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Abstract Most of the existing speaker recognition systems
are based on the basic GMM, the state of the art GMM-UBM,
the SVM or more recently the GMM-SVM modeling. In this
paper, a new scheme for Automatic Speaker Recognition
(ASR), namely GMM-PCA-SVM, is presented. Dimension-
ality reduction using Principal Component Analysis (PCA)
technique, which was previously applied in the front-end
process, is now incorporated in the core of the GMM-SVM
modeling part, in order to reduce the size of the adapted
means vectors issued from the Universal Background Model
(UBM). A Comparative study, using Mel Frequency Cepstral
Coefficients (MFCC) with Cepstral Mean Subtraction (CMS)
extracted from the TIMIT database is performed for speaker
recognition in clean and noisy environments. It is shown that
the proposed scheme is a promising way for the ASR task. In
fact, the recognition performances using GMM-PCA-SVM
proposed method is significantly improved compared to the
conventional SVM or GMM-SVM based systems.
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1 Introduction

Due to the growing need for secured access or criminalistic
investigations, improving Automatic Speaker Recognition
(ASR) systems became an attractive challenge. ASR cov-
ers verification and identification. Automatic Speaker Veri-
fication (ASV) is the use of a machine to verify a person’s
claimed identity from his voice. In Automatic Speaker Iden-
tification (ASI), there is no a priori identity state, and the
system decides who the person is Campbell (1997).

Current state of the art systems in text-independent
speaker recognition use cepstral coefficients as baseline fea-
tures, and speaker modeling techniques, such as Univer-
sal Background Gaussian Mixture Models (GMM-UBM)
Reynolds et al. (2000) and Gaussian Supervector (GMM-
SVM) Campbell et al. (2006).

This work was originally devoted to a robust ASR task
using the Support Vector Machine (SVM) Wan and Renals
(2003), Karam and Campbell (2008) and the hybrid GMM-
SVM based recognizers. Along this study, it clearly appears
that the dimensionality reduction is an attractive way to
process the huge quantity of data without loss of recognition
performance. Many different approaches have been studied
to improve the system’s accuracy with a minimum size of
input data. In Jokic et al. (2012), the authors discuss possi-
bilities for dimensionality reduction of the standard MFCC
feature vectors by applying Principal Component Analy-
sis (PCA). The results showed that PCA is an interesting
method to reduce dimensionality without decreasing the sys-
tem performance. The GMM-UBM is adopted in Li and Dong
(2013). The MAP (Maximum A Posterior Probability) means
have been improved by using the MLLR (Maximum Likeli-
hood Linear Regression) and EigenVoice.

In Hanilci and Ertas (2011), in a first time, the authors
made a partition of the UBM data into clusters using the
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Vector Quantification (VQ) algorithm, afterward the trans-
formation matrix is obtained by applying the PCA on the set
of feature vectors in each cluster. Finally, multiple speaker
models are constructed using this set of transformed feature
vectors through MAP adaptation. Best results were achieved
using K = 2 local regions with model order M = 256. The
obtained EER is less than 12.2 %. In Minkyung et al. (2010),
the authors propose a global eigenvector matrix based PCA
for speaker recognition (SR) task, to deal with the large
amount of training data when the eigenvector matrix of each
speaker is calculated. The authors use training data issued
from all speakers to calculate the covariance matrix and
use this matrix to find the global eigenvalue and eigenvec-
tor matrix to perform PCA technique. The proposed method
shows better performance while requiring less storage space.

A Fishervoice based feature fusion method incorporat-
ing with PCA, LDA is proposed in Zhang and Zheng
(2013). The high dimensional input data is simply pro-
jected into a lower-dimensional subspace. Results show
that this technique can effectively reduce the Equal Error
Rate (EER) for utterances as short as about 2 s. In Jiang
et al. (2013), the authors transform the original features
extracted from speech files by PCA and KPCA (Kernel-
PCA) to select effective emotional features for the Auto-
matic Speech Emotion Recognition (ASER). Results shown
that feature dimension reduction seriously improve the accu-
racy of the ASER system. In Lee (2004), Lee introduced
local fuzzy PCA based GMM which creates the regions
using fuzzy clustering algorithm followed by PCA for each
region. The author concluded that this technique gives com-
parable performance accuracy for speaker identification task
with reduced dimension of data. The best performances are
reached with the proposed method. With reduced dimen-
sion, the performances are same or better to the conven-
tional GMM, with k = 2 clusters and mixture number equal
to 64.

As mentioned above, the main idea of this work is
to find a new scheme for speaker recognition modeling
based on dimensionality reduction, with improved perfor-
mance. The ability of the PCA is investigated in order
to reduce the size of the adapted mean vectors issued
from the GMM-UBM model. Moreover, the paper investi-
gates the influence of the dialect Yun and Hansen (2009,
2011), Chitturi and Hansen (2007) effect on the ASR sys-
tems.

The rest of the paper is outlined as follow. Sections 2
reviews the SVM and the GMM-SVM classifiers used for
the ASR task. Then, dimensionality reduction applied in the
front end part of the ASR system is described in sect. 3.
Section 4, detailed the proposed new scheme based on the
GMM-PCA-SVM modeling. Section 5 presents the data sets
used and the experimental results in both clean and noisy
environments. Finally, Sect. 6 concludes this paper.

Fig. 1 Principle of support vector machine (SVM) classification

2 Speaker recognition using SVM and GMM-SVM

2.1 SVM modeling

Support Vector Machines (SVM), is a powerful discrimi-
native classifier that is related to minimizing generalization
errors. SVM aims to fit an Optimal Separating Hyperplane
(OSH) between classes by focusing on the training samples
that lie at the edge of the class distributions, the support vec-
tors, and separates classes using “Maximum-Margin” hyper-
plane boundary (see Fig. 1).

When data are not linearly separable in the finite dimen-
sional space, a kernel function k(·, ·) is used, this leads to
an easier separation between two classes with a Hyperplane.
A linear hyperplane in the high dimensional kernel feature
space, Hilbert space (H), corresponds to a nonlinear deci-
sion boundary in the original input space. More details can
be found in both Vapniks’ book Vapnik (1998) and Burges’
tutorial Burges (1998).

The SVM is constructed from the sums of a kernel function
k(·, ·) as follow:

f (x) = sign

[
N∑

t=i

αi ti k(x, xi ) + b

]
with

N∑
t=i

αi ti = 0 (1)

Where ti are the ideal outputs, xi represent the support vec-
tors, which are the training data. αi are Lagrange multipliers
and b represents the bias.

The Radial Basis Function (RBF) and the polynomial ker-
nels are commonly used, and take respectively the following
forms:

k(x, xi ) = e−γ ‖x−xi ‖2 (2)

k(xi , x j ) = (xi .x j + 1)d (3)

where γ is the width of the Radial Basis Function and d is
the order of the polynomial function.

2.2 GMM-SVM speaker recognition

Gaussian Mixture Model (GMM) is a type of density model
that is used to represent the speaker and follows the prob-
abilistic rules. The GMMs models are easy to implement,
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Fig. 2 Bloc diagram of the
GMM-SVM based speaker
recognition system

and are commonly used for Language Identification, Gen-
der Identification and Automatic Speaker Recognition tasks.
The GMM model obtains the likelihood of a D-dimensional
Cepstral vector �x using a mixture model λ of M multivariate
Gaussians Reynolds et al. (2000) given by:

p(x/λ) =
M∑

i=1

πi bi (x) (4)

where πi represents the mixture weights and bi (x), i =
1, ..., M are the component densities given by:

bi (x)= 1

2�D/2 |�i |1/2 exp

[
−1

2
(x−μi )

′(�i )
−1(x − μi )

]
(5)

with mean vector μi and covariance matrix �i . The mixture
weights satisfy the constraint that

∑M
i=1 πi = 1. These para-

meters are estimated using the Expectation–Maximization
(EM) algorithm Reynolds et al. (2000). For speaker recogni-
tion, each speaker is modeled by a GMM and is referred to
by its model λ.

The UBM is generally a large GMM learned from multiple
speech files to represent the speaker’s independent distribu-
tion of features, its parameters (mean, variance and weight)
are found using the EM algorithm. The hypothesized speaker
specific model is derived by adapting the parameters of the
UBM using the speaker’s training speech and a form of
Bayesian adaptation MAP Reynolds et al. (2000). The spec-
ifications of the adaptation are given below.

Given a UBM model and training vectors from the hypoth-
esized speaker, X = {x1, x2, ..., xT }, we first determine the
probabilistic alignment of the training vectors into the UBM
mixture components. That is, for mixture i in the UBM, we
compute

Pr(i/xt ) = λi pi (xt )∑M
j=1 λ j p j (xt )

(6)

ni (X) =
T∑

t=1

Pr(i/xt ) (7)

Ei (X) = 1

ni

T∑
t=1

Pr(i/xt )xt (8)

This is the same as the expectation step in the EM algorithm.
Finally, these new sufficient statistics from the training data
are used to update the old UBM sufficient statistics for mix-
ture i to create the adapted parameters for mixture i with the
equations:

−
μi = αi Ei (X) + (1 + αi )μi , i = 1, ..., M (9)

αi = ni (X)

ni (X) + r
(10)

where r is a fixed relevance factor.
Another approach became more popular, which consists of

using the hybrid system GMM-SVM. The main goal is to see
the complementary information provided by the traditional
GMM to the SVM based system. In this approach, instead
of using the MFCC features directly, the hybrid classifier
uses the adapted Gaussian means of the mixture components
obtained from the UBM and the MAP adaptation as input to
the SVM system for the discrimination and the decision task.
An illustrative bloc diagram of the GMM-SVM classifier is
given on Fig. 2.

3 Dimentionality reduction in the front-end part

In order to investigate the influence of dimensionality reduc-
tion on the ASR system, the PCA is applied to the input
feature vectors (MFCCs) issued from the speech signal for
the SVM based speaker recognition system.

The SVM system is based on the principle of structural risk
minimization. It is considered to be more suitable for classi-
fication and therefore is used in our work. The difficulty of
the SVM classifier is setting its respective optimal parame-
ters (C, γ ) to achieve the lower misclassification accuracy.
These parameters are calculated during the training phase,
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Fig. 3 Bloc diagram of the SVM based speaker recognition system

and the final step consists of the testing phase, which allows
the evaluation of the robustness of the classifier. To calcu-
late the classification function class (x) in the SVM model,
the RBF kernel was used. All presented results in this study,
were obtained using that function.

In this paper, the SVM was trained directly on the acoustic
space, which characterizes the client data and the impostor
data. In this way, 15 unknown speakers were used to represent
the impostors for the recognition task.

For PCA-SVM model, the PCA was applied to the feature
vector in the front-end part, and was applied to each speaker
independently. This leads to a better representation of the
speaker’s intra variability and allows reducing the effective
size of the input data (MFCCs). The SVM block diagram is
given on Fig. 3.

The PCA Jolliffe (2010) technique is an unsupervised fea-
ture extraction method Izquierdo-Verdiguier et al. (2014), it
rotates the synchronization system in such a way that the
directions of the axes are oriented with progressively decreas-
ing variance of the data Kuncheva and Faithfull (2014). This
technique allows a transformation from a number of corre-
lated variables into a smaller number of uncorrelated ones
Malarvizhi and Sivasarathadevi (2013), the Principal Com-
ponents (PCs) while preserving the maximum variance dur-
ing the projection process. The following paragraph details
the theoretical fundaments of the PCA routine.

The initialization step of the system consists of the creation
of the eigenspace. Let the training set be the input feature
vectors (MFCCs), X = {x1, x2, ..., xM }. The average mean
of the set is defined by:

X = 1

M

M∑
i=1

xi (11)

Each feature vector differs from the average mean X by the
vector:

ϑp = xp − X with p = 1...M (12)

The rearranged ϑp vectors construct the δ (N*M) matrix that
will be subject to the PCA technique Kresimir delac etal.
(2005). The covariance matrix of X using the δ matrix is
calculated as:

C = δδT (13)

Let {λ1, λ2, ..., λn} be the eigenvalues of the covari-
ance matrix C, ordered from largest to smallest and φ =
{ω1, ω2, ...., ωn} be the corresponding eigenvectors. φ rep-
resents the transformation matrix which projects the original
data X onto orthogonal feature space.

The dimensionality reduction is then made by keeping
some number of the principal components that capture most
of the variance in the data set, and discarding the rest. So, the
transformation matrix φ will consist of the first D eigenvec-
tors which is associated with largest D eigenvalues, where D
is the new dimension. Figure 4 illustrates the block diagram
of the PCA-SVM based speaker recognition system.

4 The proposed GMM-PCA-SVM based speaker
recognition modeling

4.1 System Overview

The bloc diagram of the proposed GMM-PCA-SVM based
speaker recognition system is depicted in Fig. 5. First, a
Voice Activity Detector (VAD) technique is used. For a

Fig. 4 Bloc diagram of the
PCA-SVM based speaker
recognition system
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Fig. 5 The proposed
GMM-PCA-SVM based
speaker recognition system

given speech utterance, the energy of all speech frames is
computed. An empirical threshold is then determined from
the maximum energy of these speech frames. This classi-
fies speech segments as either speech or silence segments.
Finally, silent segments (no-speech) are removed.

The ASR systems use the short term spectrum features
Harrag et al. (2011) to represent speaker specific features.
Indeed, the short term spectrum features convey the glottal
source, the vocal tract shape and length of a speaker, and thus
lead to a better representation of a given speaker.

In this study, an extraction of 12 MFCCs, plus their delta
and double delta Cepstral coefficients, making 36 dimen-
sional feature vectors to represent the feature space. These
features are extracted using a Hamming window with 20 ms
of length and a shift of 10 ms. The window is used to taper
the original signal on the sides and therefore reduces the side
effects Hanilci and Ertas (2011). Finally, a Cepstral Mean
Subtraction (CMS) Kinnunen and Li (2010) is applied to
these features by the subtraction of the cepstral mean of the
feature vectors in order to fit the data around their average.

4.2 Modeling phase

In the proposed GMM-PCA-SVM scheme, the main idea
consists of the introduction of the dimensionality reduction
using PCA technique in the core of the recognizer. The pro-
posed process is given on Fig. 5.

The mean vectors issued from the UBM model using MAP
adaptation are projected using PCA technique into an orthog-
onal feature space. The new reduced mean vectors are then
used as input to the SVM model for scoring.

4.3 Double dimensionality reduction

To better investigate on the contribution of PCA technique,
dimensionality reduction is also applied in the front-end part
of the proposed GMM-PCA-SVM system (see Fig. 6).

5 Experiment results

5.1 Corpora

The corpus used in this work is issued from the TIMIT data-
base Garofolo et al. (1993), which was one of the first cor-
pora available that had a large number of speakers, and has
been used for many speaker recognition studies. This data-
base includes phonetic and word transcriptions as well as a
16-bit, 16 kHz speech file for each utterance and is recorded
in “.ADC” format.

The database consists of a set of 8 sentences with 3s
of length spoken by 491 speakers in English language and
divided in 8 dialects (Dr1 to Dr8) of the United States. We
have selected 5 phonetically rich sentences (SX recordings)
for the training and 3 other utterances (SI sentences) different
from the previous ones for the testing. In this way, the text
independency of speaker recognition was preserved.

5.2 Speaker recognition using SVM and GMM-SVM

To evaluate the influence of dialect and size of database on
the ASR, a comparative study of the SVM and GMM-SVM
systems is performed. In this study, Gaussian mixture models
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Fig. 6 Bloc diagram of the
double dimensionality
reduction, the
PCA-GMM-PCA-SVM based
speaker recognition system

Table 1 Performance of the
SVM and GMM-SVM based
speaker recognition systems, in
term of EER (%)

Subset Dialect N of Speakers GMM-SVM (%) SVM (%)

Dr1 New England 47 14.84 14.83

Dr6 New York City 47 14.54 16.04

Dr2 Northern 90 6.34 6.93

Dr3 North Midland 86 6.62 7.24

Dr4 South Midland 65 8.75 8.8

Dr5 Southern 65 8.45 8.71

Dr7 Western 66 8.37 8.18

Dr8 Army Brat 25 22.07 26.89

were used with M = 32. The parameter αi is calculated as in
Eq. (10). For GMM-MAP training, only mean values of the
Gaussian components were adapted, with a relevance factor
of 16, the weight vector and the covariance matrix were not
modified.

The so-called impostor model is used as an a priori for
the estimation of speaker models. For this purpose, a gender
balanced UBM consisting of 2048 mixture components was
trained using the EM algorithm. The UBM aims to model the
general acoustic space of 120 unknown speakers (impostors),
60 male and 60 female, where each speaker utters five dif-
ferent sequences. In a last step, an SVM classifier using the
target GMM supervectors and the SVM background which
represents GMM supervectors of 25 impostors labeled as
(–1) for scoring is trained. Table 1 presents the results in
term of EER of different dialects and different lengths of
subdatabases contained in the TIMIT dataset.

Table 1 shows the EER (%) of the speaker recognition
system accuracy with both SVM and GMM-SVM classifiers.
As expected, in major cases, the GMM-SVM outperforms the
SVM system’s performance. For example, the EER obtained
with the SVM model for the Dr8 subset is equal to 26.89

% where it is less than 22.1 % for the hybrid GMM-SVM
system.

Even when the three subsets of the TIMIT corpora have
almost the same number of speakers, Dr4, Dr5 and Dr7 with
different dialect, both GMM-SVM and SVM performance
accuracies are quite the same for all these subsets. For exam-
ple, for the SVM classifier, the EER in Dr4 (Dialect: South
Midland, Number of speaker: 65) is 8.8 %, in Dr5 (Dialect is:
Southern, Number of speaker is: 65) it is 8.71 % and in Dr7
(Dialect is: Western, Number of speaker is: 66) 8.18 %. But
on the other hand, a difference of performance accuracy is
noticed with the SVM classifier for the Dr1 and Dr6 subsets.
The EER in Dr1 (Dialect: New England, Number of speaker:
47) is 14.83 % while it is 16.4 % for the Dr6 (Dialect is: South-
ern, Number of speaker is: 47) subset. Therefore, one cannot
confirm that the dialect did have an influence on the ASR task
for both systems. However, the number of speakers has a big
influence on both classifiers for the speaker recognition rate.
That is, the greater the number of speakers, the smaller the
EER becomes. This is clearly seen with Dr8 (Dialect: Army
Brat, Number of speaker: 25), and Dr2 (Dialect: Northern,
Number of speaker: 90) for which the EERs are 26.89 and
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Table 2 Performance of the
GMM-PCA-SVM,
PCA-GMM-PCA-SVM and
PCA-SVM systems, in term of
EER (%)

Subset Dialect N of Speakers GMM-PCA-SVM PCA-GMM-PCA-SVM PCA-SVM

Dr1 New England 47 5.68 12.5 7

Dr6 New York City 47 5.39 12.24 10.58

Dr2 Northern 90 4.16 6.66 4.62

Dr3 North Midland 86 3.58 6.81 3.95

Dr4 South Midland 65 4.18 8.57 4.22

Dr5 Southern 65 4.66 8.45 5.36

Dr7 Western 66 4.28 8.45 5.38

Dr8 Army Brat 25 8.19 12.90 26

6.93 % for the GMM-SVM and the SVM classifiers respec-
tively.

5.3 Speaker recognition using the PCA dimensionality
reduction

The main goal of the experiments described in this section
is to evaluate the recognition performance of the proposed
system using the PCA dimensionality reduction in the core
of the classifier. Results when applying PCA in the front-end
part of the ASR system are also presented in the Table 2.

Comparing to Table 1, we can observe that using PCA
dimensionality reduction leads to a notable increase in the
system’s accuracy for both SVM and the hybrid GMM-SVM
classifiers. It is clearly seen that, the proposed GMM-PCA-
SVM system outperforms the other ones for all different sub-
sets of the TIMIT database.

5.4 Speaker recognition in noisy environment

The SVM and the GMM-PCA-SVM classifiers have been
performed in both clean and noisy environments. A set of
176 speakers issued from the eight subsets of the TIMIT
database is used.

For real world setting, two different noisy environments,
Train station and Subway noises issued from the NOISEUS
database have been used within Signal-to-Noise Ratio, SNR
= 0, 5 and 10 dB. The experimental protocol is the same as
that one detailed previously in this paper. In clean environ-
ment, the obtained results are express by the Detection Error
Tradeoff (DET) curve (See Fig. 7).

In the clean case, a low degradation is noticed when apply-
ing the PCA technique in the front-end part of the SVM clas-
sifier. For example, the EER increased from 4,2 % (SVM
alone) to 5 % (PCA-SVM). For the proposed GMM-PCA-
SVM model, the PCA gives an important contribution for the
recognition accuracy. In fact, the EER decreases from 3,92
% for the conventional GMM-SVM based classifier to 2,94
% obtained with the proposed GMM-PCA-SVM one.
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Fig. 7 Speaker recognition in clean environment
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Fig. 8 Comparative performance of the speaker recognition systems
using speech corrupted with Subway noise

Figures 8, 9 present the performance accuracy of the pro-
posed system in different noisy environments. It is clearly
seen that the proposed GMM-PCA-SVM speaker recognition
system is more robust compared to the conventional SVM or
GMM-SVM based speaker recognition systems.

Concerning the noisy environment, the contribution of the
PCA is clearly noticed for both SVM and GMM-SVM sys-
tems. Best performances accuracies are reached with the pro-
posed GMM-PCA-SVM system. Applying PCA in the front-
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Fig. 9 Comparative performance of the speaker recognition systems
using speech corrupted with Train station noise

end part of the SVM system brings also interesting results.
For instance, for Subway noise and at SNR = 0 dB, the EER
is 12 % for SVM based system alone, while it is less than 10,
2 % for the PCA-SVM based system.

In the speech signal, it is expected that subsets of variables
are highly correlated with each other. These variables are
quite redundant and consequently share the same powerful
rule in defining the outcome of interest. Consequently, the
system is trained on unnecessary samples which lead to a
loss of time and performance. Furthermore, when speech
data is corrupted with different noises, the information within
this particular data (the redundant samples/less significant
samples) is totally lost and hence causes a serious degradation
in system accuracy.

The basic solution is to combine, using the PCA technique,
these variables into a smaller number that will account for
most of the variance in the observed data. One of the principal
assumptions of PCA technique is assuming that components
with big variance correspond to interesting dynamics and
lower ones correspond to noise. Though, the purpose of this
paper consists of the use of PCA in the modeling phase of
the classifier, which transforms the reduced adapted mean
vectors into an orthogonal feature space and allows throwing
out the low weight transformed features. This considerably
enhances performances by removing correlations between
variables.

6 Conclusion

In this paper, a new GMM-PCA-SVM scheme has been pro-
posed for ASR. The concept, based on the dimensionality
reduction, consists of applying the PCA technique to the
adapted mean vectors in the modeling phase of the GMM-
SVM based speaker recognition system. Comparative study
proven that, this new scheme brings interesting results in both
clean and noisy environment.

In addition, dimensionality reduction was also applied to
both frond-end stage and speaker modeling core, but in this
last case, the overall reduction method was not more effective
due to the huge loss of data caused by the repeated reduction.

Moreover, the results show that the dialect did not have
a visible effect on the system’s performances. However, the
size of the database (number of speakers) affected strongly
the performance accuracy of both classifiers.

For future work, additional features, such as prosodic
and voice quality features can be merged with the proposed
method to ameliorate the speaker recognition performance
accuracy.
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