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Abstract The importance of the parsing task for NLP

applications is well understood. However developing par-

sers remains difficult because of the complexity of the

Arabic language. Most parsers are based on syntactic

grammars that describe the syntactic structures of a lan-

guage. The development of these grammars is laborious

and time consuming. In this paper we present our method

for building an Arabic parser based on an induced gram-

mar, PCFG grammar. We first induce the PCFG grammar

from an Arabic Treebank. Then, we implement the parser

that assigns syntactic structure to each input sentence. The

parser is tested on sentences extracted from the treebank

(1650 sentences).We calculate the precision, recall and

f-measure. Our experimental results showed the efficiency

of the proposed parser for parsing modern standard Arabic

sentences (Precision: 83.59 %, Recall: 82.98 % and

F-measure: 83.23 %).

Keywords Parsing · Arabic language · PCFG grammar ·

Arabic treebank · Linguistic resource

1 Introduction

Parsing Arabic texts is not an easy task to perform because

of two fundamental phenomena. The first phenomenon is

related to the particularities of the Arabic language that

make it more ambiguous than other natural languages.

These characteristics influence its different levels of pro-

cessing: morphological, syntactic, and semantic. The

second phenomenon concerns the significant scarcity of

available digital resources for the Arabic language, espe-

cially grammars and corpora.

Several studies have been conducted in order to solve

issues related to parsing and to enhance parsers’ perfor-

mance. These efforts can be classified into three distinct

approaches: the linguistic approach (symbolic), the

numerical (or statistical) approach, and the mixed or

hybrid approach. The linguistic approach uses lexical

knowledge and language rules in order to parse sentences

whereas numerical approaches are essentially based on

statistics or on probabilistic models. This type of

approach is mainly based on frequencies of occurrence

that are automatically calculated from the corpora. The

third approach is a hybrid approach that integrates both

the linguistic and the numerical analysis (Khoufi et al.

2013).

In this paper we focus on the parsing task using the

linguistic approach. This approach requires, in addition to

the input sentence, some linguistic resources to guide the

syntactic analysis. One method to provide such resources to

the parser consists of writing down the language grammar

manually. However, manual construction of such linguistic

resources is a difficult task to undertake, and is time con-

suming. Unlike a programming language, natural language

is far too complex to simply list all the syntactic rules. In

addition, it is difficult to exhaustively list lexical properties
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of words, and lastly, the written grammar has to be vali-

dated by Arabic linguists.

A second method to build linguistic resources is the use

of treebanks as source of knowledge. Indeed, treebanks, as

rich corpora with annotations, provide an easy way to build

other linguistic resources, such as extensional and inten-

tional lexicons, syntactic grammars, bilingual dictionaries,

etc. This promotes their reuse and makes their implicit

information explicit. Another advantage of treebanks is that

they are not only developed and validated by linguists, but

also submitted to consensus, which promotes their relia-

bility. The possession of such a resource makes it possible

to generate new resources based on other formalisms with

wide coverage automatically in a very controlled manner.

These resources inherit the original treebank qualities,

while improving construction time.

This paper is organized as follows: Sect. 2 is devoted to

presenting the Arabic language ambiguity. Sect. 3 gives an

overview of works related to Arabic parsing using the

symbolic approach. Sect. 4 gives PCFG basic definitions.

Section 5 explains our method for parsing Arabic language

and presents the induced grammar and experimental

results. Section 6 provides the conclusion and perspectives.

2 Arabic language ambiguity

The Arabic language has specific characteristics that make it

more difficult to parse than other natural languages. Besides

classical phenomena like coordination, anaphora and ellipsis

which exist in the Latin languages, there are other features

specific to Arabic that generate problems in the parsing task.

The first one is the unvocalization phenomenon that

gives rise to grammatical ambiguities. Indeed, graphic

representations of words without vowels are not useful for

disambiguating grammatical interpretations and semantic

meanings. In fact, a word can have more than one gram-

matical interpretation. Consequently, unvocalized texts are

more ambiguous than vocalized ones. According to

Debili’s statistics (Debili et al. 2001) 74 % of Arabic words

accept more than one vocalization. Debili’s statistics show

that the grammatical ambiguity rate reaches 5.6 on average

for vocalized words and 8.7 on average for unvocalized

ones. Table 1 presents an example of an unvocalized word

with its different vocalized forms.

Agglutination in Arabic is another specific phenomenon

where articles, prepositions, pronouns, etc. can be affixed

to adjectives, nouns, verbs and particles to which they are

related. This phenomenon increases syntactic difficulties

since it leads to exceptional structures. An agglutinative

form can constitute a whole sentence, as in wastaqbalahum
مهلبقتساو (Then he welcomed them). Therefore, it requires

some specific processing to find their correct syntactic

structure.

Word order in Arabic is relatively free. Generally, we

put the word that we want to focus on at the beginning of

the sentence and we put the longest or the richest one (in

meaning or tone) at the end. This free order leads to arti-

ficial syntactic ambiguities and complicates grammar

construction. In fact, grammar rules should provide all

possible combinations to describe all correct word orders in

the sentence. Table 2 illustrates an example showing the

effect of order change.

We can change the order of words in this sentence and

obtain the two structures presented in Table 3 and 4.

Abundant use of recursive structures is another speci-

ficity of Arabic texts. Embedded structures are common in

Arabic texts as well as in other natural languages.

However, it is more frequent in Arabic since some

propositions can play a role in other propositions. Let us

consider the following example:

(The police have arrested the criminal who remained on

the run for a long time).

It is a nominal sentence, while the proposition ( ربخ ) is

also a nominal sentence:

(have arrested the criminal who remained on the run for

a long time).

In this same example, even segmentation into sentences

is not possible since there are many propositions that are

not independent and do not belong to the same syntactic

level. As a result, the lengths of Arabic sentences are not

limited.

Table 1 Example of ambiguity

due to the unvocalization

phenomenon

Unvocalized word Vocalized forms Buckwalter transliteration Translation

مھف Fahima He understood

Fah� ama He explained

Fuhima It has been understood

Fahomn Comprehension

Fahumo Then them

Faham� a Then started

… … …
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3 Related works

This work is part of a hybrid method for parsing Arabic

language. This hybrid method (symbolic/statistical) aims at

the collaboration of two parsers, the first one based on a

statistical model obtained using supervised learning tech-

niques(Khoufi et al. 2014) and the second based on the

induced grammar described in this paper. Therefore in this

section we focus on the presentation of parsers that are

based on the use of a symbolic grammar.

Numerous studies are actively being conducted for

this purpose. However, their number is very limited

when compared to works dealing with other natural

languages such as English, Spanish or French. To our

knowledge, the majority of works regarding Arabic

language parsing use the linguistic approach that yields

satisfactory results, but does not attain the English state-

of-the-art level yet.

Ouersighni (2001) developed a morpho-syntactic analyzer

in modular form for Arabic. The analysis is based on the

grammatical AGFL (Affix Grammars over a Finite Lattice)

formalism. This parser generates clitics, prefixes, roots, and

suffixes for each analyzedword in addition to its lexical forms,

then constructs the whole syntactic tree of the sentence.

The analyzer of (Othman et al. 2003) also developed in a

modular form is based on a grammar following the UBG

(Unification Based Grammar) formalism. The constructed

grammar is composed of 170 rules which mainly represent

components’ roles (subject, object, etc.) in a given sentence.

Constraints are associated with UBG rules to control the

quality of the obtained syntactic trees. The Othman parser

proceeds with a Top-down strategy to parse sentences.

Aloulou (2005) had developed a parsing system called

MASPAR (Multi-Agent System for Parsing Arabic) based

on a multi-agent approach. MASPAR parses sentences by

dividing tasks between six agents: a tokenization agent, a

lexical agent, a morphological agent, a syntax agent, an

anaphora agent, and an ellipsis agent. All these agents work

together to parse input text. The author chose to use the

Head-driven phrase structure grammar (HPSG) formalism

arguing that it is a representation that minimizes the

number of syntactic rules and provides rich and well-

structured lexical representations.

McCord and Cavalli-Sforza (2007) developed a slot

grammar (SG) parser for Arabic (ASG) with new features

of SG designed to accommodate Arabic as well as the

European languages for which SGs have been built. Slot

Grammar is dependency oriented, and has the feature that

allows both deep structure (via logical predicate argu-

ments) and surface structure to be shown in parse trees. The

authors focused on the integration of BAMA (Buckwalter’s

Arabic Morphological Analyzer) (Buckwalter, 2004) with

ASG, and on a new, expressive SG grammar formalism

(SGF) and they illustrated the way SGF is used to advan-

tage in ASG.

The analyzer of Bataineh and Bataineh (2009) uses

recursive transition networks to build a context free

grammar which describes the most common sentences in

Arabic. The transition network considers syntax rules as

graphs, arcs and labels. These are finite state automata

representing rules’ transcripts. To represent the maximum

of structures, a set of sentences’ patterns was also derived

from school texts. These patterns are converted to context

free rules with the help of Arab linguists. A sentence is

accepted by the grammar if it is generated by a complete

course (without interruption) of these transitions’

networks.

Klein and Manning (2003) developed a parser that

implements a factored product model, with separate PCFG

phrase structure and lexical dependency experts, whose

preferences are combined by efficient exact inference,

using an A* algorithm. As well as providing an English

parser, the parser has been adapted to work with other

languages. A Chinese parser based on the Chinese Tree-

bank, a German parser based on the Negra corpus and

Arabic parsers based on the Penn Arabic Treebank are also

included (Green and Manning 2010).

Al-Taani et al. (2012) constructed a grammar under the

CFG formalism (Context Free Grammar) then imple-

mented it in a parser with a top-down analysis strategy.

This parser focused on identifying sentence type (Nominal

or verbal) and domain words.

Table 2 Example of an Arabic sentence, order 1

Sentence

Gloss To school The boy Went

Form Complement Subject Verb

Table 4 Arabic sentence, order 3

Sentence

Gloss The boy Went To school

Form Subject Verb Complement

Table 3 Arabic sentence, order 2

Sentence

Gloss To school Went The boy

Form Complement Verb Subject
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The work of (Alqrainy et al. 2012) presents a simple

parser for Arabic sentences. The aim of this parser was to

check whether the syntax of an Arabic sentence is gram-

matically correct by constructing a new, efficient Context-

Free Grammar. Alqrainy designed the parser to take

advantage of the top-down technique. He used the NLTK

(Natural Language ToolKit) tool (Bird et al. 2009) to build

and test the Arabic CFG grammar.

Table 5 summarizes our comparative study of Arabic

parsers. The comparison is performed using these criteria:

● Grammar formalism

● Parsing strategy,

● Size of the testing data,

● Results as precision, accuracy or error scores.

4 PCFG preliminary

A probabilistic context-free grammar (PCFG) also called

stochastic CFG (SCFG), is an extension of the famous

context-free grammar, where a certain probability is

assigned to each rule. Probabilistic context-free grammars

are defined by a 5-tuplet\N, T, R, S, P[ as follows:

● N is a finite set of non-terminal symbols.

● T is a finite set of terminal symbols.

● R is a finite set of rules ri of the form X → Y1Y2… Yn,
where X ∈ N, n ≥ 0, and Yi ∈ (N ∪ T) for i = 1 … n.

● S ∈ N is a distinguished start symbol.

● P is the set of probabilities pi associated to rules ri
where: ∑ P(X→ Yi) = 1, ∀ X ∈ N and Yi ∈ (N ∪ T) for
i = 1 … n.

Note that some sentences may have more than one under-

lyingderivation in caseof theuse of a classicCFGand therefore

generate several parse trees. Therefore probabilities P in a

PCFG are used to produce themost likely parse tree for a given

sentence. The probability of a parse tree is obtained by multi-

plying the probability of each rule used at each node of the tree.

In the following we give an example of a PCFG and two

possible parse trees (Fig. 1) for a sentence to understand the

parsing ambiguity and the solution offered by the PCFG to

address it.

N = {S, VP, NP, ADJP, V, NN, DET + NN, CONJ,

PRON, DET + ADJ}

S = S

T = { بدؤملا,مه,راج,نبا,و,لفطلا,بعل }

R, P=

S → VP NP

VP → V

NP → NP CONJ ADJP

NP → NP CONJ NP

NP → DET + NN

NP → NN ADJP

NP → NN PRON

NP → NN NP

ADJP → NP DET + ADJ

ADJP → NP DET + NN

[1.0]

[1.0]

[0.3]

[0.1]

[0.3]

[0.1]

[0.1]

[0.1]

[0.6]

[0.4]

V → بعل

NN → راج

NN → نبا

DT + NN → لفطلا

CONJ → و

PRON → مه

ADJ + DET → بدؤملا

[1.0]

[0.4]

[0.6]

[1.0]

[1.0]

[1.0]

[1.0]

Table 5 Comparative study of Arabic parsers

Authors Grammar formalism Parsing strategy Testing data Results

Ouersighni (2001) AFGL grammar RBPa strategy 105 sentences Precision 76.19 %

Othman et al. (2003) UBL grammar – – –

Aloulou (2005) HPSG grammar Multi agents strategy 3871 sentences

(\11 words)

61 % correct

16.5 % partly correct

22.5 % incorrect

McCord and

Cavalli-Sforza (2007)

ASG grammar Bottom-up 1000 sentences

(13–20 words)

72 % complete parses

(with no guaranty of

correctness)

Bataineh and Bataineh (2009) CFG grammar Top-down 90 sentences 85.4 % correct

2.2 % incorrect

12.4 % rejected

Green and Manning

(2010) (Stanford parser)

Human interpretable

grammars (PCFG based)

– ATB 10 % Precision 81.07 %

Recall 80.27 %

F-measure 80.67 %

Al-Taani et al. (2012) CFG grammar Top-down 70 sentences

(2–6 words)

Precision 94 %

Alqrainy et al. (2012) CFG grammar Top-down 105 sentences Accuracy 95 %.

a Recursive backup parser
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Two possible translations for the sentence:

● The child played with his polite neighbor’s son.

● The child played with his neighbor’s polite son.

Figure 1 presents two possible parse trees (derivations) for

the above mentioned sentence, both of which are valid under

a classic CFG without consideration of the probabilities.

This example is a case of adjectival phrase attachment

ambiguity: the adjective (ADJ) Almu&ad � abu “ بدؤملا ”

(polite) can modify either the neighbor’s son ibnu jArihum
( مهراجنبا ), or the neighbor himself jArihum ( مهراج ). In the first

parse tree shown in Fig. 1, the ADJ modifies the neighbor’s

son, which means that the neighbor’s son is polite. In the

second parse-tree (T2), the ADJ modifies the neighbor only,

which in this case means that the neighbor is polite.

The probability of an entire tree is the product of

probabilities for these individual choices. We multiply the

P values of each PCFG rule that it contains thus obtaining:

P(T1) = P(S → VP NP) 9 P(VP → V) 9 P(V → بعل )

9 P(NP → NP CONJ ADJP) 9 P(NP → DET + NN)

9 P(DET+NN→ لفطلا )� P(CONJ→ �(و P(ADJP→NP

ADJ) � P(NP → NN NP) � P(NN → نبا ) � P(NP → NN

PRON) � P(NN → راج ) � P(PRON → مه ) � P(DET +

ADJ → بدؤملا )

P(T1) = 1.0 � 1.0 � 1.0 � 0.2 � 0.3 � 1.0 � 1.0 � 0.6

� 0.1 � 0.6 �0.1 � 0.4 � 1.0 � 1.0 = 0.0000864

P(T2) = P(S → VP NP) � P(VP → V) � P(V → بعل )

� P(NP → P CONJ ADJP) � P(NP → DET + NN) � P

(DET + NN → لفطلا ) � P(CONJ → (و � P(NP → NN

ADJP) � P(NN → نبا ) � P(ADJP → NP DET + ADJ)

� P(NP→ NN PRON) � P(NN→ راج )� P(PRON→ مه )�
P(DET+ ADJ→ بدؤملا )

P(T2) = 1.0 � 1.0 � 1.0 � 0.2 9 0.3 9 1.0 9 1.09 0.2

9 0.6 9 0.6 9 0.1 9 0.4 9 1.0 9 1.0 = 0.0001728

In the following section, we present our method for

parsing Arabic using an induced PCFG.

5 Our method

Our method for parsing Arabic language has two phases:

the grammar induction phase and the parsing phase. The

first phase uses an annotated corpus as a knowledge source

for the induction of the PCFG, whereas the second phase

implements the induced grammar (results of the first phase)

to achieve parsing. The phases of our approach are illus-

trated in Fig. 2.

The two phases of the method are described in the fol-

lowing subsections.

5.1 PCFG grammar induction from the PATB
Treebank

Our objective in this phase is to automatically induce a

PCFG from an annotated corpus. This process consists of

two steps: The first step is to induce CFG rules from the

annotated corpus. The second step is to assign a probability

to each induced rule. The application of these two steps

allows us to obtain a PCFG. Figure 2 illustrates the

workflow of this first phase.

Fig. 1 Two possible parse trees

(derivations) for the sentence:

بدؤملامهراجنباولفطلابعل

Arabic sentence:

.

Buckwalter transliteration laEiba AlTiflu w ibnu jArihum
Almu&ad� abu
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Since our construction of the PCFG grammar is based

on an annotated corpus, we begin by discussing the corpus

we used; then we describe the PCFG induction process in

detail.

5.1.1 Using the Penn Arabic Treebank

In our work, we chose to use the well-known corpus, the

Penn Arabic Treebank (PATB). This choice was motivated

not only by the richness, the reliability and professionalism

with which it was developed but also by the syntactic

relevance of its source documents (converted to several

other Treebank representations). Indeed, its annotations

have the advantage of being reliable. This is shown by its

efficacy in a large number of research projects in various

fields of NLP (Habash, 2010). The good quality of the text

and its annotations is demonstrated by its performance in

the creation of other Arabic Treebanks such as the Prague

Arabic Dependency Grammar (Hajic et al. 2001) and the

Columbia Arabic Treebank (Habash and Roth, 2009),

which converted the PATB to its syntactic representations

in addition to other annotated texts.

Indeed, these annotations were manually elaborated

and validated by linguists. Moreover, this treebank is

composed of data from linguistic sources written in

Modern Standard Arabic. This corpus is also the largest

Arabic corpus which integrates syntactic tree files. The

use of a large amount of annotated data in a grammar

construction process increases the quality of the generated

linguistic resource.

The PATB was developed in the Linguistic Data Con-

sortium at the University of Pennsylvania (Maamouri et al.

2004). Texts in the corpus, as with most texts written for

adults in Modern Standard Arabic, such as newspaper

articles, contain no vowels.

We used the PATB 3 version 3.2 of this corpus Maa-

mouri et al. 2010), which consists of 599 files, and includes

POS tags, morpho-syntactic structures at many levels and

glosses. It comprises 402 291 tokens and 12 624 sentences.

It is available in various formats: The “sgm” format refers

to source documents. The “pos” format gives information

about each token as fields before and after clitic separation.

The “xml” format contains the “tree token” annotation after

clitic separation. The “penntree” format generates a Penn

Treebanking style. And finally the “integrated” format

brings together information about the source tokens, tree

tokens, and the mapping between them and the tree

structure.

5.1.2 Description of the induction process

As shown in Fig. 2, the first step of our method is the

induction of CFG rules, including duplicates, which will be

used in the second step. A deep study of the PATB allows

us to identify the rules that guide the CFG rules induction

process. We focused on the morpho-syntactic trees of the

PATB and we identified the following rules:

R1 Tree root → Start symbol
R2 Internal tree node → Non terminal symbol
R3 Tree word → Terminal symbol
R4 Tree fragment → CFG rules

We noticed that each parse tree is a sequence of context-

free rules and each one has the same symbol “S” at its root.

Thus, the root symbol “S” is taken to be the start symbol

(S) of the grammar. Non-terminal (N) symbols consist of

the set of internal nodes of the whole parse tree. The set of

all words seen in the trees (the leaves) compose the set

(T) of terminal symbols. Edges between the nodes of the

trees are used to induce CFG rules(R). Figure 3 presents the

PATB

Context Free 
Rules 

Induction

Probabilities 
Calculation

FRAG NP PUNC PP NP
NP NOUN
NP DET+NOUN
VP PV
…

CFG Rules

Input sentence
(Segmented)

Viterbi
Parser

The most probable 
parse tree

Lexical 
Rules

Contextual 
Rules

PCFG 
Phase 1:PCFG Induction

Phase 2: Parsing

Step 1 Step 2

Fig. 2 Architecture of the

proposed method
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process of induction of PCFG elements (S, N, T, R) from a

PATB parse tree.

Note that tags on the right hand-side of the induced rules

are in reversed order compared to the parse tree. This is due

to the reading orientation of the Arabic language which is

from right to left.

In Arabic, the word and its determinant are agglutinated

as seen in the word alzaman نِمَزَلا (Noun). We chose to

keep these elements together in one rule to reduce grammar

size. This choice does not influence the analysis quality

since there is no loss of information.

After application of the first step of our method to the

example of Fig. 3, we obtain 12 CFG rules composed of 6

contextual rules and 6 lexical rules as presented in Table 6.

Once CFG rules had been induced from the PATB with

all duplicates, we moved to the second step consisting of

the calculation of rule probability (P) to finally obtain the

PCFG grammar. Each rule probability is estimated using

the following formula:

PðX ! Y Þ ¼ Count X ! Yð Þ
CountðX Þ

where Count (X → Y) is the number of times the rule X →
Y is seen in the Treebank and Count (X) is the count of

rules that have the non-terminal X on the left-hand side.

For example, the rule VP → V NP PP is seen109 times in

the PATB and we have counted 1133 rules that have VP on

the left-hand side, thus:

P VP ! V NP PPð Þ ¼ 109

1133

In the following section, we describe our experiment

and explain some interesting information about the gram-

mar we obtained.

5.1.3 Grammar induced from the PATB

After applying our method, we obtained the PCFG grammar.

Aswementioned earlier, The PATB is a very rich corpus and

it containsmany annotations likemood, gender, number, etc.

The PATB corpus is annotated using a large set of annota-

tions, which gives a high level of granularity. For example,

the Part of speech annotation tag set contains 498 tags that

provide much information like gender, mood, etc. (Maa-

mouri et al. 2008). There are also 22 syntactic category tags

and 20 tags that describe semantic relations between tokens.

In addition, stop words, which are very numerous in the

Arabic language, are also annotated with specific tags.

Fig. 3 Induction of elements

of rules from a parse tree

fragment

Table 6 CFG Rules induced from the example of Fig. 3

Contextual rules Lexical rules

S → VP

VP → V NP NP PP

NP → NN NP

NP → DET + NN

NP → NN

PP → PREP NP

V → (turned)

NN → (the hands)

DET + NN → (time)

NN → (suddenly)

PREP → (to)

DET + NN → (backwards)

Int J Speech Technol (2016) 19:313–323 319
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Incorporation of all this information within the grammar

increases its complexity and its size. Its size depends on the

granularity level of the categories it describes. The higher

this level, the more complex these grammars are, but also the

more respectful of language specificity. For example, this tag

set {ADJ + NSUFF_FEM_DU_NOM, ADJ + CASE_

DEF_ACC, ADJ + CASE_DEF_GEN, ADJ + CASE_

DEF_NOM} describes adjectives with a high level of gran-

ularity. If we reduce the granularity level to a minimum,

these tags will be reduced into one tag, ADJ. This reduction

influences the number of grammar rules. We chose to reduce

the POS tags to the basic tags, which leaves about 70 tags for

the Arabic language, to facilitate the use of induced gram-

mars for NLP applications.

There are also other tags in the PATB that are generated

during the initial tagging and parsing process like *ICH*,

*O*, *RNR*, NONE and NAC. Indeed those tags, if

considered in a parsing task, will increase the number of

rejected parses because they describe morphologic tagging

errors and empty categories. Therefore, these tags were

removed from our tag set to make our grammar more

consistent.

We present below some statistics about our PCFG

grammar. Table 7 presents the most frequent PCFG syn-

tactic rules generated from the PATB corpus after applying

our method and Table 8 presents the overall count of rules

(contextual rules and lexical rules).

5.2 Parsing experiments

In order to evaluate the performance of the induced

grammar in the parsing task, we divided the PATB corpus

following the “Mona Diab” or “Johns Hopkins 2005

Workshop” splits. We used the major part for induction of

the PCFG grammar (90 %) and the second part for parsing

tests (10 %).

We used Viterbi implementation of the NLTK tool (Bird

et al. 2009) to test PCFG in the parsing task. Indeed, sev-

eral algorithms can be used in parsing using a PCFG; the

most famous ones are CYK (the Cocke-Younger-Kasami

algorithm), Earley and Viterbi. This choice is justified by:

1. Viterbi can be used with any probabilistic context free

grammar but CYK needs to use a grammar in

Chomsky Normal Form. This transformation increases

grammar size and therefore parsing time.

2. Viterbi parses in linear time thus it is less complex than

Earley and CYK which both have cubic worst case

time.

Viterbi is a bottom-up PCFG parser that uses dynamic

programming to find the single most likely parse for an

input text. The Viterbi parser parses texts by filling in a

“most likely constituent table”.

In order to find the most likely constituent with a given

span and node value, the “Viterbi Parser” considers all

productions that could produce that node value. For each

production, it finds all children that collectively cover the

span and have the node values specified by the produc-

tion’s right hand side. If the probability of the tree formed

by applying productions to the children is greater than the

probability of the current entry in the table, then the table is

updated with this new tree.

5.2.1 Parsing results

In order to estimate the performance of our parser, we

calculated the Precision, Recall and F-measure for each

tested sentence using the following formulas:

● Precision = cardinality (Reference ∩ Test)/cardinality

(Test)

● Recall = cardinality (Reference ∩ Test)/cardinality

(Reference)

● F-measure = 2 9 ((Precision 9 Recall)/

(Precision + Recall))

Then we calculate the macro average of the obtained

values. The test set is composed of 1650 sentences

extracted from the PATB. The average length of the sen-

tences is about 21words (the length ranges between 3 and

40 words). Obtained results are exposed in the Table 9.

The evolution of the precision, recall and f-measure

while increasing the length of the parsed sentence can be

seen in Fig. 4.

Table 7 Most frequent LHS

rules
Left-hand symbol (LHS) NP VP S FRAG ADJP UCP PP

Rule count 1611 1133 1013 307 243 155 118

Table 8 Rule count Contextual rules 4661

Lexical rules 38,901

Total 43,562

Table 9 Evaluation results

Precision Recall F-measure

83.59 % 82.98 % 83.23 %
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Our results are interesting considering the state-of-the-

art for Arabic parsing performance. Nevertheless, it is

difficult to compare our results to the ones from existing

Arabic parsers because different evaluation metrics and

different test sets were used. Moreover, state-of-the-art

systems are not available online and the testing data are not

compatible, which complicates performance comparison.

Our Evaluation has two highlights which are:

● The size of the testing data (1650 sentences) which is

widely superior to other works’ testing data (see

Table 5).

● The length of the sentence which is between 3 and 40

words with an average length of 21.16 words.

Figure 5 presents a comparison between our parser and

three state-of-the-art parsers that calculate the same eval-

uation metrics.
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Figure 5 highlights the high level of precision attained

by our method, which noticeably outperforms Ouersighni

(2001) and is still very competitive with Al-Taani et al.

(2012). Our results are also slightly better (about 2.52 %)

than the Arabic version of Stanford parser (Green and

Manning 2010) knowing that we use the same PATB slits.

We think that this difference might be due to the size of

the testing data, the length of the tested sentences and the

level of complexity. Indeed, our testing data (1650 sen-

tences) impressively outnumbers Al-Taani’s testing data

(70 sentences) in addition to the fact that our testing sen-

tences are longer (average length 21 words) than those of

Al-Taani (average length 3.93 words) which complicates

the parsing task. To illustrate the complexity of our tested

sentences, we present in Fig. 6 and 7 two parsed sentences,

one from the Al-taani testing data and the second from our

testing data, respectively.

6 Conclusion and perspectives

We presented in this paper our method for parsing the Arabic

language based on anArabic PCFG (Probabilistic context free

grammar) grammar.Ourmethod consists of two phases: in the

first one we induced a PCFG grammar from the PATB parse

trees using induction rules. In the second we used the induced

grammar and the Viterbi parsing algorithm to parse Arabic

sentences. We tested our parser on sentences extracted from

the PATB (over 1650 sentences) and we achieved encourag-

ing and very satisfactory results (precision: 83.59 %, recall:

82.99%and f-measure: 83.24%).As a futurework,we plan to

integrate a morphological analyser sush as MADAMIRA

(Pasha et al. 2014) to cover words that are not covered by

lexical rules, then update the database of lexical rules. Our

long term goal is to integrate this work into a hybrid method

for parsing Arabic. This hybrid method would allow collab-

oration of two parsers, the first is based on a statistical model

obtained using supervised learning techniques (Khoufi et al.

2014) and the second is based on the induced grammar

described in this paper.
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