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Abstract In the recent years, wavelet transform has been
found to be an effective tool for the time–frequency analy-
sis for non-stationary and quasi-stationary signals such as
speech signals. In the recent past, wavelet transform has been
used as feature extraction in speech recognition applications.
Here we propose a wavelet based feature extraction tech-
nique that signifies both the periodic and aperiodic informa-
tion along with sub-band instantaneous frequency of speech
signal for robust speech recognition in noisy environment.
This technique is based on parallel distributed processing
technique inspired by the human speech perception process.
This frontend feature processing technique employs equiva-
lent rectangular bandwidth (ERB) filter like wavelet speech
feature extraction method called Wavelet ERB Sub-band
based Periodicity and Aperiodicity Decomposition (WERB-
SPADE), and examines its validity for TIMIT phone recog-
nition task in noisy environments. The speech sound is fil-
tered by 24 band ERB like wavelet filter banks, and then
the equal loudness pre-emphasized output of each band is
processed through comb filter. Each comb filter is designed
individually for each frequency sub-band to decompose the
signal into periodic and aperiodic features. Thus it takes
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the advantage of the robustness shown by periodic features
without losing certain important information like formant
transition incorporated in aperiodic features. Speech recog-
nition experiments with a standard HMM recognizer under
both clean-training and multi-training condition training is
conducted. Proposed technique shows more robustness com-
pared to other features especially in noisy condition.

Keywords ERB · WERB-SPADE · Wavelet sub-band ·
Instantaneous frequency · Phoneme recognition

1 Introduction

In the recent past, the use of speech as a possible interface
with machines/computer has become popular. Significant
research has been carried out to improve the performance
of robust speech recognition system in the past couple of
decades. However, most of these systems developed by both
academicians and industry are based on the short time Fourier
transform (STFT) for the analysis of speech signal. These
systems have shown adequate recognition performance with
clean data, keeping same acoustic conditions. Nevertheless,
speech recognition accuracy still degrades significantly in
noisy environments and sensor mismatch conditions. This
fact has motivated to develop a new feature extraction meth-
ods to represent more robust features.

Mel frequency cepstral coefficients (MFCCs) (Davis and
Mermelstein 1980) is the most widely used front-end feature
extraction technique, which represents the spectral shapes of
input signals and it is very sensitive to noise. However, human
being can follow and segregate the target speech in com-
plex acoustic environment until and unless noise becomes
too high. This fact have inspired researchers to develop
more robust speech feature extraction method according to
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the human auditory system, such as perceptually linear pre-
diction analysis (PLP) (Hermansky 1990), Gammatone fre-
quency cepstral coefficient (GFCC) (Shao et al. 2010) and
other auditory filter based methods (Gao et al. 1992; Li et al.
2001). These results suggest that the outputs of the auditory
filters provide a better representation of speech in complex
acoustic environment and sensor mismatch condition. How-
ever all the feature extraction techniques mentioned earlier is
STFT based method and it is a well-known fact that the win-
dowed FT or the STFT having uniform resolution over the
time frequency plane. Due to this reason, it is difficult task
to classify unvoiced phonemes especially ‘stops’. It is not an
easy task to detect a short event like burst in a slowly time
varying signal especially in the presence of noise. To over-
come this problem, WPs and local cosine transforms have
been proposed for the feature extraction technique (Farooq
et al. 2010; Farooq and Datta 2001; Long and Datta 1996).
WPs are considered to have important signal representation
schemes impacting compression, detection and classifica-
tion. This characteristic of WP is particularly exciting for
the study of the slowly time varying quasi-periodic signal
like acoustic speech signal. The previously reported results
motivate us to develop a new wavelet based feature extraction
technique. Recently Biswas et al. 2014 have proposed equiv-
alent rectangular bandwidth (ERB) like WP based cepstral
feature (WERBC) for Hindi phoneme recognition. They have
shown significant improvement with WERBC in Hindi con-
sonant class. Wavelet packets (WP) (Farooq and Datta 2004;
Mallat 1989) decomposition has been carried out according
to the ERB scale frequency resolution. This ERB like Wavelet
feature extraction. This ERB scale was originally designed to
model human cochlear filtering (Patterson et al. 1988). The
center frequency and the bandwidth of each gammatone fil-
ter in GFCC can be derived from the filter’s ERB. They have
tried to follow the response of human cochlea by partitioning
the frequency axis analogous to the ERB scale. They have
took the advantage of auditory ERB filterbank as well as WP
can extract the coefficients at a certain frequency of inter-
est. Due to the dynamic nature of the WP, exact bandwidth
alike to the ERB scale cannot be obtained. The advantage
of using WP is that it can divide the frequency axis and has
uniform translation in time. Although they have found suffi-
cient improvement in unvoiced consonant class but WERBC
is failed to keep same impression in case of voiced phoneme
class compared to STFT based class. Here we have adopted
the WERBC proposed by Biswas et al. (2014) and modify it
to improve the performance for voiced phoneme class.

The main focus of our research motivated by the periodic-
ity and aperiodicity of sound. Several methods have been pro-
posed (Ali et al. 2002; Kim et al. 1999) based on the response
of the auditory nerve towards the periodic signals. Kajita and
Itakura (1995) proposed cross-correlation based sub-band
analysis, which focuses on periodicity of band passed speech

signal. Reported results have shown periodic property of the
signal helps to improve the performance in noisy environ-
ment. However, speech signals consist not only strict to peri-
odic signals like voiced parts of vowels and voiced conso-
nants, but also of aperiodic signals like intrinsic variations in
vowels and unvoiced phonemes such as fricatives and stops.
Thus considering only periodicity of signal not sufficient,
when it comes to study with aperiodic sounds. Motivated by
this fact, Ishizuka and Miyazaki (2004) proposed a speech
feature extraction method known as “Sub-band based Peri-
odicity and Aperiodicity Decomposition (SPADE)”. They
have proposed a scheme to divide input signals into sub-
band signals using gammatone filterbank, and then decom-
poses into periodic and aperiodic feature set in the time
domain. The development of this technique has been inspired
by the auditory comb filter assumption (Cheveigne’ et al.
1997) and the study reported on auditory nerve character-
istics in the time domain by Greenberg et al. (2004). The
auditory comb filter assumption suggests that the human
auditory system may perceive both the harmonic (period-
icity), and the residue after canceling the harmonic part from
acoustic signal (aperiodicity), which deviates from the dom-
inant periodicity. The decomposition of speech signals into
periodic and aperiodic part helps to make more robust feature
without losing certain essential aperiodic information pre-
sented in speech signal. They have evaluated the performance
of SPADE with AURORA-2J database in the presence of
noise and claimed that proposed feature have outperformed
MFCC. Later Ishizuka and Nakatani (2006) have expanded
the SPADE analysis in frequency domain and have proposed
new feature extraction technique named SPADE frequency
domain Enhancement (SPADE-QUEEN). They combined
their proposed front end technique with different noise com-
pensation technique such as, spectral subtraction (Berouti et
al. 1979; El-Fattah et al. 2013) or Wiener filtering (Adami et
al. 2002; El-Fattah et al. 2013) and studied the performance
of robust front end technique with AURORA 2J database.
Reported result have confirmed the robustness of SPADE
combined with different noise compensation technique.

Motivated by the performance of SPADE analysis, here we
propose a new feature extraction technique named Wavelet
ERB Sub-band based Periodicity and Aperiodicity Decom-
position (WERB-SPADE). All the above mentioned analysis
of SPADE based on the STFT based approach, and have
evaluated on AURORA-2J continuous digit speech data-
base. The performance of SPADE on different phonemes
have not been reported. Thus here noisy phoneme recog-
nition especially consonants are carried out. Further as men-
tioned earlier STFT is not suitable for unvoiced phonemes
like stops because detecting sudden “bursts” in slowly time
varying signal is really near to impossible task for STFT
based technique. The situation gets more worsen for the
STFT based feature extraction technique in noisy environ-
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ment. Thus wavelet based feature extraction technique is
adopted here to capture time-frequency localized informa-
tion about the sudden changes in the speech waveform. This
paper proposes a wavelet based feature extraction technique
that decompose speech signals into periodic and aperiodic
features for each sub band using ERB like wavelet filter
banks and comb filters. To make the proposed feature more
robust average sub-band periodic energy parameter is incor-
porated to the proposed feature vector. Further to capture the
phase information of speech signal sub-band instantaneous
frequency (IF) is calculated. Recent work on auditory mod-
els proves that certain nonlinear effects of active human inner
ear cochlear processing might be simulated using the audi-
tory frequency sub-bands IF (Hohmann and Kollmeier 2006).
Sub-band IF has already been proven in noisy speech recogni-
tion problem (Stark and Paliwal 2008; Yin et al. 2011). Thus
we incorporate additional subbnad IF features, derived from
output of auditory ERB like wavelet filterbank. Phonetically
balanced standard TIMIT (Garofolo et al. 1993) database is
used to study the performance of proposed feature extraction
technique.

The rest of paper is organized as follows: Section 2
describes the feature extraction procedure using ERB like
admissible wavelet packet (AWP) decomposition. Section 3
describes the detailed WERB-SPADE feature extraction
mechanism. Section 4 describes the experimental framework

adopted for this experiment. The performance of proposed
technique on TIMIT phoneme recognition task is reported in
Sect. 6. Section 8 draws the conclusion.

2 ERB like WP decomposition and feature extraction

The detailed description of wavelet analysis is beyond the
focus of this paper. Hence, we request interested readers to
refer articles like (Farooq and Datta 2004; Mallat 1989). The
24 sub-band wavelet packet tree is derived which approxi-
mate the ERB scale division as shown in Fig. 1 (Biswas et
al. 2014). The WP decomposition achieved by using a pair
of conjugate mirror filters (Farooq and Datta 2001). Thus
decomposing signal into two frequency bands such as lower
frequency band (approximation coefficients) and higher fre-
quency band (detail coefficients). Low frequency band is used
for further decomposition. By cascading the two channel fil-
ter bank into various levels the wavelet packet tree has been
formed.

The speech in the TIMIT database is sampled at 16 kHz,
giving an 8 kHz bandwidth signal. The ability of the admis-
sible wavelet packet transform is used to divide a signal
into ERB filter like 24-sub-bands. A frame size of 16 ms
with 10 ms skip rate is used to derive wavelet packet based
ERB cepstral features (WERBC). Initially, hamming win-

Fig. 1 24 subband wavelet
packet tree based on ERB scale
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Table 1 Comparison of center frequencies (Hz) of 24 uniformly spaced ERB scale and wavelet sub-band features

Filters ERB Scale Wavelet
sub-band

Filters ERB scale Wavelet
sub-band

Filters ERB scale Wavelet
sub-band

1 50 62.5 9 632.83 625 17 2, 433.98 2500

2 92.23 125 10 763.35 750 18 2, 837.29 3000

3 140.86 187.5 11 913.62 875 19 3, 301.70 3500

4 196.85 250 12 1, 086.66 1000 20 3, 836.44 4000

5 261.33 312.5 13 1, 285.92 1250 21 4, 452.17 5000

6 335.57 375 14 1, 515.35 1500 22 5, 161.17 6000

7 421.06 437.5 15 1, 779.52 1750 23 5, 977.56 7000

8 519.49 500 16 2, 083.71 2000 24 6, 917.58 8000

dow is applied on each frame. Then, whole frequency band
is decomposed using full 3-level wavelet packet decomposi-
tion to get eight sub-bands each of 1 kHz. Further one level
WP decomposition is applied to lowest sub-band of 0–1 kHz
to decompose the frequency band into two sub-bands each of
500 Hz. The frequency band of 0–500 Hz is further divided
into eight sub-bands each of 62.5 Hz by using full 3 level
WP decomposition. The resulting sub-band division finely
emphasizes frequencies between 0–500Hz which normally
contains large portion of signal energy. Next, 500–1,000 Hz,
and 1–2 kHz frequency band is decomposed using full 2 level
WP decomposition to get sub-bands each of 125 and 250 Hz.
Then 2–3 kHz and 3–4 kHz is frequency band is decomposed
using full 1 level WP decomposition to get sub-bands each of
500 Hz. Four frequency bands 4–5 kHz, 5–6 kHz, 6–7 kHz,
& 7–8 kHz is kept unchanged. Lastly, 24 total frequency sub-
bands are achieved. The center frequency obtained of each
filter using WP decomposition is given in Table 1. From the
table it can be noted that for the first 20 sub-band wavelet
frequency partitioning are similar alike the auditory ERB
scale but the last 4 sub-bands differs from the ERB scale.
However voice signals ranges upto 4,000 Hz and most of
the speech energy lies below 1,500 Hz. Hence it is expected
that these wavelet packet filters can extract certain informa-
tion from speech signal by employing ERB like frequency
decomposition. After performing the decomposition by WP
of a phoneme, energy in each of the frequency bands are
calculated by:

〈Si 〉k =
∑ [w�(x, k)i ]2

Ni
(1)

where, w�(x, k)i is the WP transform of signal x, i is the
sub-band frequency index (1 ≤ i ≤ M), k represents the
temporal frame and Ni is the number of coefficient in i th sub-
band. The log of equal loudness weighted energy is calculated
resulting a total of 24 coefficients. Discrete cosine transform
(DCT) is applied on these 24 coefficients to de-correlate the
filterbank energies and lower 13 coefficients are taken as

Framing

Input Speech Signal 

Hamming Windowing 

WERBC Feature 

24 band WP Filter based on 
ERB scale

B24B3B2B1 

Equal Loudness Analysis 

B24B3B2B1 

Log & DCT

Fig. 2 WERBC feature extraction technique

features. The block diagram of WERBC feature extraction is
given in Fig. 2.

3 Robust feature extraction technique using SPADE

This section gives details of proposed SPADE based feature
extraction technique. The detailed block diagram is given
in Fig. 3. The development of this technique is strongly
inspired by the outcomes of auditory comb filter hypothesis
(Cheveigne’ et al. 1997) and using of periodic and aperiodic
feature in noisy speech recognition (Ishizuka and Miyazaki
2004; Ishizuka and Nakatani 2006). The hypothesis can be
implemented in WERB-SPADE by using comb filters and
ERB like WP decomposition of acoustic speech signal. This
mechanism can be executed by decomposing speech sig-
nal into dominant periodicity and aperiodicity, which is the
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Fig. 3 Block diagram of WERB-SPADE analysis; shows the calculation of subband IF feature

residue power after the suppression of the dominant periodic
power.

As similar to WERBC, hamming windowed frame size
of 24 ms with 10 ms skip rate is used to derive the WERB-
SPADE feature. In the next step, hamming windowed speech
frame is decomposed into 24 wavelet sub-band as described
in the Sect. 2. In the next step, output of each sub-band i.e.
w�(x, k)i (i th sub-band of kth temporal frame) is used to
find dominant periodicity to design the comb filter. Domi-
nant periodicity is calculated individually for each wavelet
sub-band by applying a periodicity estimation technique
such as the autocorrelation analysis for pitch (F0) estima-
tion (Rabiner 1977). Comb filters are designed individu-
ally to take care of false periodicity detection in case of
multi-pitch signals. It is expected SPADE mechanism can
detect periodicity reliably. The basic function of a comb
filter for each i th sub-band of kth frame can be expressed
as:

h(n, k)i =
L∑

l=−L

αl × δ(n − Ti,k) (2)

where δ(n)is an unit impulse function, (2L + 1) is the
length of the filter, αl is the filter coefficient satisfying
∑L

l=−L αl = 1 and Ti,k represents the dominant periodicity
detected in each i th sub-band of kth frame. In the next step,
the signal in the frame is passed through the comb filtered
using the periodicity detected in the last step. Comb filter
decomposes each sub-band signal into periodic and aperiodic

features. Comb filtering performed according to following
equation:-

〈w� (x, k)i 〉comb = h(n, k)i ⊗ (w�(x, k)i ) (3)

where w�(x, k)i is the WP transform of signal x, i is the
sub-band frequency index (1 ≤ i ≤ M), k represents the
temporal frame and Ni is the number of coefficient in i th
sub-band.

Next, the power suppressed by the comb filter is consid-
ered as periodic feature, and the residual signal power consid-
ered as aperiodic feature of speech signal. The calculation of
periodic and aperiodic feature power vector is given below:

api (k) = 1

N

N∑

j=1

∣
∣〈w� (x, k)i 〉comb

∣
∣2 (4)

and,

pi (k) = 1

N

N∑

j=1

∣
∣w� (x, k)i

∣
∣2 − api (k) (5)

where, pi (k) and api (k) are periodic and aperiodic feature
vector of i th sub-band of kth frame respectively, N is the
number of confidents in i th sub-band. In the last step, the
power vectors across the all sub-bands of the same frame is
log transformed and cepstral coefficients is calculate using
DCT.
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cr (k) =
√

M

2

M∑

i=1

log(PVi (k)) cos
(πr

M
(i − 05)

)
(6)

where M is the number of sub-band; in our case 24, PVi (k))

is the periodic power vector pi (k) or aperiodic power vector
api (k) and cr (k) is the r th cepestral coefficient of kth tem-
poral frame. Finally lower 13 coefficients from each power
vector is taken and concatenated to single feature vector (26
features/frame) representing each temporal frame.

Additionally to make system more robust, periodic energy
coefficient (PE) (Ishizuka and Nakatani 2006) is incorporated
to basic WERB-SPADE feature vector. The simple log power
of the sub-band coefficients can be easily affected by noise,
but the log of periodic part of signal can have more resistant
to noise. Periodic power energy is calculated by following
formula.

E(k) =
M∑

i=1

pi (k) (7)

IF feature calculation is shown by dash lines in Fig. 3.The
instantaneous frequency is calculated from the each wavelet
sub-band output. By taking the derivative of phase of ana-
lytical band limited signal IF can be calculated efficiently.
In this work we adopted the same technique to calculate IF
as given by (Yin et al. 2011). The only difference is addi-
tional Hilbert transform is needed to calculate the analyti-
cal signal from WP sub-band outputs. IF is calculated for
very WP sub-band, resulting a total of 24 IF features per
frame.

4 Experimental framework

5 Speech corpus

The TIMIT corpus is used for all the experiments presented
in this paper. TIMIT is one of the phonetically balanced stan-
dard corpus used to evaluate the performance of new tech-
niques in ASR because and has good coverage of speakers
and dialects. All of these make TIMIT a sufficiently challeng-
ing corpus to evaluate new ASR methods, which justifies its
wide adoption by the community. The TIMIT corpus consists
of 6,300 utterances for the eight major dialects of the United
States. There are 630 different speakers, each one speaking
ten sentences. For this work, dialect region DR1, DR2, DR3
and DR4 from training set is chosen for the extraction of
phonemes from both male and female speakers. We mainly
focus on the consonant (Nasals (/m/, /n/ & /ng/), unvoiced
fricatives (/f/, /sh/, /s/ & /th/), voiced fricatives (/z/, /v/, /zh/
& /dh/), liquids (/l/, /r/, /y/& /w/), unvoiced stops (/p/, /t/ &
/k/), and voiced stops (/b/, /d/ & /g/) recognition because it is

one of most challenging task in ASR. The dialect region DR1,
DR2, DR3 and DR4 from complete test set is used for testing.
Furthermore, six noise such as car, jet, volvo, babble, speech,
and lynx Noisex-92 database is used in this work. Three kind
of test set is used to evaluate the robustness of proposed tech-
nique. First one is test set A, contains clean test speech signal.
Next speech signals from test set A mixed with car, jet and
volvo noise at SNRs of −5 to 20 dB is named as test set B. Test
set C contains speech signals mixed with babble, speech, and
lynx noise at SNRs of −5 to 20 dB. The speech signals from
dialect region DR5 to DR8 from complete test set is named as
test set D. Next speech signals from test set D mixed with car,
jet and volvo noise at SNRs of −5dB to 20dB is named as test
set E.

In this experiment, two training set is used to train the
Hidden Markov Model (HMM) (Lee and Hon 1989; Mes-
saoud and Hamida 2010; Rabiner and Juang 1993; Young
et al. 2009) based phoneme recognizer. First training set is
called as clean-condition training set containing only clean
speech signals. Another one is multi-condition training set
containing clean speech signal and speech signal from test
set B. Thus we have two types of training set and three types
of testing set to study the performance of WERB-SPADE
based techniques.

5.1 Experiment design

Six feature sets are extracted to study the performance of
TIMIT phoneme recognition task. The methods adopted in
this experiments are:-

A. MFCC (Baseline): The feature set are derived using stan-
dard MFCC technique having 24 channel Mel scale fil-
terbank. A frame size of 16 ms with 10 ms skip rate
is used to analyze the speech signal. The 13 cepstral
coefficients including energy coefficients are derived per
speech frame.

B. GFCC (Baseline): For GFCC the filter channel center
frequencies are distributed according to ERB scale.24
channel Gammatone filterbank is used to derive the fea-
tures using same frame rate adopted for MFCC. After
log compression and DCT operation first 13 features are
taken per frame.

C. WERBC: WERBC features are derived using db24
mother wavelet. Keeping same frame rate as baseline
method 13 features are derived for each frame.

In addition, all features sets include the delta and acceleration
coefficients and are 39-dimensional.

D. WERB-SPADE: Wavelet ERB sub-band signals proce-
ssed through SPADE analysis to decompose speech sig-
nal into periodic and aperiodic features resulting 26 fea-
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Table 2 Average phoneme
recognition accuracy with
different features (without delta
and acceleration coefficient)

Front end technique Feature dimension/
frame

Clean condition
training

Relative
gain

Multi condition
training

Relative
gain

MFCC (Baseline) 13 72.37 NA 70.15 NA

GFCC (Baseline) 13 71.84 −0.73 71.27 1.60

WERBC 13 75.30 4.05 74.61 6.36

WERB-SPADE 26 78.38 8.30 77.58 10.59

WERB-SPADE +PE 27 80.55 11.30 80.38 14.58

WERB-SPADE +PE+IF 51 81.08 12.04 80.95 15.40

Table 3 Average phoneme
recognition accuracy with
different features (with delta and
acceleration coefficient)

Front end technique Feature dimension/
frame

Clean condition
training

Relative
gain

Multi condition
training

Relative
gain

MFCC (Baseline) 39 77.95 NA 75.60 NA

GFCC (Baseline) 39 76.24 −2.19 75.88 0.37

WERBC 39 82.67 6.06 81.96 8.41

WERB-SPADE 78 86.96 11.55 85.95 13.69

WERB-SPADE +PE 81 88.25 13.47 88.10 16.53

WERB-SPADE +PE+IF 84 (PCA) 88.90 14.05 88.84 17.51

tures per frame. Inclusion of delta and acceleration coef-
ficients making it 78 features per frame.

E. WERB-SPADE+PE: Periodic energy coefficient (PE) is
included with WERB-SPADE to make 27 features per
frame. Inclusion of delta and acceleration coefficients
making it 81 features per frame.

F. WERB-SPADE+PE+IF: 24 IF features are extracted
across all 24 WP sub-band per temporal frame. Con-
catenating 24 features with WERB-SPADE+PE forms
51 features per frame. Inclusion of delta and accelera-
tion coefficients making it 153 features per frame, which
is too large in dimension in perspective of ASR. Thus
principal component analysis (PCA) is applied to reduce
the dimensionality of features. 84 PCA1 transformed fea-
tures per frame is taken finally.

One model is created for every phones and each HMM
model has five emitting states. TIMIT phone-level annota-
tion is used to create the phoneme model with 8 Gaussian
mixture components with diagonal covariance, followed by
Viterbi alignment to improve the state-time correspondence.
The Baum-Welch algorithm is applied at the sentence level.
Then, triphone context dependent (CD) HMMs (Lee and
Hon 1989) are created using the pronunciation lexicon.
Once compiled, the Viterbi decoder with whole recogni-
tion network can be used to classify the phoneme into their
respective classes for an unknown input utterance. Phoneme

1 PCA dimension applied in the range of 40–90, Optimal PCA trans-
formed features are used.

recognition accuracy (PRA) is calculated by the following
equations:

PRA (%) = 100 (%) − PER (%) (8)

where Phoneme error rate (PER) is given by:-

PER(%) = (Substitutions + Deletions + Insertions)
Total Phoneme × 100

= Subs(%) + Del(%) + I ns(%)
(9)

6 Results and discussions

We have started the experiment in sequential steps started
with clean test data followed by noisy condition.

6.1 Performance evaluation under clean condition

Initially, CD phone recognition task is carried out with fea-
tures which does not consider contextual information (delta
and acceleration coefficients) appended in the feature vector.
Table 2 shows the average phone recognition accuracy (Test
set A) of all six methods under clean-condition training and
multi-condition training. Relative percentage gain compared
to the commonly used MFCC features are also mentioned in
Table 2. Table 3 shows the performance analysis with delta
and acceleration analysis. As expected, systems trained with
dynamic features shows better performance because it cap-
tures the dynamic informations presents in speech signal.
From Table 2 and 3, it is exciting to see while comparing
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two baseline methods, auditory based GFCC features per-
formed worst compared to MFCC in clean condition. But in
multi-training condition performance of MFCC is dropped
significantly compared to GFCC features.

MFCC has poor recognition efficiency in case of unvoiced
phonemes and seems more vulnerable in presence of noise.
Due to this there is some inadequacies in clean condition
training using MFCC. GFCC is purely auditory based method
and center frequencies are distributed according to the ERB
scale, which can focus and separate target speech in com-
posite auditory scene. This proves the effectiveness of ERB
scale while working in noisy condition. Further WERBC
feature outperformed baseline features because it has ben-
efit of time-frequency wavelet analysis along with sub-band
decomposition according to the ERB scale. As described in
Sect. 2 we have focused to increase the frequency resolu-
tion in the low-frequency range. This is well known fact
that the discriminative information of the speech signal is
embedded in lower frequency bands. The speech production-
perception hypothesis suggests that for an optimal communi-
cation design, maximum signal energy should be embedded
in the lower frequency region where more perception (fre-
quency discrimination) is available.

Now we change the focus on wavelet SPADE based tech-
niques. WERB-SPADE outperformed WERBC features by
a significant margin in every case. SPADE estimates peri-
odicity reliably in each sub-band to successfully reveal the
two important property of the speech signals. Inclusion of
aperiodic features helps to improve to recognize unvoiced
phonemes such as stops, fricative and nasals. Thus with-
out losing the certain information about aperiodicity of sig-
nal, WERB-SPADE provides more robustness compared to
WERBC. WERBC decomposed the speech signals in the
number of sub-bands according to the ERB scale by utiliz-
ing the rich covering of time-frequency property that can
enrich the features to represent the short term behavior of the
speech in well manner compared to STFT based techniques.
WP provides an effective way to produce sub-band depen-
dent partitions of the observation space and representing each
sub-band into periodic and aperiodic speech features through
comb filtering helps to catch essential discriminative infor-
mation embedded in speech signal in an effective way. Fur-
ther inclusion of PE coefficient in WERB-SPADE increases
the performance by significant margin. From both table, it
is interesting to see switching the scenario from clean train
to multi-train condition having negligible effect on perfor-
mance of phone recognizer compared to above mentioned
techniques. Periodic signal power in speech considered to be
more robust to noise than the simple power until and unless
the interfering noise signal does not having stronger peri-
odicity than the target speech. Thus despite of inclusion of
noisy speech from test set B not having significant impact
on Gaussian mixture during multi-condition training with

Fig. 4 Detailed phone recognition accuracy with wavelet based fea-
tures

WERB-SPADE +PE features. Next, we changed the focus
on IF based WERB-SPADE, which has not shown signifi-
cant improvement over WERB-SPADE +PE with clean test
set A. Although it has shown best recognition efficiency
among all techniques despite of 44.3 % dimension reduc-
tion. Thus considering phase information derived from the
output of each wavelet sub-band along with WERB-SPADE
+PE has proved their discriminative property in both training
conditions. From now on for better analysis of performance
of wavelet based techniques we consider the multi-training
condition system trained with dynamic features. Detailed
phoneme recognition is shown in Fig. 4 and extensive PER
analysis of wavelet SPADE based techniques is demonstrated
in Table 4. From Fig. 4 it can be noted that the performance
of WERBC is significantly goes low with voiced phonemes
especially stops. Voiced consonants are periodic in nature
and WP decomposition might be less sufficient to extract the
periodic structure embedded in speech signal. Another rea-
son of this low recognition rate might be explained by the fact
that the burst spectrum arises in voiced stop and its voice-
less counterpart is very similar (Niyogi and Ramesh 2003)
causing misclassification towards unvoiced stop. The recog-
nition performance of voiced phoneme in enhanced with
wavelet SPADE based recognizer because it finely represents
the speech by its periodic and aperiodic property. Thus peri-
odic information embedded in voiced phonemes is captured
efficiently in WERB-SPADE based techniques

6.2 Performance evaluation in dialect mismatch condition

To study the effectiveness of spade based wavelet feature in
dialect mismatch condition test set D and test set is used.
Table 5 has shown the recognition performance of all fea-
tures in multi-training condition. Table 5 also shows the
relative changes in performance of dialectal mismatch con-
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Table 4 Detailed PER analysis with different types of error

Deletion Intra substitution Inter substitution Insertion

Feature D Feature E Feature F Feature D Feature E Feature F Feature D Feature E Feature F Feature D Feature E Feature F

Nasals 3.05 2.25 2.74 5.78 4.86 5.02 3.65 3.35 3.70 1.32 1.02 1.72

Voiced stop 4.14 2.87 3.00 7.35 5.47 5.28 5.20 4.12 3.41 4.04 3.17 3.26

Unvoiced
stop

3.05 2.74 2.85 5.45 4.98 4.72 1.95 2.40 2.20 2.89 1.68 2.71

Voiced
fricative

2.79 3.14 2.50 6.90 5.91 4.80 5.75 3.25 2.94 1.76 2.75 0.81

Unvoiced
fricative

2.05 1.55 0.88 3.48 2.54 2.25 1.85 1.78 2.08 0.49 1.75 1.04

Liquids 2.24 2.95 2.15 4.21 3.47 3.82 3.43 2.87 2.35 1.48 0.53 0.73

Avg 2.89 2.58 2.35 5.53 4.54 4.32 3.64 2.96 2.78 2.00 1.82 1.71

Table 5 Performance evaluation of dialect mismatch condition Relative change (%) is shown in parentheses compared to performance of non-dialect
mismatch condition

Feature extraction
technique

Test set D Test set E

Clean 20 dB 15 dB 10 dB 5 dB 0 dB (−)5dB

MFCC (baseline) 72.74(−3.79 %) 68.39(−5.78 %) 65.14(−3.51 %) 57.87(−2.86 %) 48.10(−5.06 %) 36.21(−12.84 %) 25.30(−7.13 %)

GFCC (baseline) 72.59(−4.34 %) 69.03(−7.81 %) 66.02(−9.28 %) 60.86(−3.83 %) 54.92(−3.07 %) 43.49 (−3.51 %) 29.21(−3.32 %)

WERBC 80.62(−1.64 %) 77.10(−0.83 %) 72.75(−1.84 %) 64.20 (−3.6 %) 55.82(−3.47 %) 46.92 (−2.27 %) 31.87(−4.79 %)

WERB-SPADE 85.31(−0.75 %) 79.30(−0.88 %) 76.14(−1.12 %) 71.24(−1.39 %) 59.10(−2.29 %) 48.55 (−2.02 %) 34.20(−2.85 %)

WERB-SPADE
+PE

87.26(−0.96 %) 79.68(−0.58 %) 76.10(−0.72 %) 74.05(−1.21 %) 63.82(−2.18 %) 52.31 (−1.77 %) 36.97(−2.07 %)

WERB-SPADE
+PE+IF

88.35(−0.56 %) 81.18(−0.45 %) 79.23(−1.55 %) 77.13(−1.71 %) 63.17 (0.05 %) 55.41 (−1.43 %) 38.42(−2.67 %)

dition (Test set D and E) and dialect non-mismatch condi-
tion (Test set A and B). The performance of MFCC features
drops down relatively by significant margin due to the fact
that Mel scale might be less superior to track the dialectal
changes which slows down phoneme recognition. Compared
to MFCC, GFCC features have shown significant robustness
at low SNRs in dialectal mismatch condition which shows
the adaptability of ERB to the dialect mismatch condition.
WERBC features have performed better than GFCC by use of
time frequency analysis property of WP. However, by empha-
sizing the periodicity and aperiodicity analysis on individ-
ual wavelet sub-band, SPADE based WERBC features have
shown better recognition efficiency.

7 Performance evaluation under noisy condition

The experimental results using different front end features
with noisy speech (Test set B and Test set C) and under clean
and multi-condition training are shown in Fig. 5. This clearly
shows the improved performance of the WP derived features
for English phonemes over MFCC and GFCC features. WP

derived features are less sensitive to interfering signal and
can focus to the target speech in composite auditory scene
to extract the coefficients at a certain frequency of inter-
est. Further, the results clearly has shown the effectiveness
of WERB-SPADE based features in the presence of noise.
These methods could considerably enhance noise robust-
ness by using the periodic information of the speech signal,
because periodicity is essentially less affected by interfering
signal. The decomposition of WP sub-band into two feature
set helps to reduce the impact of the signal power distor-
tion in noisy environments. In addition, aperiodic features
clearly reflects sound onset and frequency transitions in a
frame (Ishizuka and Miyazaki 2004). Further, the inclusion
of pitch in the WERB-SPADE further increased the robust-
ness of the ASR system. On average the best performance is
achieved while considering the IF features. Fig 5(b) shows
WERB-SPADE +PE+IF is outperformed by WERB-SPADE
+PE with a relative margin of 1.6 % in multi-training condi-
tion with test set B while scenario is reversed in case of test
set C by getting ample relative improvement of 4.67 %. By
considering the IF features perhaps reduce the environmen-
tal mismatch between training and testing data. By capturing
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Fig. 5 Average recognition
accuracy of all phoneme classes
under SNRs of −5 to 20 dB.
Lower whisker shows the
average recognition efficiency
under −5 dB while upper
whisker represents 20 dB.
(Color figure online)

the phase information as a function of frequency concate-
nated IF-based features shows robust discriminative prop-
erty in noisy environment even in environmental mismatch
condition.

8 Conclusion

This paper proposed a robust front end WP based fea-
ture extraction method which capture the periodic informa-
tion embedded in speech without losing important aperiodic
information. The method uses WP sub-band decomposing
using auditory ERB scale and each sub-band is processed
through comb filter to derive periodic and aperiodic feature
set. TIMIT phone recognition task is carried out to study the
performance of proposed feature. WERB-SPADE is found
to be more effective to recognize the phoneme compared to
baseline features. Further PE is included to make the feature
more robust against noise. Inclusion of IF features make the
WERB-SPADE more effective in environmental mismatch
condition as seen in presented results. Although proposed
feature exhibits effectiveness in the presence of noise but
these features have larger number of parameter compared to
baseline methods and WERBC. So computational cost could

be an important factor in real time speech processing. This
is important to find out a trade-off between feature dimen-
sion and performance to make it more effective in real time
conditions.
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