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Abstract A text-to-speech synthesis system produces in-

telligible and natural speech corresponding to any given text.

Twomain attributes of a synthesizer are the quality of speech

produced and the footprint size. In the current work, HMM-

based speech synthesizers have been built and assessed using

various kinds of phone-sized units, namely, monophone,

triphone, triphone with contextual features, pentaphone, and

pentaphone with contextual features. It is observed that the

quality of synthetic speech improves with the addition of

contexts, with a mean opinion score (MOS) of 2.4 for a

synthesizer that uses monophones and 3.98 for one that uses

pentaphones with 48 additional contextual features (penta-

phone?). However, the footprint size also increases from

269 to 1840 kB, with the addition of contextual information.

Therefore, based on a desired application, a compromise has

to be made either on the quality or the footprint size. Ana-

lysis reveals that although speech synthesized by a mono-

phone-based system lacks naturalness, it is intelligible. The

lack of naturalness is primarily due to the discontinuities in

the pitch contour. Therefore, an attempt is made to improve

the quality of synthesized speech by smoothening the pitch

contour, thereby retaining the small footprint size, while

attaining quality of a synthesizer that uses contextual in-

formation. It is observed that smoothening the pitch contour

at the word-level yields the best quality, with anMOS of 3.4.

Further, a preference test reveals that 71.25 % of the sen-

tences are similar in quality to the speech synthesized by a

pentaphone? HTS, while 5 % are better.

Keywords Phone-sized units � HMM-based speech

synthesis � Monophone � Triphone � Pentaphone � TD-
PSOLA

1 Introduction

A text-to-speech (TTS) synthesis system is one that is ca-

pable of synthesizing highly intelligible and natural speech,

corresponding to the given text. With the growing need to

enhance human-computer interactions, TTS systems are

required to be embedded in handheld devices, that have a

limited amount of memory. It is therefore important that

the footprint size of the system is reduced, while producing

high quality synthetic speech. Some of the popular ap-

proaches to TTS synthesis are formant synthesis, waveform

concatenative speech synthesis, and HMM-based speech

synthesis (Tabet and Boughazi 2011). Formant synthesis

involves synthesizing speech based on a set of rules

derived upon the analysis of the spectral characteristics of

speech. Formulating these rules accurately is however

difficult. Further, the synthesized speech sounds robotic

and unnatural. Concatenative speech synthesis involves

concatenating pre-recorded speech units based on the given

text. The speech units may be words or sub-word units, like

diphones, phonemes, syllables, etc. Naturalness of syn-

thetic speech varies with the size of the speech units—
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longer the unit, greater the naturalness. However, this ap-

proach requires that all possible units are covered in the

database, thereby requiring a large amount of training data.

Therefore, diphones are most commonly preferred. An

extension of this technique is the unit selection synthesis

(USS), where multiple examples of each unit are stored in

the database, and based on target and concatenation costs,

appropriate units are chosen and concatenated. The amount

of data required is greater, though the quality of speech

produced is also better. In order to reduce the footprint size

of a USS system while preserving the quality of synthetic

speech, (Karabetsos et al. 2009) suggests pruning the

speech database, by keeping only the most frequently

chosen units. The size of the database is further reduced by

eliminating the redundant units as well, that is, if multiple

occurrences of a unit are highly similar, only the desired

number of instances (based on the extent to which the

database is to be pruned) are retained. Code Excitation

Linear Prediction (CELP) is then used to compress the

database.

HMM-based speech synthesis is a statistical parametric

approach, that concatenates models based on the given text,

extracts spectral and excitation features from the utterance

HMM, and synthesizes speech using a source-filter model.

Since, this approach does not require pre-recorded speech

data during synthesis, the footprint size of the system is

much less than that of the USS system. Also, the speech

produced by the HMM-based speech synthesis system is

highly intelligible. The footprint size can be further re-

duced in the following ways (Kim et al. 2006; Toth and

Nemeth 2011): (i) reducing the number of contextual fea-

tures, (ii) using line spectral pair (LSP) instead of the Mel

cepstrum, and (iii) tying the decision trees.

The current work focuses on analyzing the effect of the

speech unit used and the contextual features, on the quality

and footprint size of an HMM-based speech synthesizer,

and on deriving a small-footprint synthesizer capable of

producing speech of high quality. The importance of the

different contextual features used in an English HMM-

based synthesizer is analyzed in (Cernak et al. 2013). It is

observed that syllable and utterance contexts affect the

quality to a greater extent than the phrase and word con-

texts. Analysis on a French synthesizer in (Le Maguer et al.

(2013)) reveals that the phonetic contexts play an important

role in spectrum and duration modeling, syllable contexts

in the fundamental frequency modeling, whereas the

phrase, word and utterance contexts are insignificant.

Bayesian networks are used in (Lu and King 2012), to

identify the combination of features that influence the

quality of synthetic speech, and the rest are discarded. For

this, separate networks are constructed for the spectral,

duration, and F0 features. Six contexts are identified to be

vital for spectral modeling, while nine are identified for

duration and F0 modeling. These contexts are primarily

related to phonemes, syllables, and part-of-speech of the

current word. The importance of high level contextual

features, namely, the phrase breaks, tones and breaks

indices (ToBI), and part-of-speech are discussed in (Watts

et al. 2010). With the discussed literature under consid-

eration, the current work analyzes the effect of choice of

speech units, namely, monophone, triphone, pentaphone,

and triphone and pentaphone with syllable, word, phrase,

and utterance features-based synthesizers. These are de-

veloped with Tamil (an Indian language) data and analyzed

in terms of quality and footprint size. Further, an attempt is

made at improving the quality of speech synthesized by a

monophone-based synthesizer by modifying the pitch

contour using the time-domain pitch synchronous overlap

and add (TD-PSOLA) technique, thereby resulting in a

small-footprint synthesizer capable of producing high

quality speech.

The paper is organized as follows: Sect. 2 presents an

overview of HMM-based speech synthesis, Sect. 3 dis-

cusses the requirements for building the synthesizers, Sect.

4 analyzes the amount of data required to build the syn-

thesizers, Sect. 5 elaborates the different synthesizers de-

veloped in the current work, Sect. 6 compares the

performance of the synthesizers in terms of quality and

footprint size, Sect. 7 discusses the improvements imposed

on the monophone-based synthesizer, and Sect. 8 con-

cludes the paper.

2 HMM-based speech synthesis

HMM-based speech synthesis (Zen et al. 2009) is a sta-

tistical parametric approach, involving a training and a

synthesis phase, as shown in Fig. 1 (redrawn from Zen

et al. 2007). At the training phase, initially spectral and

excitation features are extracted. The spectral features used

are 105-dimensional and correspond to the Mel generalized

cepstral coefficients (35) and their first (35) and second

(35) derivatives. The 3-dimensional excitation features

correspond to the log fundamental frequency and its dy-

namic features. These features are used to train four-stream

context-independent and context-dependent HMMs. The

models are trained with five states and a single mixture

component per state. Duration Gaussian models (with one

state and one mixture component) are also trained for each

speech unit. The basic unit used in an HMM-based syn-

thesizer is a pentaphone with 48 additional contextual

features. Owing to the large amount of context information

considered, it would not be possible to create a database

that covers all possible contexts/units. Therefore, in order

to accommodate unseen contexts, tree-based clustering is

performed.
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At the synthesis phase, given a sentence, the corre-

sponding full-context label file is first generated. Based on

the label file, appropriate HMMs are chosen and concate-

nated to form an utterance HMM. Spectral and excitation

features are extracted from the utterance HMM, using a

speech parameter generation algorithm, and these are used

with a Mel Log Spectral Approximation (MLSA) filter to

synthesize speech.

3 Requirements to build an HMM-based
synthesizer

In order to develop an HMM-based speech synthesis sys-

tem (HTS), capable of synthesizing high quality speech,

the following are required to be derived accurately:

– Segmented speech data

– Utterances derived in the FestVox framework

– Question set

These are discussed in the following sections.

3.1 Speech data

The speech corpus consists of 12 h of Tamil data recorded

from a professional, native Tamil female speaker. The

recording is performed in a studio environment at a sam-

pling rate of 16 kHz. The speech data consists of sentences

from the Tamil novel, ‘‘Ponniyin Selvan’’, news, sports,

and science articles. The data is segmented at the phoneme

level as described below.

(1) Initially 50 sentences, corresponding to five minutes

of speech data are manually segmented.

(2) Context-independent HMMs, with three states and

five mixture components per state, are trained for

each phoneme, using the manually segmented data.

(3) Using these models, forced Viterbi alignment pro-

cedure is carried out on the entire database.

(4) Context-independent HMMs are now trained for

each phoneme using the entire database.

(5) Steps 3 and 4 are repeated till the phoneme

boundaries obtained are satisfactory (usually, four

or five times).

Fig. 1 HMM-based speech

synthesis
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3.2 Generation of utterances in the FestVox

framework

Utterance is the basic structure in FestVox (Black et al.

1998). It contains information about contextual features

that are used to generate full-context labels in HTS. In

order to generate these utterances a phoneset and a set of

letter-to-sound (LTS) rules are to be formulated to obtain

the phonetic transcription corresponding to any given text.

3.2.1 Phoneset

Tamil has 40 phonemes, of which 13 are vowels and 27 are

consonants. Originally Tamil did not consist of fricatives,

namely, /f/, /sx/, /h/, /s/. However, these were later included

to accommodate words borrowed from other languages,

and these phonemes are also included in the current work.

The common phoneset (CPS) notation, introduced in (Ra-

mani et al. 2013), is used here. A table (Fig. 2) listing the

phonemes of Tamil and their corresponding International

Phonetic Alphabet (IPA) and common phoneset notations,

is reproduced here for clarity.

The phoneset in the FestVox framework consists of a set

of features defined for each phoneme of the language.

These features are based on the place and manner of ar-

ticulation, some of which are vowel height, vowel length,

voicing, and consonant type. For example, the phoneme /a/

is defined to be an unrounded, short vowel, /b/ to be a

voiced, labial, stop consonant, etc.

3.2.2 Letter-to-sound rules

The letter-to-sound (LTS) rules are used to break words into

the required subword units which, in the current work, are

phonemes. Unlike English, the graphemes of Tamil are

generally associated with a single phoneme, with the ex-

ception of the consonants, /c/, /p/, /tx/, /t/, and /k/, that are

mapped to their voiced counterparts (/j/, /b/, /dx/, /d/, and /g/)

in the following contexts.

– Preceded and succeeded by vowels

– Preceded by semivowels

– Preceded by nasals with the same place of articulation

(eg: velar stop /k/ preceded by velar nasal /ng/)

Further, /c/ is replaced by /s/ when it occurs at the begin-

ning of a word, when /rx/ occurs in pairs, the first /rx/ is

replaced by /tx/, and the vowel /u/ is shortened to /eu/ when

it occurs at the end of a word. The LTS rules formulated for

Tamil are shown in Fig. 3, with examples for each rule.

3.3 Question set

The question set is the primary requirement for tree-based

clustering in an HMM-based speech synthesis system. It

consists of questions/categories based on the place and

manner of articulation, and these are defined for each

context, namely the center, left, left–left, right and right–

right phonemes. The questions range from general ones

such as vowels/consonants, back, front phonemes, to more

specific ones, like front consonants, voiced stop conso-

nants, unrounded vowels, fricatives, fortis, etc. The more

relevant the questions are to the language considered, the

more accurate the clustering (Young et al. 2002). In this

regard, 57 questions are defined for Tamil and each

phoneme is placed in the appropriate categories (the same

phoneme can occur in multiple categories). Table 1 lists

some of the questions in the Tamil question set, their de-

scription, and the phonemes that fall into each of these

categories.

4 Duration analysis

In order to determine the amount of data to be used to

carry out the experiments on the effect of speech units

and contextual features on the quality and footprint size

of an HMM-based synthesizer, an analysis is performed.

Synthesizers are trained using 1 to 12 h of speech data.

The quality of speech synthesized is assessed by a lis-

tening test conducted with 10 listeners, in a laboratory

environment. Each listener is asked to rate 10 synthetic

sentences on a scale of 1 to 5, where 1 corresponds toFig. 2 Common phoneset (Ramani et al. 2013)
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Fig. 3 Letter-to-sound rules for

Tamil

Table 1 Categories in a Tamil question set

Category Description Phonemes

Vowels Sounds produced by exciting a fixed vocal tract shape /a/, /aa/, /i/, /ii/, /e/ /ee/, /u/, /uu/, /o/, /oo/

Non-anterior consonants Palatal and velar consonants /c/, /j/, /sx/, /nj/, /k/, /g/, /h/, /ng/, /y/

Stop consonants Consonants produced by blocking the vocal tract to cease airflow /p/, /b/, /t/, /d/ /k/, /g/

Lenis consonants Consonants produced with less energy /j/, /b/, /d/, /d/, /g/

Negative strident Fricatives that are softly uttered /h/, /t/, /d/

Int J Speech Technol (2015) 18:405–418 409
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unintelligible and 5 corresponds to highly intelligible. The

mean scores obtained are tabulated in Table 2. It is ob-

served that the quality of speech synthesized increases

with increase in data, however the difference in quality is

not significant, as revealed by the scores in Table 2.

Further, even with one hour of data, the quality of syn-

thetic speech is reasonably good, with an MOS of 3.98.

Therefore, for the following experiments, one hour of

speech data is used.

5 Phone-sized units-based speech synthesizers

In order to analyze the effect of the contextual features on

the quality of synthetic speech, the following HMM-based

speech synthesizers are developed:

(1) Monophone

(2) Triphone

(3) Triphone with additional contextual features

(4) Pentaphone

(5) Pentaphone with additional contextual features

These synthesizers are described as follows.

5.1 Monophone-based synthesizer

A monophone-based synthesizer does not use any contex-

tual information. A few examples of how the data is

transcribed in this system are as follows:

– aagaayam (meaning ‘‘sky’’)—/aa/, /g/, /aa/, /y/, /a/, /m/

– pattam (meaning ‘‘kite’’)—/p/, /a/, /tx/, /tx/, /a/, /m/

– magizhchchi (meaning ‘‘joy’’)—/m/, /a/, /g/, /i/, /zh/, /c/,

/c/, /i/

In such a case, the number of models trained is equal to the

number of phonemes in a language. Tamil consists of 40

phonemes and so the monophone-based synthesizer in the

current work trains only 40 context-independent models.

There are a minimum of four examples per phoneme, as for

/f/ and a maximum of 5117 examples, as for /a/, in the one

hour of data considered. The distribution of phonemes and

other context-dependent phone-sized units in this one hour

of data is portrayed in Fig. 4. Since the system consists of

just 40 context-independent models, the footprint size

would be small. Further, since there will be no unseen

contexts, tree-based clustering is not required.

The steps involved in training a monophone-based

synthesizer are as follows:

(1) Derive context-independent label files from the

Festival utterances generated as in Sect. 3.2.

(2) Extract the excitation and spectral features described

in Sect. 2.

(3) Train context-independent (CI)/monophone models.

Table 2 Duration analysis—mean opinion scores

Duration

(h)

1 2 3 4 5 12

MOS 3.98 4 4 4.1 4.1 4

1−500 501−1000 1001−1500 1501−2000 2001−5500
0

10

20

N
o.

 o
f 

un
its

(a) Monophone

1 2 3 4 5 6
0

2

4

6
x 10

4 (d) Triphone+

1−5 6−10 11−15 16−20 21−25 26−30 31−40 41−50 51−150
0

1

2

3
x 10

4

Frequency of occurrence

(c) Pentaphone

1 2 3
0

2

4
x 10

4

Frequency of occurrence

(e) Pentaphone+

1−50 51−100 101−150 151−200 201−350
0

2000

4000

6000
(b) Triphone

Fig. 4 Distribution of units in the speech corpus
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5.2 Triphone-based synthesizer

In a triphone-based synthesizer, one context each, to the

right and left of a phoneme are considered. In this case, the

words in the database are transcribed as

– aagaayam—/x-aa?g/, /aa-g?aa/, /g-aa?y/, /aa-y?a/,

/y-a?m/, /a-m?x/

– pattam—/x-p?a/, /p-a?tx/, /a-tx?tx/, /tx-tx?a/, /tx-

a?m/, /a-m?x/

– magizhchchi—/x-m?a/, /m-a?g/, /a-g?i/, /g-i?zh/, /i-

zh?c/, /zh-c?c/, /c-c?i/, /c-i?x/

Since the number of units in such a synthesizer would be

larger, the number of models and hence the footprint size is

also greater. The one hour of data used to train the syn-

thesizer contains 5238 triphone units, with a minimum of

one example per unit as for /a-b?aa/, up to 337 examples,

as for /g-a?lx/. To accommodate unseen contexts that

might arise at the synthesis phase, tree-based clustering is

performed. In this case, the question set contains questions

pertaining to the center phoneme, and the left and right

contexts. The size of the tree increases with addition in

context, and adds to the footprint size of the system.

The sequence of steps involved in training this system

are the following:

(1) Derive context-dependent (CD)/triphone label files

from Festival utterances.

(2) Extract spectral and excitation features.

(3) Train CI models.

(4) Copy the CI HMMs to CD HMMs.

(5) Train CD HMMs.

(6) Perform tree-based clustering using the question set

formulated.

5.3 Pentaphone-based synthesizer

In a pentaphone-based speech synthesizer, two contexts

each to the left and right of a phoneme are considered.

Words are now transcribed as shown below:

– aagaayam—/x^x-aa?g=aa/, /x^aa-g?aa=y/, /aa^g-
aa?y=a/, /g^aa-y?a=m/, /aa^y-a?m=x/, /y^a-m?x=x/

– pattam—/x^x-p?a=tx/, /x^p-a?tx=tx/, /p^a-tx?tx=a/,

/a^tx-tx?a=m/, /tx^tx-a?m=x/, /tx^a-m?x=x/

– magizhchchi—/x^x-m?a=g/, /x^m-a?g=i/, /m^a-
g?zh=c/, /a^g-i?zh=c/, /g^i-zh?c=c/, /i^zh-c?c=i/,

/zh^c-c?i=x/, /c^c-i?x=x/

The number of pentaphone units in the one hour of data

used to train the system is 23,382, with one to 81 examples

per unit. Owing to a greater number of units, the number of

HMMs and hence the footprint size of the system will be

larger. Tree-based clustering is performed in this synthe-

sizer as well, to accommodate unseen contexts. The ques-

tion set in this case contains questions pertaining to the

right-right and left-left contexts in addition to the left and

right contexts used in the triphone-based synthesizer. The

procedure used to train this synthesizer is similar to that

described for the triphone HTS, described in Sect. 5.2.

5.4 Triphone and pentaphone with additional

contextual features-based synthesizers

In these synthesizers, in addition to the phoneme contexts,

syllable, word, phrase, utterance, and high-level contexts (a

total of 48 additional contexts) are added to each phoneme.

Some of these additional contextual features are as follows:

– Position of phoneme within current syllable

– Position of syllable in word and phrase

– Vowel identity within current syllable

– Part of speech of preceding, current, and succeeding

words

– ToBI end tone of the phrase

The number of units in such a triphone-based synthesizer is

42,095 and that in the pentaphone-based synthesizer is

42,430 (with mostly just one example per unit), further

increasing the footprint size. The small difference between

the number of units in these two synthesizers can be rea-

soned as follows: A triphone-based synthesizer considers

only the right and left contexts and so, there would be a

large number of examples, occurring in different contexts,

for each speech unit, unlike a pentaphone-based synthe-

sizer. Therefore, the addition of 48 other features to the

triphones results in an exorbitant increase in the number of

units (about eight times), whereas the number of penta-

phone units after the addition of contextual features is less

than twice the number before, resulting in almost the same

number of units as in the triphone with additional features-

based synthesizer. Tree-based clustering is performed in

these cases as well, and the question set used is similar to

that used for the triphone and pentaphone-based

synthesizers.

The performance of these systems is described in the

following section.

6 Performance analysis

As discussed in Sect. 1, two important attributes of syn-

thesizers are the footprint size and the quality of synthe-

sized speech. The performance of the systems based on

these attributes is discussed below.

Int J Speech Technol (2015) 18:405–418 411

123



6.1 Footprint size

The footprint size of the systems developed are listed in

Table 3. The monophone-based synthesizer has the

smallest footprint size of 296 kB since the number of units

and hence the number of models is less (only 40, equal to

the number of phonemes). With the addition of context, the

size of the system increases owing to the greater number of

models. Further, the size of the trees is also larger with

increase in contextual information. Therefore, the synthe-

sizer that uses pentaphones with additional contextual

features possesses the highest memory requirement of

1840 kB.

6.2 Quality of synthesized speech

The quality of synthesized speech is assessed subjectively

by the mean opinion score (MOS) and objectively by

comparison of the source and system features, namely the

pitch contour and spectrogram respectively.

6.2.1 Mean opinion score

In order to assess the quality of the speech synthesized by

the systems developed, 20 out-of-domain sentences, of

which 10 are semantically unpredictable, are played to 10

listeners. The listening test is conducted in a laboratory

environment. The listeners are asked to rate the synthesized

speech on a scale of one to five, where a score of one

indicates that the speech is unintelligible and very annoy-

ing to listen to, while a score of five indicates that the

speech is highly intelligible and pleasant, as discussed in

Sect. 4. The mean scores obtained for each of the synthe-

sizers is portrayed in Fig. 5.

It is observed that the speech synthesized by all the

synthesizers is intelligible, however, naturalness improves

with the addition of context. Hence, the monophone-based

synthesis system possesses the lowest MOS of 2.4, while

the synthesizer that uses pentaphones with additional

contextual features has the highest MOS of 3.98.

6.2.2 Analysis of spectral features

The spectrogram of the speech synthesized by each system

is compared with the natural speech. It can be observed

from Fig. 6, that shows the spectrogram of the utterance

‘‘Adhanaal therindhu konden’’ (meaning, ‘‘So I knew’’)

synthesized by all systems, that co-articulation is better

captured with the addition of contextual information.

While this is observed between the monophone and other

systems, there is no significant improvement among others.

The inability of the monophone HTS to capture co-ar-

ticulation is reflected in the flat and discontinuous formant

contour of the speech synthesized by this system, as ob-

served in the encircled regions of Fig. 6.

6.2.3 Analysis of pitch contour

The pitch contours of the natural and corresponding syn-

thesized speech from all the synthesizers are extracted

using the Entropics Signal Processing Software (ESPS)

algorithm, and compared. The pitch contours of the sen-

tence ‘‘Adhanaal therindhu konden’’ are shown in Fig. 7. It

is observed that the pitch contour of the speech produced

by the monophone-based synthesizer has a large number of

discontinuities, while those of the other synthesizers are

relatively smoother. The prosody is better captured with the

addition of contextual features. The degradation in the

quality of the speech synthesized by a monophone-based

system is primarily due to the inability of the system to

properly model the prosody.

6.3 Conclusions drawn

From the analyses performed, it is observed that even in the

absence of any contextual information, HMM-based syn-

thesizers produce intelligible speech. With the addition of

context, naturalness of the synthetic speech improves,

however, the footprint size of the system also increases.

Table 3 Footprint size of HMM-based synthesizers

Synthesizer Footprint size (kB) Number of units

Monophone 296 40

Triphone 1324 5238

Pentaphone 1472 23,382

Triphone? 1776 42,095

Pentaphone? 1840 42,430

Monophone Triphone Triphone+ Pentaphone Pentaphone+
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

M
ea

n 
O

pi
ni

on
 S

co
re

2.4

3.2

3.75
3.7

3.98

Fig. 5 Mean opinion scores of synthesized speech
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Fig. 6 Spectrograms of the

utterance ‘‘Adhanaal therindhu

konden’’ a Natural speech.

b Monophone. c Triphone.

d Pentaphone. e Pentaphone

with features—based HTS

synthesized speech

Fig. 7 Pitch contour of the

sentence ‘‘Adhanaal therindhu

konden’’ a Natural speech.

b Monophone. c Triphone.

d Pentaphone. e Pentaphone

with features—based HTS

synthesized speech
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Therefore, in applications where a small-footprint system is

required and naturalness is not a primary requirement, a

monophone-based HTS would suffice, whereas pentaphone

with additional contextual features-based HTS can be used

in applications that require highly intelligible and natural

speech. A compromise has to be made between the quality

and the footprint size. In the current work, an attempt is

made to improve the quality (specifically, prosody) of

speech synthesized by the monophone-based HTS, to

derive a small-footprint system that produces natural and

intelligible speech.

7 Improving the Quality of Monophone-Based
HTS

In order to develop a synthesizer that has a reduced foot-

print size and also produces speech of high quality, the

speech produced by the monophone-based synthesizer is

processed using time-domain pitch synchronous overlap

and add (TD-PSOLA), to modify the pitch contour. This is

elaborated in the following sections.

7.1 Pitch contour modification using TD-PSOLA

TD-PSOLA is used to modify the prosody of a speech

signal, while retaining its naturalness. This technique in-

volves decomposing speech into frames of length equal to

two pitch periods, and overlapping and adding these seg-

ments as desired to obtain the required prosody. Since TD-

PSOLA operates pitch synchronously, it requires an esti-

mate of the pitch marks or instants of significant excitation.

Literature describes several techniques for the estimation

of the instants of significant excitation/glottal closure in-

stants from a speech signal, namely, group delay-based

algorithm, dynamic programming projected phase-slope

algorithm (DYPSA), zero frequency filtering (ZFF), etc. A

description of these algorithms and more is provided in

(Drugman et al. 2012). In the current work, DYPSA is used

to estimate the glottal closure instants (GCIs).

The pitch contour is generally flat, rising, falling, hat-

shaped, or bucket-shaped. In order to generate a flat pitch

contour, the GCIs are modified such that the differences

between successive instants are equal. In order to incor-

porate any of the other contours on to a speech signal,

polynomial curve fitting can be used. To fit a rising or

falling contour, polynomials of order 1 can be used,

whereas to fit hat-shaped and bucket-shaped contours,

polynomials of order 2 or higher can be used. The poly-

nomials are derived based on the desired maximum and

minimum pitch periods. Once the appropriate polynomials

are designed, GCIs corresponding to the desired pitch

contour are generated.

Next, the given speech signal, sðnÞ is split into seg-

ments, siðnÞ, of length equal to twice the pitch period, P

and centered at the instants of excitation, using a Hamming

window, wðnÞ. This is shown in the following equation:

siðnÞ ¼ sðnÞwðn� iPÞ ¼ sðn� iPÞwðn� iPÞ ð1Þ

Segments of speech, siðnÞ with GCIs closer to the new

sequence of instants are chosen, and overlapped and added

appropriately to obtain speech, s0ðnÞ, possessing the desired
pitch contour P1, as shown below.

s0ðnÞ ¼
XN

i¼1

siðn� iðP� P1ÞÞ ð2Þ

Figure 8 portrays the TD-PSOLA technique applied to a

voiced segment of speech, to increase its pitch period by a

factor of two.

7.2 Modifying pitch contour of monophone HTS

synthesized speech

As observed in Sect. 6.2.3, the pitch contours of natural

speech and speech synthesized by synthesizers that take

contextual features into consideration, are smoother than

that of the monophone-based HTS synthesized speech. In

this regard, several modifications are induced on the pitch

contour of speech synthesized by the monophone-based

synthesizer. The contour is modified word-by-word. The

word boundaries are derived from the phoneme boundaries

obtained from hts engine. Initially, to smoothen the con-

tour, a polynomial of order one is fitted over the original

contour, word-by-word. However, in such a case the pitch

contour is flat, resulting in highly monotonous speech. In

attempting to fit the contour of natural speech, it is ob-

served that several words possessed a hat-shaped contour.

Therefore, hat-shaped contours are then fitted on to each

word. The different variations attempted in fitting hat-

shaped contours are as follows:

(1) Hats on each word, with minimum and maximum

pitch periods equal to �5% of the average, with a

flat contour at the utterance level

(2) Hats on each word, with minimum and maximum

pitch periods equal to �10% of the average, with a

flat contour at the utterance level

(3) Hats on each word, with a hat-shaped contour at the

utterance level, such that the minimum and max-

imum pitch periods are �10% of the average

(4) Hats on each word, with a rising contour at the

utterance level, such that the minimum and max-

imum pitch periods are �10% of the average

(5) Hats on each word, with a falling contour at the

utterance level, such that the minimum and max-

imum pitch periods are �10% of the average
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Fig. 8 Reducing the pitch

period by a factor of 2 using

TD-PSOLA

Fig. 9 Pitch contour of the

utterance ‘‘Iwargaludaya

wilayaateu matrawargaleukeu

vinayaaga irukiradhu’’ a Speech

synthesized by the monophone-

based HTS. b Pitch contour.

c Contour modified by fitting

hats on each word. d Hats on

each word, with a global falling

contour. e Hats on each word,

with a global hat-shaped

contour. f Contour of each word

smoothened with a polynomial

of order 3. g Hats on each

syllable. h Contour of each

syllable smoothened using a

polynomial of order 2
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In all the above cases, hats on each word are modeled using

polynomials of order 2 to 6 and the average pitch period is

calculated for each word. This is because when the average

is calculated over the entire speech utterance, the resulting

synthesized speech sounds unnatural and robotic. The

quality of speech with a flat contour at the utterance level is

better than the original monophone HTS-synthesized

speech. However, the hat, rising, and falling contours at the

utterance level produce unnatural-sounding speech.

Apart from fitting hats to each word, polynomials of

order 2 to 6 are fitted on to the original contour of the

monophone HTS-synthesized speech to smoothen it. On

comparison with natural speech and speech synthesized by

the synthesizers that use contextual information, it is ob-

served that the pitch contour modified in the afore-men-

tioned methods, is overly smoothened. Therefore, hat-

shaped contours with minimum and maximum pitch

periods equal to �5% of the average (calculated over each

syllable), are fitted over each syllable using polynomials of

order 2. Also polynomials of order 2 are fitted over the

existing syllable contour of the monophone HTS-synthe-

sized speech. Figure 9 shows some of the pitch contour

variations attempted on the utterance, ‘‘Iwargaludaya

wilayaateu matrawargaleukkeu vinayaaga irukiradhu’’

(meaning ‘‘Their games create trouble for others’’), syn-

thesized by a monophone-based synthesizer.

7.3 Evaluation of modified monophone HTS

synthesized speech

The quality of synthetic speech bearing the contours dis-

cussed above are assessed by a preference test and the

mean opinion score. The quality of speech produced by

incorporating each of the above-mentioned modifications

Table 4 Preference test (modified monophone HTS vs. pentaphone? HTS) and mean opinion scores for modified monophone HTS-synthesized

speech

Level of modification Method Order of the

polynomial

Quality compared to

Pentaphone? HTS

MOS

Better (%) Similar (%) Worse (%)

Word level Hats with min and max pitch ¼±10 % of the average 2 0 45 55 3.12

4 0 15 85 2.56

6 0 0 100 1.04

Hats with min and max pitch ¼±5 % of the average 2 8.75 65 26.25 3.34

4 3.75 20 76.25 3

6 0 2.5 97.5 2.92

Smoothen contour 2 5 71.25 23.75 3.4

4 8.75 58.75 32.5 3.4

6 8.75 53.75 37.5 2.84

Syllable level Hats with min and max pitch ¼±5 % of the average 2 10 46.25 43.75 2.4

Smoothen contour 2 7.5 43.75 48.75 2.62

Table 5 Preference test—modified monophone HTS versus pentaphone HTS

Level of modification Method Order of the

polynomial

Quality compared to Pentaphone HTS

Better (%) Similar (%) Worse (%)

Word level Hats with min and max pitch ¼±10 % of the average 2 0 50 50

4 0 23 77

6 0 0 100

Hats with min and max pitch ¼±5 % of the average 2 10 65 25

4 4.5 20 75.5

6 0 2.5 97.5

Smoothen contour 2 5 72.75 22.25

4 9 58 33

6 8.5 54.5 37

Syllable level Hats with min and max pitch ¼±5 % of the average 2 10 47 43

Smoothen contour 2 7 45.5 47.5
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to the pitch contour, is compared with the speech produced

by the pentaphone with additional contextual fea-

tures(pentaphone?)-based synthesizer, and listeners are

asked to identify if the former is better, worse, or of the

same quality as the latter. The test is conducted in a

laboratory environment, with a group of 10 listeners. The

pentaphone? HTS synthesized speech is played first fol-

lowed by the corresponding modified monophone HTS

synthesized speech. 10 sentences are played per system.

The preference test is repeated for each of the modifica-

tions attempted on the monophone HTS synthesized

speech. The results of the tests are tabulated in Table 4. It is

observed that, although the pitch contour appears smoother

when modifications are imposed at the word-level, per-

ceptually the utterances modified by smoothening the pitch

contour at the word-level, with polynomials of order 2, is

better than the rest. It bears the closest resemblance to the

pentaphone? HTS synthesized speech, with 71.25 % of the

sentences sounding similar and 5 % sounding better than

the pentaphone? HTS synthesized speech. A hat-shaped

contour fitted on each word, using a second order poly-

nomial, with minimum and maximum pitch periods equal

to �5% of the average pitch period, also produces speech

of good quality. In this case, 65 % of the utterances are

similar to and 8.75 % are better than the corresponding

pentaphone? HTS synthesized utterances. The MOS ob-

tained for these cases are 3.4 and 3.34 respectively.

Similar preference tests are performed with speech syn-

thesized by triphone, pentaphone, and triphone? HTS, as

reference, and comparing them with those synthesized by

the modified monophone HTS. The results of these tests are

tabulated in Tables 5, 6, and 7. It is observed that in these

tests also, smoothening the pitch contour at the word-level,

using a polynomial of order two, yields the best result. In

this case, with the pentaphone-based HTS as reference,

77.75 % of the modified monophone HTS synthesized

Table 6 Preference test—modified monophone HTS versus triphone? HTS

Level of modification Method Order of the

polynomial

Quality compared to triphone? HTS

Better (%) Similar (%) Worse (%)

Word level Hats with min and max pitch ¼±10 % of the average 2 0 45 55

4 0 20 80

6 0 0 100

Hats with min and max pitch ¼±5 % of the average 2 8.75 65.75 25.5

4 3 20 77

6 0 2.75 97.25

Smoothen contour 2 6 72 22

4 8.75 60 31.25

6 9.5 54 36.5

Syllable level Hats with min and max pitch ¼±5 % of the average 2 10 47 43

Smoothen contour 2 7.5 44 48.5

Table 7 Preference test—modified monophone HTS versus triphone HTS

Level of modification Method Order of the

polynomial

Quality compared to triphone HTS

Better (%) Similar (%) Worse (%)

Word level Hats with min and max pitch ¼±10 % of the average 2 5.5 50 44.5

4 0 20.5 79.5

6 0 0 100

Hats with min and max pitch ¼±5 % of the average 2 8.75 70 21.25

4 5 24.75 70.25

6 0 3.5 96.5

Smoothen contour 2 11 73.25 15.75

4 7.75 65.5 26.75

6 9 54 37

Syllable level Hats with min and max pitch ¼±5 % of the average 2 11.75 45.25 43

Smoothen contour 2 7.5 45.75 46.75
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utterances are of similar or better quality than the reference.

When compared with the triphone? and triphone HTS, 78

and 84.25 % of the modified monophone HTS utterances

are of similar or better quality, respectively.

8 Conclusion

The current work focuses on developing a synthesizer that

produces intelligible and natural speech, and yet bears a

small footprint size, suitable for use in hand-held devices.

In this regard, phone-sized units-based HTS are developed

with one hour of Tamil data, and they are assessed in terms

of quality and footprint size. It is observed that speech

produced by all the synthesizers is intelligible, though the

naturalness improves with the addition of contextual in-

formation. The footprint size of the system also increases

with the addition of context. Therefore, a monophone-

based HTS bears the lowest footprint size, the speech

synthesized by it lacks naturalness, owing to the discon-

tinuous pitch contour. In an attempt to reach a compromise

between the two attributes, the speech synthesized by the

monophone-based HTS is processed using TD-PSOLA, to

smoothen the pitch contour and thereby increase its

naturalness. The MOS of speech synthesized by the

monophone-based synthesizer, increases to 3.4 from 2.4,

post pitch contour modification.
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