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Abstract In this paper, we examine the performance of

automatically detecting Brazil’s prominent syllables using

five machine learning classifiers and seven sets of features

consisting of three features: pitch, intensity, and duration,

taken one at time, two at a time, and all three. Prominent

syllables are the foundation of Brazil’s prosodic intonation

model. We found that using pitch, intensity, and duration as

features produces the best optimal results. Our findings also

revealed that in terms of accuracy, F-measure, and Cohen’s

kappa coefficient that bagging an ensemble of decision tree

learners performed the best (accuracy = 95.9 ± 0.2 %;

F-measure = 93.7 ± 0.4; j = 0.907 ± 0.005). The perfor-

mance of our current model proves to be significantly better

than any other automatic detection software that exists or

that of human transcription experts of prosody.

Keywords Prominent syllable detection � Machine

learning � Brazil’s prosodic intonation model � ToBI

1 Introduction

Prosody conveys crucial information in speech. It reflects

various features of the speaker as well as the utterance:

emotional state of speaker, form of the utterance, the pres-

ence of irony or sarcasm, emphasis, contrast, and focus, or

other elements of language that may not be encoded by

grammar or by choice of vocabulary. Prosody extends over

one single sound segment in an utterance and covers other

paralinguistic aspects of speech such as pitch, tone, duration,

intensity, and voice quality (Chun 2002). Several intona-

tional models for representing prosodic features have been

practiced. However, they often face various challenges and

limitations in terms of adequately interpreting actual, natural

human discourse (Xu 2012).

Two principle frameworks are often used for repre-

senting and interpreting prosodic features: Brazil (1997)

and Pierrehumbert (1980). Both the Pierrehumbert and

Brazil models provide important information about the

prosodic features of human discourse. Pierrehumbert’s

framework is widely used to model text-to-speech syn-

thesis and has been realized quantitatively. Brazil’s

framework has been used in discourse analysis and lan-

guage teaching and learning (Cauldwell 2012). The former

model does not account for the meaning of intonation in

naturally occurring discourse sufficiently (Dilley 2005).

Dilley (2005) proposed a tone interval theory, which

captured the intonational and rhythmic aspects of speech.

Her theory provided experimental evidence that showed

how Pierrehumbert’s framework (Pierrehumbert 1980;

Pierrehumbert and Beckman 1988) did not account for

intonation meaning. However, such tone interval theory

still does not explain how tone units are used in discourse.

This is the motivation of the current study choosing Bra-

zil’s model, which offers efficient and meaningful inter-

pretation of natural discourse (e.g., tone choices). It

emphasizes the idea of interactional significance of pro-

sody and the achievement of the communicative functions

in discourse (Brazil 1997). For example, Brazil’s model

stresses the first and last prominent syllables and comprises

pitch concord, which are essential distinctions across

varieties of languages (Pickering 1999). It uses tone
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choices for the interpretation of speakers’ intention,

meaning, emotion, or other communicative purposes in the

discourse (Pickering 2009).

In a monologic speech, rising tones are used for showing

solidarity or expressing known or shared knowledge or

indicating uncertainty or lack of power. Falling tones are

for presenting a topic closure or expressing new informa-

tion, or showing speakers’ authority. Level tones are more

for focusing on action rather than discourse or indicating

the continuation of discourse. In addition, rising contours

are associated with anger, fear, and joy whereas falling

contours are connected to sadness and tenderness (Juslin

and Laukka 2004). The patterns of these tones can be

understood in the relationship between the final tone unit of

one move and the initial key choice of the next move,

called pitch concord (Brazil 1997).

The fundamental unit of Brazil’s model is the prominent

syllable. Brazil is very clear in his work that the importance of

prominence is on the syllable and not the word. He provided

examples of words with more than one prominent syllable and

words whose prominent syllable varied depending on the

intonational meaning the speaker was imparting. Although the

rest of Brazil’s model is easy to quantify, what makes a syl-

lable prominent, is difficult to compute. Brazil states that

prominent syllables are recognized by the hearer as having

more emphasis than other syllables. A trained analyst can

easily identify prominent syllables by listening to an utter-

ance. However, quantifying the difference between a promi-

nent syllable and a non-prominent syllable is not so

straightforward. Brazil further notes in his description of

prominent syllables that prominence should be contrasted

with word or lexical stress. Lexical stress focuses on the syl-

lable within content words that is stressed. However, promi-

nence focuses on the use of stress to distinguish those words

that carry more meaning, more emphasis, more contrast, in

utterances. Thus, a syllable within a word that normally

receives lexical stress may receive additional pitch, length, or

loudness to distinguish meaning (Brazil 1997). Alternatively,

a syllable that does not usually receive stress (such as a

function word) may receive stress for contrastive purposes.

Brazil’s definition of prominence is similar, but more

specific, than more commonly known definitions of promi-

nence. Terken (1991) stated prominence is the attribute of a

linguistic unit which makes it stand out from its environment

perceptually. However, he did not precisely specify the

linguistic unit as the syllable as did Brazil. But, like Brazil,

he said prosodic prominence is connected to the supraseg-

mental pitch, duration, and intensity attributes of speech.

The purpose of this paper is to determine the best

machine learning classifier and set of features, chosen from

pitch, length (i.e., duration), or loudness (i.e., intensity) to

automatically detect Brazil’s prominent syllables. Specifi-

cally, we will assess the performance of five machine

learning classifiers and seven sets of features consisting of

three features: pitch, intensity, and duration, taken one at

time, two at a time, and all three, in automatically detecting

Brazil’s prominent syllables.

Section 2 reviews existing research in the area of

prominent syllable and prominent word detection. Sec-

tion 3 describes the speech corpus, classification features,

machine learning classifiers, and experimental methods

used in the current research. In Sect. 4, we present the

results of our experiments, followed by a comparison with

other research findings in the field of speech science along

with conclusions in Sect. 5.

2 Prominent syllable and word detection research

In the field of speech production and engineering, Brazil’s

(1997) framework has been hardly utilized. In contrast, there

is a large body of research on detecting Pitch Accents and

Boundary Tones as defined by the ToBI standard. The tones

and break indices (ToBI) is a system for labeling prosodic

events in spoken utterances (Wightman et al. 1992; Beck-

man and Elam 1997). This standard specifies three types of

prosodic events: Pitch Accents, Boundary Tones and Break

Indices. Pitch Accents refer to the prosodic function of

prominence. Boundary Tones and Break Indices refer to the

prosodic function of phrasing. Although pitch accents are

defined as a function of prominence, there are usually more

pitch accents in an utterance than Brazil’s prominent sylla-

bles. This is due to the fact, that Pierrehumbert did not make

a distinction between lexical stress and what Brazil calls,

‘‘prominence’’. Thus, there is no one-to-one correspondence

between Brazil’s concept of prominent syllables and Pitch

Accents, Boundary Tones, or Break Indices.

The ToBi-related research uses a variety of intensity,

duration, and pitch measurements along with lexical or

syntactic cues (i.e., features) to detect prosodic events.

Ludusan and Dupoux (2014) investigated using several

duration and pitch features, by themselves and in a combi-

nation, without any lexical or syntactic cues to detect pro-

sodic boundaries. They found that a combination of all the

cues compared well with previous work. Ni et al. (2011)

detected ToBI Pitch Accents with an accuracy of 91.4 % and

Boundary Tones with an accuracy of 95.2 % utilizing pitch,

duration, intensity, and lexical and syntactic cues. Later, they

applied the same techniques to detect Mandarin stress (Ni

et al. 2012) with an accuracy of 89.9 %. Jeon and Liu (2009)

also used pitch, duration, intensity, and lexical and syntactic

features to detect ToBI Pitch Accents and achieved an

accuracy of 89.8 %. Likewise, Ananthakrishnan and Nar-

ayanan (2008) detected ToBI accent (86.75 % accuracy) and

prosodic phrase boundaries (91.6 % accuracy) with pitch,

duration, intensity, and lexical and syntactic cues.
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To classify both Pitch Accents and Boundary Tones,

González-Ferreras et al. (2012) used a number of acoustic

features (pitch, energy, and vowel nucleus duration), lexical

and syntactic features (part-of-speech tags), and pitch contour

features with fusion of pairwise coupled neural network and

decision trees classifiers and applied the Viterbi algorithm to

find the best tone sequence to achieve classification accuracies

of 70.8 % (pitch accents) and 84.2 % (boundary tones). With

pitch, duration, intensity, and lexical and syntactic features,

Sridhar et al. (2008) detected ToBI Pitch Accents (86 %

accuracy) and Boundary Tones (93.1 % accuracy).

Rosenberg and Hirschberg (2009) compared pitch accent

identification at the syllable, vowel, and word level, and

found that a word level approach is superior to syllable or

vowel level identification achieving an accuracy of 84.2 %.

Silipo and Greenberg (1999) concluded that intensity

and duration are the most important acoustic parameters

underlying prosodic stress in casually spoken American

English, and that pitch plays only a minor role in the

assignment of stress. In a later study (Silipo and Greenberg

2000), they reexamined this conclusion using both the

range and average level of pitch to determine whether there

were circumstances in which pitch figures importantly in

prosodic stress. They found in the later study that pitch

range is slightly more effective than average pitch. They

explained that this finding was most likely a consequence

of duration-related information intrinsic to pitch range, and

was thus consistent with their early finding that pitch

played a relatively minor role in stress assignment in nat-

urally spoken American English. Kochanski et al. (2005)

studied seven dialects of British and Irish English and three

different styles of speech to find acoustic correlates of

prominence. They found pitch played a minor role in dis-

tinguishing prominent syllables from the rest of the utter-

ance. Instead, speakers primarily marked prominence with

patterns of intensity and duration. Rosenberg and Hirsch-

berg (2006) studied the correlation between intensity and

pitch accent of four native speakers of Standard American

English. They were able to predict pitch accent in read

speech with an accuracy of 81.9 % using only intensity.

There are also other non-ToBI research initiatives exam-

ining ‘‘prominence’’, where ‘‘prominence’’ in this case also

includes lexical stress. These research initiatives combine

intensity, duration, pitch, and other acoustic features (i.e., no

lexical or syntactic cues) to automatically identify syllabic

prominence. In relatively recent years, various studies have

attempted to detect such prominence types. Avanzi et al.

(2010) detected syllabic prominence in French with pitch,

duration, and pause. Similarly, Streefkerk et al. (1997) iden-

tified prominence in Dutch with intensity and duration and no

pitch. Prominence in English was detected with pitch, inten-

sity, and duration by Mahrt et al. (2011, 2012a, b). Tamburini

(2006) used pitch movements, overall syllable energy,

syllable nuclei duration, and mid-to-high-frequency emphasis

to detect syllabic prominence in English. Some researchers

only used pitch and intensity to detect syllabic prominence in

French and Italian (Ludusan et al. 2011). Finally, Cutugno

et al. (2012) included pitch, intensity, and duration of a syl-

lable and its neighbors to detect syllabic prominence in Eng-

lish and Italian.

The research above shows that a good number of machine

learning classifiers and features have been employed to detect

various types of prominence. In this paper, we will determine

the best machine learning classifier and set of features to

automatically detect Brazil’s prominent syllables. We will

only test pitch, duration, and intensity because those are the

features ‘prominence’ is comprised of in Brazil (1997) terms.

Specifically, we will examine the performance of five

machine learning classifiers (neural network, decision tree,

support vector machine, bagging, and boosting) and seven sets

of features consisting of three features: pitch, intensity, and

duration, taken one at time, two at a time, and all three.

3 Methods

3.1 TIMIT corpus

The DARPA TIMIT Acoustic–Phonetic Continuous Speech

Corpus (TIMIT) of read speech was designed to provide

speech data for the acquisition of acoustic–phonetic knowl-

edge and for the development and evaluation of automatic

speech recognition systems (Garofolo et al. 1993). TIMIT

contains a total of 6300 sentences, 10 sentences spoken by

each of 630 speakers from 8 major dialect regions of the

United States. The text material in the TIMIT prompts con-

sists of two dialect sentences, 450 phonetically-compact

sentences, and 1890 phonetically-diverse sentences. The

dialect sentences were intended to reveal the dialect of the

speakers and were read by all 630 speakers. The phoneti-

cally-compact sentences were designed to provide a good

coverage of pairs of phones, with extra occurrences of pho-

netic contexts thought to be either of particular interest or

difficult. Each speaker read five of these sentences and each

text was spoken by seven different speakers. The phoneti-

cally-diverse sentences were selected to maximize the vari-

ety of allophonic contexts found in the texts. Each speaker

read three of these sentences, with each sentence being read

only by a single speaker. The corpus includes hand corrected

start and end times for the phones, phonemes, pauses, syl-

lables, and words. The TIMIT corpus includes definitions for

60 phones. The TIMIT phones are used by other corpora. For

this research, we used a subset of the corpus consisting of 84

speakers speaking four dialects. There were 836 utterances in

our subset containing 10,657 syllables. Table 1 shows the

distribution of speakers by gender and dialect.
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We augmented the corpus by identifying the prominent

syllables in the experimental subset. The prominent sylla-

bles were identified by a trained analyst who coded them

both by listening to the audio files and by using the Multi-

Speech and CSL Software (KayPENTAX 2008) to view

the pitch, intensity, and duration of the syllables. Roughly,

10 percept of the samples were analyzed by a second

trained analyst to verify the reliability of prominent sylla-

ble coding. The inter-coder reliability between the two

human coders was around 85–87 %, which were relatively

acceptable rates as seen in other similar coding protocols

(e.g., Kang 2010) particularly using Brazil’s (1997)

framework. The two analysts reviewed any inconsistencies

and resumed coding the samples until they agreed on the

coding. The first analyst then completed the analysis

independently for the remaining speech samples. The

analyst identified 3536 prominent syllables in the speech

samples. This coding method has been widely practiced as

a reliable labeling scheme in other studies (Kang 2010;

Kang et al. 2010; Pickering 1999) in applied linguistics.

Although the TIMIT corpus consists of isolated sen-

tences, we chose it for prominent syllable detection

because it contained a wide variety of speakers and dia-

lects, many more than the six speakers and one dialect in

the Boston University Radio News Corpus (Ostendorf et al.

1995), which is another commonly used corpus for into-

nation studies. The current study only used a subset of the

TIMIT corpus. However, 84 speakers speaking four dia-

lects with over 10,000 syllables and over 3500 prominent

syllables proved to be sufficient for the identification of an

appropriate prominent syllable classifier and feature set.

3.2 Classification features

As input to the classifiers, we used seven sets of features

for each syllable consisting of combinations of three fea-

tures: pitch, intensity, and duration, taken one at time, two

at a time, and all three. The pitch feature was calculated by

taking the median of the pitch contour of the syllable

extracted by Praat (Boersma and Weenink 2014). The

intensity feature was calculated by taking the maximum of

the intensity contour of the syllable extracted using the

Matlab audioread function (MathWorks 2013). The dura-

tion feature was calculated by using the syllable start and

stop times from the TIMT corpus (Garofolo et al. 1993). In

other words, the prominent syllable classifiers used the

syllable boundaries given in the corpus. Pitch, intensity,

and duration vary across speakers. They can be different

even for the same speaker due to various idiosyncratic

factors. To ameliorate the effect that this variation might

have on prominent syllable detection, the features within a

run (i.e., a run is the speech between two pauses, where a

pause is defined as a silence longer than 100 ms; the

lengths of the pauses were provided by the corpus) were

normalized with Z-scores and scaled to the interval [-1 1]

as follows:

fi ¼ feature value for syllable i ð1Þ

fmean ¼ mean of fi for all syllables in the run ð2Þ

fstd ¼ standard deviation of fi for all syllables in the run

ð3Þ

fnormi ¼ fi � fmeanð Þ=fstd ð4Þ

fnormmax ¼ maximum fnormi for all syllables in the run

ð5Þ

fnormmin ¼ minimum fnormi for all syllables in the run

ð6Þ

fnormscale ¼ max fnormmax; jfnormminjð Þ ð7Þ

fscaledi ¼ fnormi=fnormscale ð8Þ

Z-score normalization provides a zero-mean, unit-s-

tandard deviation normalization of the input data. For this

to be valid there is an assumption that the underlying

data be normally distributed. The [-1, 1] interval nor-

malization is extremely sensitive to outliers. However, we

tried three other methods of normalization: (1) no nor-

malization, (2) dividing the feature values by the mean

feature value of the run, and (3) Z-score normalization

without interval normalization; and found all of them

provided worse performance in terms of accuracy,

F-measure, and j.

Table 1 Distribution of TIMIT speakers by gender and dialect used

in this research

Dialect Male Female Total

New England 7 4 11

Northern 18 8 26

North Midland 23 3 26

South Midland 5 16 21

Total 53 31 84
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3.3 Classifiers

We used five standard machine-learning classifiers to

detect prominent syllables: neural network, support vector

machine, decision tree, bagging, and boosting.

In machine learning, neural networks are a group of

statistical learning models motivated by the biological neu-

ral networks in animal brains (Happel and Murre 1994).

They are utilized to estimate or approximate functions (e.g.,

prominent syllable detection) that can depend on a number

of unknown inputs (e.g., pitch, duration, and intensity).

Neural networks are commonly portrayed as arrangements

of interconnected nodes that send messages to each other,

representing the interconnection of neurons in the brain. The

connections have numeric weights that are tuned with a set

of training data, allowing neural nets to adjust to inputs and

capable of learning. We employed the Matlab fitnet function

with ten hidden nodes (i.e., neurons) to implement the neural

network classifier (MathWorks 2013).

Support vector machines are machine learning models with

associated learning algorithms that recognize patterns (i.e.,

pitch, intensity, and duration of prominent syllables) (Cortes

and Vapnik 1995). Provided with a set of training examples

(e.g., pitch, intensity and duration of syllable), each denoted as

belonging to one of two categories (e.g., prominent syllable or

non-prominent syllable), a support vector training algorithm

constructs a model that designates new examples as belonging

to one category or the other. It is a non-probabilistic binary

linear classifier. A support vector model is a depiction of the

examples as points in space (e.g. pitch, intensity, and duration

as points in 3-dimensional space), plotted so that the examples

of the separate classes (e.g., prominent syllable and non-

prominent syllable) are partitioned by a well-defined gap that

is maximally broad. A new example is then plotted into that

same space and determined to belong to a class depending on

which side of the gap it is on. We utilized the Matlab svmtrain

function to implement the support vector machine classifier

(MathWorks 2013).

Decision tree learning is a machine learning technique

that makes use of a decision tree as a predictive model to

map observations (e.g., pitch, intensity, and duration) about

an item (e.g., syllables) to conclusions about the item’s

target value (e.g., prominent or non-prominent) (Quinlan

1999). It is a predictive modeling approach frequently

found in statistics and data mining. Classification trees are

models where the target variable can take a finite set of

values. Leaves of the tree represent class labels (e.g.,

prominent and non-prominent) and branches are combi-

nations of features that lead to those class labels (e.g.,

pitch, intensity, and duration). Decision tree learning is one

of the more successful machine learning techniques. The

decision tree classifier was implemented with the Matlab

ClassificationTree function (MathWorks 2013).

Bagging and boosting are ensemble classifiers that

combine the results of weak classifiers (typically decision

trees) to improve their performance. Ensemble prediction

usually entails more calculations than predicting with a

single model, thus ensembles may be considered as a

means to make up for poor learning algorithms with extra

computation (Opitz and Maclin 1999). An ensemble is

itself a machine learning technique, because it is trained

and then applied to make predictions. Ensembles are more

flexible in the functions they can model. This flexibility can

lead to them over-fitting the training data more than a

single model would. To compensate for this, ensemble

classifiers employ techniques that reduce problems related

to over-fitting of the training data.

Bagging stands for bootstrap aggregation (Breiman

1994). Bagging is accomplished by replicating portions of

the training data and constructing multiple decision trees

from the replicated data. The output of the ensemble is the

average of the predictions from the individual trees. Bag-

ging was implemented with the Matlab fitensemble func-

tion using 100 decision tree learners (MathWorks 2013).

Most boosting algorithms entail repetitive training of

weak classifiers and adding them to a final strong classifier

(Breiman 1996). When they are added, they are usually

weighted in a manner that is typically connected to the

weak learners’ accuracy. When a weak learner is added, the

outputs of the other weak learners are reweighted. Instan-

ces that are misclassified lose weight and instances that are

classified appropriately gain weight. Thus, future weak

learners concentrate more on the instances that prior weak

learners classified incorrectly. Several boosting algorithms

also decrease the weight of examples that are continually

classified incorrectly. Boosting was realized with the

Matlab fitensemble function using the AdaBoostM1 booster

and 100 decision tree learners (MathWorks 2013).

Resubstitution error is the variation between the actual

responses (i.e., prominent and non-prominent) in the

training data and the responses the tree predicts based on

the input training data (i.e., pitch, intensity, and duration).

If the resubstitution error is high, you cannot expect the

predictions of the tree to be good. A common method of

determining the number of decision trees to use in an

ensemble is to plot resubstitution error versus number of

trees and use a number of decision trees well past the knee

of the curve (MathWorks 2013). Figure 1 illustrates that

100 decision tree learners is sufficient.

None of the classifiers were optimized beyond the

standard settings for the Matlab functions.

3.4 Experimental design

In all the experiments we applied five-fold cross-validation.

The folds were created by randomly assigning the 84
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speakers to folds. Speakers were randomly assigned to

folds rather than the utterances to ensure that training and

testing on the same speaker did not bias the experiments.

Thirty-five experiments were conducted: one for each

combination of the five classifiers (i.e., neural network,

decision tree, support vector machine, bagging, and

boosting) and seven combinations of features (i.e., pitch,

intensity, and duration taken one at a time, two at a time,

and all three at a time).

4 Results

The purpose of this research is to determine which machine

classifier and set of features, chosen from pitch, duration,

and intensity, is the best to automatically detect Brazil’s

prominent syllables. In 35 experiments, we examined the

performance of five machine learning classifiers and seven

sets of features consisting of three features: pitch, intensity,

and duration, taken one at time, two at a time, and all three

at time, in automatically detecting Brazil’s prominent syl-

lables. To evaluate the performance of the five classifiers

and the seven sets of features, accuracy, F-measure, and

Cohen’s kappa coefficient (j) (Cohen, 1960) were used.

Accuracy and F-measure are calculated as follows:

TP ¼ number of syllables where both the computer

and the human identified it as prominent ð9Þ

TN ¼ number of syllables where both the computer

and the human identified it as not prominent ð10Þ

FP ¼ number of syllables where the computer identified

it as prominent and the human identified it as

not prominent ð11Þ

FN ¼ number of syllables where the computer identified

it as not prominent and the human identified it

as prominent ð12Þ

Accuracy ¼ TP þ TNð Þ= TP þ TN þ FP þ FNð Þ ð13Þ

F-Measure ¼ 2TP= 2TP þ FP þ FNð Þ ð14Þ

The confidence interval was assumed to be symmetrical

and was calculated as follows, where n is the number of

folds (5) and r is the standard deviation of the folds:

Confidence interval ¼ � r
2

ffiffiffi

n
p ð15Þ

Table 2 shows the performance of five classifiers: neural

network, decision tree, support vector machine, bagging, and

boosting, using seven different sets of the features: duration,

intensity, and pitch. The accuracy, F-measure, and Cohen’s

kappa coefficient (j) are the mean of the fivefolds.

Bagging is clearly the best classifier for identifying promi-

nent syllables and the best feature set is duration, intensity, and

pitch by all three measures (accuracy = 95.9 ± 0.2 %;

F-measure = 93.7 ± 0.4; j = 0.907 ± 0.005). The second

best classifier is Decision Tree, which is what would be

expected, since Bagging is a method for improving classifi-

cation results by using an ensemble of 100 Decision Trees.

Comparisons between human coder agreements and the

machine are further provided in Sect. 5.

5 Discussion

The results showed that our computer program could detect

prominent syllables with an accuracy of 95.9 % (±0.2 %),

an F-Measure of 93.7 (±0.4), and a j of 0.907 (±0.005)

when compared with humans. These results can be inter-

preted through those from other related computer pro-

grams. They can also be discussed with those between

other human experts.

First, even though, cross-corpus comparisons are not

always reliable, there are other related computer programs

where prominence was identified automatically. Avanzi

et al. (2010) reported F-measures of three French syllabic

prominence detectors: ANALOR (69.7), PROSOPROM

(71.7), and IRCAMPROM (75.4). We achieved an F-mea-

sure of 93.7 (±0.4), which is significantly better than

ANALOR, PROSOPROM, and IRCAMPROM. Obin et al.

(2009) proposed an approach for detecting prominence in a

corpus of French read speech which obtained an F-measure

of 87.5 and an accuracy of 90.4 %. Christodoulides and

Avanzi (2014) trained and evaluated four classifiers on a
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corpus of spontaneous French speech and found the neural

network classifier was the best with and accuracy of 84.2 %

and an F-measure of 79.1. Rosenberg and Hirschberg (2010)

found classifiers trained on Mandarin L1 English could

automatically detect prominence in Mandarin L1 English

with an accuracy of 87.2 % and an F-measure of 86.6 while

those trained on native English speech detected prominence

with an accuracy of 74.8 % and F-measure of 82.4. The

current results are higher than all of these studies with an

F-measure of 93.7 (±0.4) and an accuracy of 95.9 %

(±0.2 %).

The machine classifier performances shown in Table 2

can also be compared to the inter-rater agreement between

two human experts. Price et al. (1988) conducted an inter-

rater agreement study on a set of three stories from the

Boston University Radio News Corpus (Ostendorf et al.

1995) containing 1002 words. They found agreement on

presence versus absence for 91 % of the words. Boundary

tone agreement was 93 % for the 207 words marked by

both labelers with an intonational phrase boundary, and

similarly there was 91 % agreement for 280 phrase accents.

Ludusan et al. (2011) reported an inter-rater agreement of

91.5 % on syllabic prominence. In this case, the human–

human inter-rater reliability was less than the human–

computer inter-rater reliability of 95.9 % for the best

classifier shown in Table 2.

Table 2 Accuracy, F-measure,

and Cohen’s kappa coefficient

(j) and confidence interval for

different classifiers and different

sets of features sorted by

accuracy

Classifier Features Accuracy (%) F-measure j

Bagging Duration, intensity, pitch 95.9 ± 0.2 93.7 ± 0.4 0.907 ± 0.005

Bagging Duration, intensity 95.2 ± 0.3 92.7 ± 0.4 0.891 ± 0.006

Bagging Intensity, pitch 95.1 ± 0.3 92.5 ± 0.5 0.888 ± 0.007

Bagging Duration, pitch 94.2 ± 0.2 91.2 ± 0.4 0.869 ± 0.006

Bagging Intensity 93.3 ± 0.4 90.0 ± 0.5 0.850 ± 0.008

Bagging Duration 90.4 ± 0.4 86.1 ± 0.5 0.787 ± 0.008

Bagging Pitch 89.9 ± 0.4 84.5 ± 0.6 0.769 ± 0.009

Decision tree Duration, intensity, pitch 89.4 ± 0.2 83.8 ± 0.4 0.760 ± 0.005

Decision tree Duration, intensity 88.7 ± 0.3 82.6 ± 0.4 0.742 ± 0.006

Decision tree Intensity, pitch 87.7 ± 0.4 81.1 ± 0.5 0.720 ± 0.008

Decision tree Intensity 86.5 ± 0.3 79.4 ± 0.4 0.694 ± 0.006

Decision tree Duration, pitch 85.7 ± 0.3 77.9 ± 0.4 0.674 ± 0.006

Decision tree Duration 83.2 ± 0.2 75.0 ± 0.2 0.624 ± 0.003

Boosting Duration, intensity, pitch 82.5 ± 0.1 72.3 ± 0.2 0.596 ± 0.003

Boosting Duration, intensity 82.4 ± 0.1 71.9 ± 0.2 0.592 ± 0.003

Neural network Duration, intensity, pitch 82.3 ± 0.1 71.4 ± 0.1 0.587 ± 0.002

Neural network Duration, intensity 82.2 ± 0.1 71.2 ± 0.2 0.584 ± 0.003

Support vector machine Duration, intensity 81.1 ± 0.1 72.5 ± 0.2 0.581 ± 0.002

Decision tree Pitch 80.1 ± 0.4 69.4 ± 0.6 0.546 ± 0.009

Boosting Intensity, pitch 79.2 ± 0.1 66.7 ± 0.1 0.517 ± 0.001

Neural network Intensity, pitch 79.1 ± 0.1 65.6 ± 0.2 0.508 ± 0.002

Boosting Intensity 78.7 ± 0.1 67.9 ± 0.2 0.519 ± 0.003

Neural network Intensity 78.7 ± 0.1 65.4 ± 0.1 0.501 ± 0.001

Neural network Duration, pitch 76.3 ± 0.2 62.4 ± 0.4 0.452 ± 0.005

Boosting Duration, pitch 76.3 ± 0.2 62.5 ± 0.3 0.452 ± 0.005

Support vector machine Intensity, pitch 75.9 ± 1.0 54.8 ± 6.1 0.414 ± 0.046

Support vector machine Duration, intensity, pitch 75.2 ± 1.5 43.8 ± 8.0 0.349 ± 0.064

Support vector machine Duration, pitch 74.5 ± 0.2 66.4 ± 0.1 0.464 ± 0.003

Support vector machine Intensity 73.6 ± 0.7 56.0 ± 2.2 0.377 ± 0.024

Boosting Duration 73.2 ± 0.1 55.3 ± 0.4 0.365 ± 0.004

Neural network Duration 73.0 ± 0.1 57.8 ± 0.4 0.380 ± 0.005

Boosting Pitch 67.6 ± 0.3 35.6 ± 0.7 0.167 ± 0.007

Support vector machine Duration 67.4 ± 0.3 10.1 ± 4.5 0.057 ± 0.026

Neural network Pitch 67.3 ± 0.2 27.3 ± 1.2 0.119 ± 0.008

Support vector machine Pitch 65.7 ± 0.2 40.1 ± 0.3 0.169 ± 0.004
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In another example, where the human–computer inter-

rater reliability of 95.9 % was greater than the human–hu-

man inter-rater reliability, Kang (2010) found the inter-rater

agreement between two phonetic analysts was 86 % or

lower in identifying Brazil’s prominent syllables. The main

problem raised in her study was human coder’s subjectivity

and tiredness involved in the labor-intensive procedure of

prominence analysis. Indeed, prominence analyses are sub-

ject to perceptual limitations (Kang and Pickering 2013).

Discrepancies between the two human analysts tend to take

place in determining the location of prominent syllables in a

series of discourse. Therefore, a calibrating procedure hav-

ing two human analysts reach consensus is required to

ensure the reliability of the analysis; however, this process is

often known to be difficult. Accordingly, the current method

achieving 95.9 % (±0.2 %) agreement between the human

rater and the computer is very promising. Such obtainment

of high agreements was possible due to the consistency of a

computer program, once it was trained on the basis of pro-

tocols used for human coders. While certain ambiguous

parts of speech could involve inconsistent judgments

between two human coders, a computer program can make it

constant and coherent throughout the speech. This com-

puter-based prominence detection suggests a useful resource

to supplement human coding in the field of speech science.

The inter-rater agreement between two human experts

can likewise be contrasted to the machine classifier per-

formances shown in Table 2 with Cohen’s kappa coeffi-

cient. Escudero-Mancebo et al. (2014) noted that in the

current state of art for ToBI research, j ranges from 0.51

(Yoon et al. 2004) to 0.69 (Syrdal and McGory 2000).

Breen et al. (2012) reported j values of 0.52 and 0.77 for

RaP research. The RaP (Rhythm and Pitch) system is a

method of labeling the rhythm and relative pitch of spoken

English. It is an extension of ToBI that permits the capture

of both intonational and rhythmic aspects of speech (Dilley

and Brown 2005). It is based on tone interval theory pro-

posed by Dilley (2005). Nevertheless, the current method

achieved a much greater j value (0.907 ± 0.005) for inter-

rater agreement between the computer and a human than

either the ToBI research or RaP research.

The performances of the support vector machine and the

neural network are very low. For the support vector

machine, this is probably because the support vector

machine is an older machine learning method, which has

been surpassed in performance by more modern methods,

such as ensembles of decision trees. Escudero-Mancebo

et al. (2014) also found that support vector machines under-

performed neural networks and decision trees. A more likely

reason for the poor performance of the support vector

machine and the neural network is that machine learning

techniques (e.g., support vector machines, neural networks,

decision trees, bagging, and boosting) perform differently in

different applications. There is no machine learning tech-

nique that works best in all applications. That is the reason

we compared the performance of more than one machine

learning technique.

6 Conclusions

Overall, the current research has shown that it is possible to

detect the fundamental element of Brazil’s model, prominent

syllables, with an accuracy exceeding that of two human

analysts and other programs that measure prominence. This

is an important achievement because detecting prominent

syllables is the foundation of Brazil’s theory. As we dis-

cussed earlier, Dilley (2005) showed that Pierrehumbert’s

framework (Pierrehumbert 1980; Pierrehumbert and Beck-

man 1988) does not account for the meaning of intonation in

natural discourse. On the other hand, Brazil’s model offers a

meaningful interpretation of natural discourse by emphasiz-

ing the interactional communicative functions in discourse

(Brazil 1997). Thus, automatically detecting prominent syl-

lables is the important first step in automatically interpreting

the interactional aspects of natural discourse.

The next steps are finding classifiers and algorithms with

appropriate feature sets for automatically detecting the other

elements of Brazil’s model (i.e., tone unit, tone choice,

relative pitch, and pitch concord). Automatic interpretation

of natural discourse has many applications in automatic

speech recognition (Bocklet and Shriberg 2009; Hämäläinen

et al. 2007; Litman et al. 2000; Ostendorf 1999), text-to-

speech synthesis, speaker verification and identification

(Shriberg et al. 2005; Escudero-Mancebo et al. 2014),

human-robot interaction (Nadel et al. 2006), automatic

speech scoring systems (Kang et al. 2010; Kang and Wang

2014), computer-aided language learning, forensics, and

early childhood diagnosis of autism (Frith and Happé 1994;

Fine et al. 1991; Paul et al. 2005; Shriberg et al. 2001;

McCann and Peppé 2003). The current study demonstrated

the potential of exploring a new discourse-based intonation

model, i.e., Brazil’s (1997) intonation discourse framework,

to better understand natural discourse in various contexts.
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