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Abstract Dialect variations of a language represent con-
siderable challenges for sustained performance of speech
systems. In a given language space, estimation of similar-
ity or diversity between multiple dialects provides valuable
information for speech researchers. In the present study, fun-
damental differences between dialects or closely related lan-
guages are explored based on available speech data from
those dialects/languages. First, a method is proposed to mea-
sure spectral acoustic differences between dialects based on a
volume space analysis within a 3D model using log likelihood
score distributions derived from traditional Mel Frequency
Cepstral Coefficient features and Gaussian Mixture Models.
Next, text-independent prosody features based on pitch and
energy contour primitives are proposed to study excitation
structure differences between dialects. The proposed dialect
proximity measures are evaluated and compared on a corpus
of Arabic dialects, as well as a corpus of South Indian lan-
guages, which are closely related languages. The presented
measures are shown to be consistent and repeatable.
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Assessing the proximity between multiple dialects of a
language is an interesting yet challenging research topic on
which little if any work has been done. Such assessment
shows how confusable/distinguishable dialects are in the
given language space. The goal of this study is to develop a
consistent measurement strategy of dialect differences which
helps study groups of dialects within new languages. Assess-
ing the proximity of dialects also allows speech researchers
to conserve resources, if additional acoustic/language mod-
els are not needed (e.g., can an American English trained
ASR system perform satisfactory for UK English? or Cardiff,
Bradford, or such sub-dialects of UK English?).

From an assessment perspective, one could consider sep-
aration based on (i) physical speech production differences,
(e.g., measuring and comparing phoneme or vowel spaces,
etc.), (ii) linguistic speech formulation differences, (e.g.,
studying the history of dialect evolution), (iii) perception
assessment traits, and (iv) automatic speech system clas-
sifier differences. All four are viable, and one would eas-
ily expect that differences which are statistically significant
in one domain, may not carry over to another. Here, we
focus on automatic methods to help speech scientists, engi-
neers, and linguists develop better understanding of dialects.
Note that the fundamental challenge in this study is the lack
of ground-truth on what is actually the difference between
dialects/languages.

Similarities between different languages have been stud-
ied in the literature for a number of reasons such as: adapt-
ing the speech recognition system of one language for use in
other languages (Sooful and Botha 2001), and leveraging dif-
ferences in the acoustic phone space based on multi-lingual
phoneme modeling (Kohler 1996). Kohler (1996) applied
the log likelihood measure as a numerical distance to deter-
mine sound similarities between languages. This would help
in the formulation of multi-lingual phoneme models to be
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employed in multi-lingual speech recognition systems. Yin
et al. (2007) measured language differences in order to auto-
matically cluster similar languages for hierarchial language
identification. Similarities between languages have also been
studied from a linguistic point of view. Bradlow (2008) rated
the similarity of various languages to English based on native
and non-native listeners’ perceived distance from English.
Walter (2009) classified languages based on their perceptual
sound structure similarity to English.

Phonetic distances between different dialects of the same
language have been computed, as well. A dialect is a variety
of alanguage that is used by a group of speakers belonging to
some geographical region. Dialects of a language are differ-
ent in phonetic, grammatical, and lexical features. The dis-
tinction between a dialect and a language is sometimes con-
tradictory. Mutual comprehensibility is a primary criterion
for distinguishing a dialect from a language. Unlike speakers
of different languages, speakers of different dialects of a lan-
guage generally understand each other, even with some dif-
ficulty (Curzan and Adams 2006). Dialectology is the study
of dialects, as well as the different features that focuses on
geographic variations within a language.

Recently, there has been interest in developing computa-
tional dialect comparison and classification methods in order
to divide geographical maps into dialect areas. In the liter-
ature, considerable linguistic work has been performed on
the calculation of pronunciation differences between dialects
(Heeringa 2004; Heeringa and Hinskens 2012; Nerbonne et
al. 1996; Wieling et al. 2011). These are non-probabilistic
approaches based on average string distances between corre-
sponding words, or phones pronounced in different dialects.
Various string distances are used for this purpose, such as
Levenshtein, Euclidean, and Manhattan distance. The study
by Heeringa et al. (2006) explored and evaluated string dis-
tance algorithms for modeling dialect distances. A related
study Nerbonne and Heeringa (2001), considered a number
of methods for measuring phonetic distance between dialects.
Dialect differences in the vowel spaces and their impact on
the perception of vowels in different dialects have also been
studied by Faber et al. (1994). A number of linguistic studies
have applied statistical data driven approaches to quantify
differences between phonetic features of dialects (Shackle-
ton 2007; Wieling et al. 2013; Nerbonne 2009).

Apart from linguistic approaches, little if any work has
been done to perform a meaningful proximity assessment
between dialects. In this study, we present a procedure for
assessing the separation or proximity between dialects based
on only the available un-transcribed training data. The pro-
posed automatic dialect assessment framework shows how
accurately the dialects can be distinguished. Therefore, it pro-
vides some sense of the resulting dialect classification system
performance: an important property when new dialects are
introduced for training and model construction. Note that the
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Fig. 1 Hierarchial pyramid for different levels of speech features

proposed method is not intended to provide an accurate pre-
diction of the final classification performance, but more of a
measure for analysis of the dialect/language separation. The
proximity measurement framework presented in this study,
is intended to provide a built-in self-test, and therefore, the
training data is used for this measurement.

In addition, recent studies (Nallasamy et al. 2011; Biadsy
et al. 2012) show the impact of dialectal variations of a
language on performance of speech recognition systems. A
dialect proximity measure can be applied to predict speech
recognition performance for new dialects of a language when
training data is not available for those dialects. Note that sep-
aration between dialects in different feature spaces may vary.
Here, we consider acoustic and prosodic feature spaces, and
we present and compare results of dialect proximity assess-
ment in these two feature domains.

Figure 1 shows a hierarchial pyramid of different speech
features based on which, dialect separation assessment can
be performed. We start by comparing statistical models using
lower level acoustic, and prosodic features. Future research
could also consider higher level features such as word selec-
tion, or grammatical differences between dialects. The major-
ity of linguistic studies have focused on higher level structure
for specific dialects, generally with text transcript knowledge.

Fundamental differences between dialects are explored in
this study. Our intent here is to formulate an effective solu-
tion, which will serve as a foundation for further research
studies. Since little prior research has focused on automatic
quantitative assessment of dialects, and ground-truth knowl-
edge of dialect separation within languages is not known,
the advancements here can only identify what is believed to
be effective and repeatable (i.e., it is not possible to develop
the “optimum” method, or to compare with existing proven
methods). The proposed dialect proximity measures are also
shown to be effective for language separation assessment,
especially for closely related languages.

First, traditional Mel Frequency Cepstral Coefficient
(MFCC) features are used to measure the spectral acoustic
differences. Gaussian Mixture Model (GMM) output score
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histograms are compared and analyzed in a 3D space to
obtain a measure of dialect separation. Next, differences in
excitation structure between dialects are studied using two
types of low level prosody features: pitch, and energy con-
tour primitives. These text-independent prosody features are
exploited as building blocks for training statistical models
of pitch/energy change in each dialect. It should be noted
that other methods may be more suitable if text knowledge is
available. However, the underlying constraint for this frame-
work is that text knowledge is not provided. Starting with
a small size three sample set, basic contour change patterns
are modeled. Next, by means of N-gram modeling, longer
temporal based prosodic patterns are compared. The result-
ing proposed proximity assessment methods are evaluated
on a corpus of Arabic dialects, as well as a corpus of South
Indian languages. South Indian (Dravidian) languages are
closely related languages from the same language family, and
bare some similarities to pure dialect separation assessment.
The proximity measures from different proposed methods
are compared for both corpora. Consistency of the proposed
measures is also studied with changes in the training data
used for assessment. Finally, a subjective listener assessment
is performed to illustrate the relation between automatic sys-
tem results and human perception.

1 Dialect proximity measurement based on log
likelihood score distributions

This section considers traditional MFCCs as a means to rep-
resent spectral based differences between dialects. Since we
pursue a statistical approach, extracted features are modeled
using GMMs. The proposed method of assessing proximity
is based on comparing the log likelihood score statistics. An
earlier version of this method was presented by Mehrabani
and Hansen (2008). First, MFCC features are extracted from
the available audio data. Each dialect is modeled using tradi-
tional GMM training. In this study, 64-mixture GMMs and
12-dimensional MFCCs (excluding the Oth cepstrum coeffi-
cient) were used. The same number of mixtures was applied
to model each dialect/language.

Next, a closed-set dialect test is performed (i.e., the same
train data for each dialect is tested against all dialect models
in order to obtain score distributions from matched and mis-
matched train data models). Score distributions, derived from
the score histograms are the basis for the proposed dialect
separation measure. In order to compare two dialects D and
D», D training data is tested against D and D, GMM mod-
els to obtain two sets of log likelihood scores: Sy1 and Sy,
respectively. S>; and S, are obtained in a similar manner.
Next, a histogram is formulated for each score set, and is
approximated with a probability distribution function. We
used the generalized extreme value (GEV) probability dis-
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Fig. 2 Comparison between two score distributions when testing
dialects of Arabic: AE data versus AE (S distribution) and EG (S},
distribution) GMMs

tribution (Kotz and Nadarajah 2000) to model the score his-
tograms. The GEV distribution is a flexible three-parameter
model that combines three types of extreme value issues into
the distribution model.

The GEV has the following PDF with location parameter
1, scale parameter o, and shape parameter k:

fx) = 5 €Xp (—(1 +kz)]/k) (1 +kz)71’1/k, k#0

s exp(—z—exp(—2), k=0
(1

where 7 = %, and o > 0. The range of definition of the
distribution depends on the shape parameter, and for k # O:
1 + kz > 0. The parameters of the GEV score distribution
are estimated based on maximum likelihood estimation.

The core idea here is that the more distinguishable the
distributions are for the score sets S11 and Si2, the greater the
distance from D to D, or d(D1, D>). Similarly, comparing
the S»1 and S»; score distributions yields the distance from
D> to Dy or d(D>, D1), which is not necessarily equal to
d(D1, Dy). Figure 2 shows S11 and Sy» score distributions
when D; and D; represent two Arabic dialects of AE (United
Arab Emirates) and EG (Egypt), respectively. The underlying
assumption is that the true spectral mismatch between two
dialects can accurately be measured using MFCC features
and GMMs.

Here, we employ the mean square error criterion to com-
pare score distributions, and obtain an estimate of the proxim-
ity between each dialect pair. Our initial experiments showed
that when two score distributions do not have considerable
overlap, the corresponding dialects are far apart and can be
well classified. However, the inverse is not always true. In
other words, there are cases where the two distributions have
measurable overlap, but the classification accuracies are still
high. The reason is that when comparing score distributions,
the score statistics of the entire data set are compared. Alter-
natively, in a classification task, only two scores at a time
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are compared which correspond to the same test stream. The
solution to this problem is to move the analysis from a 2D
surface to a 3D space.

In order to assess the separation between dialects D1 and
D2, represented as d(Dy, D), an estimate is formed to deter-
mine how well D; can be identified from D,. This estimation
involves building a 3D score distribution based on two 2D
score distributions via testing D1 data against the D and D;
models. Let us refer to these distribution functions as f; and
f2, respectively. The joint PDF of the two sets of scores is
calculated as follows:

fle,y) = fi(x) x fa(y). 2

This 3D distribution has the partial distributions of f} and f>
in the XZ and YZ planes, respectively. Note that the S1; and
S12 score distributions are not generally independent. There-
fore, f is not exactly the distribution for the pairs of scores
which result from testing each original train (now test) token
in Dp against the Dy and D, models. However, it does rep-
resent a good approximation that reflects the separation of
the dialects. Next, the volume under f which lies between
the YZ and the (X = Y)Z planes is calculated. This volume
corresponds to the accumulated amount of dialect D1’s cor-
rectly classified tokens for which the score against D1 model
is higher than the outside dialect D, model, and yields an
estimation for the separation between D and D;:

d(Dy, Dy) = / / F(x, y)dxdy. 3)

—00 —00

Here, a primary aim is to keep the dialect separation assess-
ment process as simple as possible. Therefore, this procedure
can serve as an initial step prior to the actual classification, in
order to give the user an estimate of how effective the results
of dialect classification might be. All score analysis in the
proposed method is based on the training data and therefore
represents a close-set test (for D against D1 GMM, but an
open test when Dy data is tested against D, GMM). Figure 3
shows the 3D score distribution for the 2D distributions
depicted in Fig. 2. The figure shows the contour distribu-
tion of the log likelihood scores from pairs of Arabic dialects.
Contours of equal likelihood are projected onto the XY plane
in the lower portion, and a bi-secting plane is constructed to
determine a decision surface to obtain a dialect separation
volume measure.

To calculate d(D3, Dy), S21 and Sy are applied in a sim-
ilar manner. Next, d(D1, D,) and d(D», D1) are averaged
to obtain one combined proximity measure for the pair of
dialects:
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The range of the proposed measure is [0.5,1]. The smallest
distance between two dialects is 0.5, which is the worst case
scenario for a dialect identification task. It occurs when the
dialects are identical. However, if the data used in training the
dialect models is open or separate from that used to assess the
separation, the resulting distance may be slightly larger than
0.5, which is due to the variability within a dialect. The great-
est distance is 1 which reflects two completely distinct and
separated dialects. If the distance is less than 0.5, it implies
that D; data points are more likely to have the same dialect
as D5. This can occur due to the impurity of the training data.
Since one of the objectives of this study is assessment of the
training data for dialects, if the distance is lower than 0.5, it
means that the majority of D, training data is in fact from
D5 and the resulting model is not reliable for classification
purposes.

2 Prosodic proximity between dialects

Human perception tests indicate that prosodic cues can be
employed to distinguish one language or accent from another
(Muthusamy et al. 1994; Kumpf and King 1997). However,
prosodic features have only briefly been considered for lan-
guage identification (LID) systems (Zissman and Berkling
2001), and even less for dialect classification. Thyme-Gobbel
and Hutchins (1996) explored the utility of syllable based
parameters extracted from pitch and amplitude contours in
LID tasks. Their results showed that prosodic cues alone
render results comparable to many non-prosodic systems
for some language pairs. Tong et al. (2006) integrated dif-
ferent levels of features for language identification, includ-
ing prosodic features. Their study showed that different lev-
els of discriminative features provide complementary cues
for LID. In this section, we explore prosodic differences
between dialects/languages, with the primary focus on pitch
movement differences. Prosodic features including funda-
mental frequency patterns, have a suprasegmental nature
(i.e., they cannot be associated with a single phone-sized seg-
ment) (Wightman and Ostendorf 1994). Therefore, modeling
prosody is still an open ended problem (Rouas 2007). Sylla-
ble based speech units have been used previously for prosodic
feature extraction. However, these approaches use segmen-
tation as front-end processing. Manual segmentation of the
speech signal can be costly in terms of time for large cor-
pora. Alternatively, automatic segmentation methods intro-
duce errors which can bias overall results. Rouas (2007) used
pseudosyllables as the prosodic units, which are automati-
cally extracted from input audio stream speech data. Adami
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et al. (2003) modeled pitch and energy contour dynamics for
speaker recognition using linear piecewise stylization.

This study, concentrates on conversational data with-
out any manual labeling or transcription. During conver-
sations between speakers of the same dialect, speakers
generally use more dialect specific language compared to
directed read data. This has been observed for accent clas-
sification by Angkititrakul and Hansen (2006). The method
employed here focuses on local variations of the pitch and
energy contours which are compared among dialects. The
proposed text-independent prosody features do not require
segmentation.

A method for dialect separation assessment is proposed
which compares statistical models of pitch contour details.
An earlier version of this method was presented by Mehra-
bani et al. (2010). As a first step, a single pitch vector per
utterance is obtained by first extracting pitch frequencies
from every utterance of each dialect. The robust algorithm
for pitch tracking (RAPT), proposed by Talkin (1995) is used
for pitch extraction. RAPT is based on the normalized cross-
correlation function (NCCF), and applies dynamic program-
ming as a post-processing technique to select the best F( and
voicing state candidates at each frame. Next, 3-Dimensional
feature vectors are generated from groups of three consecu-
tive nonzero pitch values. To obtain a representation of the
pitch contour microstructure, rather than speaker/utterance
dependent absolute pitch values, pitch slopes are subse-
quently extracted from the 3-Dimensional pitch vectors.
Since the step size in pitch extraction is fixed (10 ms), a fea-
ture directly proportional to pitch slope is calculated as the
difference between consecutive pitch values, transforming
the pitch vector [Fy, Fo, Fo,] into a 2D vector [(Fp,—Fp,)
(Fo,—F0p,)]. For the remainder of this study, this extracted
feature will be referred to as pitch slope. Figure 4 shows the
example feature extraction from a pitch contour. As shown,
an analysis window slides along the pitch contour, extracting
three nonzero pitch values at a time. There is overlap of two
samples between adjacent windows.

N
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Fig. 4 Extraction of proposed text-independent pitch features from
pitch contour

In the next step, the pattern of changes in every three con-
secutive pitch values is determined, using the 2D pitch slopes.
A positive slope implies an increase in pitch, and alterna-
tively, a negative slope represents a decrease. The absolute
value of the slope or pitch change is also important. Pitch
slopes close to zero, independent of the sign, represent almost
flat fragments of the pitch contour. However, steep slopes
correspond to abrupt changes in pitch.

In order to obtain a codebook of pitch patterns for 2D
pitch slope vectors, a threshold is set for pitch slopes based
on studying pitch slope histograms for all dialects. For each
dialect, 2D pitch slope feature vectors extracted from every
speaker and utterance of the dialect’s data are used to build a
3D histogram as the statistical representation of pitch change
in that dialect. Figure 5 shows an example of a 3D pitch slope
histogram. Each 2D pitch slope vector corresponds to a point
on the XY plane.

A set of 9 distinct patterns are considered for each dialect,
depicted in Fig. 6. If the absolute change of pitch is less than 3
H z, the pitch is considered unchanged. However, for absolute
pitch slopes greater than 3 Hz, two options are considered:
positive and negative.
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Fig. 6 Dialect assessment based codebook of potential three-frame
pitch patterns

After classifying all 2D pitch slope features as one of the
9 pitch patterns, the next step is to model pitch changes in
each dialect. These models are later compared to obtain pitch
movement differences between different dialects of a lan-
guage. Statistical models are used here with discrete proba-
bility distributions. Each distribution shows the probability
of occurrence for each pattern in the given dialect, and can
be described by the probability matrix P(3 x 3). The vari-
ability of these distributions reflects overall differences in the
excitation structure between dialects.

Next, the obtained pitch pattern model profiles for 3D
pitch vectors are exploited to build statistical models for
longer temporal pitch patterns by means of N-gram mod-
eling. The codebook of 9 pitch patterns from Fig. 6 is con-
sidered as a dictionary of different words: {wl, wo, W3, W4,
ws, We, W7, WS, wg}. The unigram counts for this dictionary
are already calculated, which are the probabilities of occur-
rence for each word (pattern). Conditional probabilities are
computed from the N-gram frequency counts:
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where C represents the count of the word sequences. Using
the conditional probabilities, the probability of different
sequences of pitch contour patterns can be calculated as,

m
P(wi,...own) =[] P wilw,....wi1)
i=1
m
%HP(wilwi—(n—l),-u,wi—l)- (6)
i=1
The same approach is also performed on energy contours to
compare the statistics of log energy contour patterns among
dialects, also using an entry codebook such as that in Fig. 6,
with a slope threshold of 0.05 in place of the 3 Hz value used
for pitch. The KL divergence is used to compare pitch/energy
pattern models. If P and Q are two discrete probability dis-
tributions, the KL divergence of Q from P is:

PG3)
@)

Dir (P Q) =D P(i)log (7

Having formulated the statistical models for pitch contour
and energy contour distributions, along with their temporal
language models in this section, combined with the statistical
MEFECC based method in the previous section, we now turn to
an evaluation of dialect assessment in the next section.

3 Experimental results and evaluation

Results from the proposed approaches for dialect proxim-
ity assessment are presented and compared for three Arabic
dialects: United Arab Emirates (AE), Syria (SY), and Egypt
(EG), as well as three South Indian (Dravidian) languages:
Kannada (KAN), Tamil (TAM), and Telugu (TEL). Approx-
imately 3 h of conversational speech from 32 male speak-
ers for each dialect, and 6 h of conversational speech from
74 male speakers for each language was used as train data.
Conversations were held between two speakers of the same
dialect/language. Each speaker’s part of the conversation was
recorded separately. The entire training data set was used for
this evaluation.

Each assessment consists of three measurements corre-
sponding to the three pairwise dialect/language comparisons.
Dialect proximity assessment scores from different methods
will naturally have their own numerical ranges. Therefore,
the numerical scores in each set are normalized in order for
an effective comparison. Figure 7 schematically shows three
distances di > d» > d3 between pairs of a set of three
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Fig. 7 Schematic distance triangle for a set of three dialects/languages:
Dy, Dy, D3. Here d; reflects the combined distance of D to D;, and
D> to Dy

dialects/languages, represented as D, D>, D3. The normal-
ization process consists of subtracting the minimum distance
from each distance and dividing by the dynamic range of the
distances. Next, each normalized distance is multiplied by 5
and added to 5 in order to map the largest distance (d;) to 10,
and the smallest distance (d3) to 5:

d; — min (d;)
d/ = d 545 8
" max (4) —min (d;) " ®
J J

where d;’ represents the final normalized distance, with i =
1,2,3,using j = 1,2, 3.

Figure 8 shows the normalized measures from the log like-
lihood score distribution and pitch pattern methods for the
3-way Arabic dialect set. For each method, a set of three dis-
tances are depicted as a triangle, which reflects three scores
for the dialect pairs: (AE,SY), (AE,EG), (SY,EG). Each ver-
tex represents a dialect, and length of each side is proportional
to the distance between dialects represented at the vertices.
Since the distances are normalized as explained, in each tri-
angle the length of the largest side is 10 and the length of
the smallest side is 5. As shown in the figure, for all three
methods, the largest triangle side corresponds to distance
between AE and SY, and the smallest side corresponds to
distance between SY and EG. In other words, among these
three Arabic dialects, AE and SY are the most separate pair,
while SY and EG are the closest dialect pair. This means
that the log likelihood, pitch pattern unigram, and pitch pat-
tern bigram methods yield the same order of the proximity
scores for this corpus. However, the results from pitch pattern
unigram comparison are closer to the log likelihood method.

Figure 9 compares the normalized distances from the
log likelihood score distribution, pitch pattern bigram, and
energy pattern bigram methods for pairs of three South Indian
languages. As shown in the figure, KAN and TAM have the
largest distance among these language pairs with three meth-
ods. Next, repeatability and consistency of the proposed mea-
sures and the amount of data required for a reliable proximity

5 9.1
SY AE
10
(c)
5 7.65
sy AE
10

Fig. 8 Comparison between normalized proximity measures for Ara-
bic dialect pairs from a log likelihood scores distribution, b pitch pattern
unigram, and c¢ pitch pattern bigram methods. Each triangle corresponds
to one assessment method. Triangle sides are proportional to the nor-
malized measures

assessment are evaluated for South Indian languages based
on the increased amount of data for this corpus compared to
the dialect database.

3.1 Consistency

In this section, the proposed proximity measures are shown
to be consistent and repeatable. As mentioned, the dialect
separation assessment framework is based on scores derived
from the available training data. However, if adequate data is
used for the assessment, the resulting dialect proximity mea-
sure will be resistant to differences in training data. In order to
show this, we performed individual dialect assessment a total
of 20 times for the South Indian corpus, where for each pass
24 randomly selected speakers were used out of a total pos-
sible 74 speakers. Mean and standard deviation of the results
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Fig. 9 Comparison between normalized proximity measures for South
Indian language pairs from a log likelihood scores distribution, b pitch
pattern bigram, and ¢ energy pattern bigram methods

for log likelihood, pitch pattern bigram, and energy pattern
bigram measures are shown in Table 1. Note that these results
are not normalized. As seen, the Standard Deviation (SD) in
the three assessment measures show a minimal change, with
SD values ranging from 0.003 to 0.041. This confirms both
repeatability and consistency of the assessment methods for
dialect separation.

3.2 How much data?

This section explores the changes in proximity measure
scores obtained from a set of speakers, as the number of
speakers is decreased. Starting with the entire data set con-

sisting of 74 male speakers for each language, with approxi-
mately 5 min. conversation data per speaker (approximately
6 h of conversational data per language), the number of speak-
ers are reduced to 60, 48, 36, 24, and finally to 12. The amount
of speech per speaker is kept the same. Therefore, the total
number of speakers used for each model corresponds to 5,
4, 3, 2, and 1 h of speech data per language, respectively.
Changes in log likelihood, pitch pattern bigram, and energy
pattern bigram proximity measures when reducing data size
from 6 to 1 h are shown in Fig. 10. The three scores from
language pairs: (KAN,TAM), (KAN,TEL), and (TAM,TEL)
are shown in the same figure for a comparison of the relative
changes.

For log likelihood and pitch pattern bigram there is a
steady increase in scores as the data size is decreased down to
2 h, while the language pairs with the largest and the small-
est proximity scores remain the same. For the energy pattern
bigram, the proximity scores are flat until the data drops from
3to 2 h, suggesting that a minimum of 3 h is required for this
method.

3.3 Perceptive evaluation

Finally, in order to assess the correlation between the objec-
tive dialect proximity framework and actual dialect separa-
tion, a formal listener evaluation is performed. A subjective
distance is obtained for three South Indian languages using
conversational data. The subjective test consists of 30 exper-
iments. In each experiment, three audio files are presented
from these three different languages: KAN, TAM, and TEL.
Each audio file is part of a conversation. One of the three
audio files is represented as the reference in each experi-
ment. Listeners are asked to compare the other two samples
to the reference and decide which sample sounds more like
the reference. Each listener, is asked to provide two distances
in each experiment on a scale of 1 (similar to the reference)
to 10 (completely different). The reference language changes
in arandom way among experiments. In order to remove any
bias based on knowledge/familiarity of the language in the
listener group, an equal number of subjects with their native
language of Kannada, Tamil, and Telugu are used. However,
many native speakers of one South Indian language, speak
or understand other south Indian languages. Walter (2009)
showed how the listener’s native language or their familiarity

Table 1 Means and standard

deviations of 20 measures for Log likelihood Pitch pattern bigram Energy pattern bigram

South Indian language pairs, Mean SD Mean SD Mean SD

where for each pass only using

24 randomly selected speakers (KAN,TAM) 0.816 0.034 0.013 0.005 0.061 0.016

out of 74 speakers (KAN,TEL) 0.760 0.041 0.015 0.005 0.040 0.015
(TAM.TEL) 0.761 0.021 0.007 0.003 0.056 0.028
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Fig. 10 Changes in a log likelihood b pitch pattern bigram and ¢
energy pattern bigram proximity measures for South Indian language
pairs, by reducing the available data size from 6 to 1 h

with another language affects their perception of sound based
similarity between languages. The total number of subjects
is 15. For each language pair L and L,, the average subjec-
tive distance is calculated as the mean of all the distances:
d(Ly, Ly) and d(L7, L) from all the experiments and listen-
ers with native language either L or L,. The resulting sub-

jective distances for (KAN,TAM), (KAN,TEL), (TAM,TEL)
are 6.13, 5.13, 5.75, respectively. While the number of lis-
teners is limited, the 3-way perceptual scores reflect a rela-
tive separation for the south Indian languages. Between these
three language pairs, KAN and TAM have the largest percep-
tual distance, which is consistent with the proposed objective
measures. Clearly, further listener evaluations would be nec-
essary to draw a statistical measure of significance.

4 Conclusions

In this study, the goal of assessing dialect/language proximity
in a 3-way set was considered. Intrinsic differences between
dialects were studied, including spectral acoustic, as well
as excitation structure differences. First, a method for mea-
suring dialect separation was proposed based on a volume
space analysis in a 3D model for GMM output score distri-
butions. Next, prosody-based proximity measures were pro-
posed, comparing statistical models for pitch/energy contour
movement patterns between dialects. The proposed measures
were evaluated on a corpus of Arabic dialects and a corpus
of South Indian languages. The proposed dialect proximity
assessment was shown to be consistent and repeatable. Future
advances could consider lexical differences including word
selection, grammar structure, or wider suprasegmental dif-
ferences. Further high level linguistic knowledge concerning
the evolution of specific dialects could also be considered for
future dialect assessment strategies.
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