 5 Pitch estimation

Performance of GPE in a noisy

environment

Type of noise SNR level (dB) GAMMA-MP SWIPE YIN SHR

White 5 0.79 1.39 1.27 1.93

0 0.93 2.08 1.84 2.85

-5 1.04 5.68 2.65 5.63

Babble 5 1.27 2.74 1.97 2.08

0 1.69 2.96 3.01 4.73

-5 2.57 4.05 5.33 6.29

Vehicle 5 3.59 3.94 4.02 4.19

0 4.50 4.63 5.46 5.80

-5 5.84 6.03 6.24 7.45

Table 6 Execution time results of our approach

Stage Time (s)

Out/middle ear filtering 0.35

Gammachirp filter 3.14

Half-wave rectification 4.29

Alignement 0.08

Multi-scale product 1.57

FFT 6.08

HS 4.22

Total 19.73
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of an elaborate multi-channel pitch analysis models. The

computational demands of multi-channel F0 analysis

models have prohibited their application in practical cases

(Meddis et al. 2010). The computational complexity is

mostly determined by the number of channels used in the

auditory filter-bank. In this paper, we have presented a

suitable model of pitch perception in practical applications.

Computational efficiency was shown by testing our

approach on a 2.13 GHz Core Duo processor.

Table 6 presented the obtained results. For every file,

the total execution time of all stages is equal approximately

to 20 s.

4 Conclusions

The proposed method (GAMMA-MP) estimates the fun-

damental frequency of speech and music sounds. It is based

on a new auditory feature extraction technique method

combined with a multi-scale product analysis in frequency

domain. This auditory model consists of applying the out-

middle ear filtering and the cochlea behaviour in frequency

domain by a gammachirp filter-bank, where the values of

those centre frequencies are selected in accordance to the

equivalent rectangular bandwidth. For the two channels,

the obtained sound signal is divided into frames, and each

frame is weighted by a Hamming window. Next, we cal-

culate the fast Fourier transform of each multi-scale pro-

duct of weighted frame. Finally, a harmonic summation

technique is applied to determine the fundamental fre-

quency F0. The experimental results show the efficiency of

our proposed method for pitch estimation from a large

speech and musical instrument database, and its high

accuracy compared with the state-of-the-art methods.

Future work may address the extension of the proposed

method to the determination of F0 for multi-talker speech,

and polyphonic music sounds.
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