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Abstract Hidden Markov models (HMMs) with Gaussian
mixture distributions rely on an assumption that speech fea-
tures are temporally uncorrelated, and often assume a di-
agonal covariance matrix where correlations between fea-
ture vectors for adjacent frames are ignored. A Linear Dy-
namic Model (LDM) is a Markovian state-space model that
also relies on hidden state modeling, but explicitly mod-
els the evolution of these hidden states using an autore-
gressive process. An LDM is capable of modeling higher
order statistics and can exploit correlations of features in
an efficient and parsimonious manner. In this paper, we
present a hybrid LDM/HMM decoder architecture that post-
processes segmentations derived from the first pass of an
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HMM-based recognition. This smoothed trajectory model is
complementary to existing HMM systems. An Expectation-
Maximization (EM) approach for parameter estimation is
presented. We demonstrate a 13 % relative WER reduction
on the Aurora-4 clean evaluation set, and a 13 % relative
WER reduction on the babble noise condition.
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1 Introduction

Over the past several decades, Hidden Markov Models
(HMMs) that use Gaussian mixture models to model state
observation distributions have been the most popular ap-
proach for acoustic modeling in automatic speech recogni-
tion (ASR) applications. We will refer to these as HMM/
GMM. An HMM/GMM can be regarded as a finite state
machine in which the states of the system evolve in ac-
cordance with an inherent deterministic mechanism and the
emission probabilities map hidden states to observations.
HMM modeling techniques have relied on a standard as-
sumption that speech features are temporally uncorrelated.
Recent theoretical and experimental studies (Frankel 2003;
Frankel and King 2007; Digalakis et al. 1993) suggest that
exploiting frame-to-frame correlations in a speech signal
further improves the performance of ASR systems. This
is typically accomplished by developing an acoustic model
that includes higher order statistics or parameter trajectories
(Liang 2003).

Linear Dynamic Models (LDMs) have generated signif-
icant interest in recent years (Frankel 2003; Tsontzos et al.
2007) due to their ability to model higher order statistics. An
LDM describes a linear dynamic system as underlying states

mailto:tma@apple.com
mailto:sundararajan.srinivasan@gmail.com
mailto:glaz@ieee.org
mailto:joseph.picone@isip.piconepress.com


12 Int J Speech Technol (2014) 17:11–16

Fig. 1 The internal states and observations are shown for an LDM.
Every observable has a corresponding hidden internal state

and observables using a measurement equation to link the
internal states to the observables. An autoregressive model is
used to capture the time evolution of states. An LDM models
every word or phoneme segment as a non-separable unit that
incorporates the dynamic evolution of the hidden states. Di-
galakis et al. (1993) first applied LDMs to the speech recog-
nition problem by developing a maximum likelihood ap-
proach based on an Expectation-Maximization (EM) param-
eter estimation algorithm. In subsequent work by Frankel
and King (2007), LDMs were applied to an acoustic model-
ing problem to characterize articulatory dynamics. Promis-
ing results have been demonstrated on a limited recognition
task based on TIMIT (Garofolo et al. 1993). More recently,
LDMs have been applied to noisy speech recognition prob-
lems using Aurora-2 (Wöllmer et al. 2011), but not in a man-
ner conducive to large vocabulary continuous speech recog-
nition (LVCSR).

In this paper, we present a hybrid framework that in-
tegrates LDM into an LVCSR system, and demonstrate a
significant improvement on a difficult evaluation task: the
Aurora-4 Corpus (Parihar et al. 2004). This task includes
clean and noisy speech data as well as conditions simulat-
ing mismatched training conditions. We show that the pro-
posed hybrid recognizer provides 13 % relative WER re-
duction on the Aurora-4 clean evaluation set, and a 13 %
relative WER reduction on a babble noise condition. In
Sect. 2, we present a brief review of LDM. In Sect. 3, we
describe a hybrid HMM/LDM recognizer architecture that
effectively integrates these two technologies. Continuous
speech recognition results on the Aurora-4 corpus are pre-
sented in Sect. 4. The paper concludes with a discussion of
ongoing research on directly integrating LDM into HMMs
system at the frame-level of speech signals.

2 Linear dynamic models

An LDM is an example of a Markovian state-space model,
and in some sense, can be regarded as analogous to an
HMM/GMM since LDMs use hidden-state modeling. In an
LDM, systems are described as underlying states and ob-
servables combined by a measurement equation (Digalakis
et al. 1993). Every observable has a corresponding hidden
internal state as illustrated in Fig. 1. The LDM formulation

is based on a state-space model:

xt+1 = Fxt + ωt (1)

yt = Hxt + νt , (2)

where xt is a q-dimensional internal state vector, yt is a
p-dimensional observation vector, F is the state evolution
matrix and H is the observation transformation matrix. The
variables ωt and νt are assumed to be uncorrelated white
Gaussian noise with covariance matrices Q and R, respec-
tively.

The sequence of observations, yt , and underlying states,
xt , are finite dimensional and are assumed to follow mul-
tivariate Gaussian distributions for every time t . The first
equation can be viewed as an autoregressive state process
that describes how states evolve from one time frame to the
next. The second equation maps the output observations to
the internal states. The system’s hidden states, xt , are the de-
terministic characteristic of an LDM that are also affected
by random Gaussian noise. The state and noise variables
can be combined into one single Gaussian random variable
(Frankel and King 2007).

Based on Fig. 1, conditional density functions for the
states and output can be written as follows:

P(yt |xt ) = exp
{−(1/2)[yt − Hxt ]T R−1[yt − Hxt ]

}

× (2π)−p/2|R|−1/2 (3)

P(xt |xt−1) = exp
{−(1/2)[xt − Fxt−1]T

× Q−1[xt − Fxt−1]
}
(2π)−k/2|Q|−1/2. (4)

According to the Markovian assumption, the joint probabil-
ity density function of the states and observations becomes:

P
({x}, {y}) = P(x1)

T∏

t=2

P(xt |xt−1)

T∏

t=1

P(yt |xt ). (5)

We need to estimate the hidden state evolution given yt and
the model parameters. This can be accomplished using a
Kalman filter combined with a Rauch Tung Striebel (RTS)
smoother (Frankel and King 2007). The Kalman filter pro-
vides an estimate of the state distribution at time t given
the previous observations. The RTS smoother gives a cor-
responding estimate of the underlying state conditions over
the entire observation sequence. For the smoothing part, a
fixed interval RTS smoother is used to compute the required
statistics once all data has been observed.

The RTS smoother adds a backward pass that follows
the standard Kalman filter forward recursion. In addition,
in both the forward and the backward pass, we need some
additional recursions for the computation of the cross-
covariance. The corresponding RTS equations are:

x̂t−1/N = x̂t−1/t−1 + At(x̂t/N − x̂t/t−1) (6)
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Fig. 2 State predictions for an LDM model using a Kalman filter are
shown

Fig. 3 A Kalman filter with RTS smoothing produces smoother state
trajectories
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A synthetic LDM model with two-dimensional states and
one-dimensional observations was created to demonstrate
the contribution of RTS smoothing. In Fig. 2, we show
the state predictions of this LDM model using a traditional
Kalman filter. In Fig. 3, the performance of the Kalman fil-
ter with RTS smoothing is shown. In both figures, the true
state evolutions for our synthetic LDM model are compared
to a scatter plot of the noisy observations of the LDM model
and the RTS smoothed data. RTS smoothing produces sig-
nificantly better prediction for the system’s internal states.

The Expectation-Maximization (EM) algorithm (Di-
galakis et al. 1993) is used to find maximum likelihood esti-

mates of parameters for a specific word or phone, where the
model depends on unobserved latent variables. The relevant
equations are:

E
[
xt/y, θ(i)

] = x̂t/N (10)

E
[
xtx

T
t /y, θ(i)g

] =
∑

t/N

+x̂t/N x̂T
t/N (11)

E
[
xtx

T
t−1/y, θ(i)

] =
∑

t,t−1/N

+x̂t/N x̂T
t−1/N . (12)

The E-step algorithm consists of computing the conditional
expectations of the complete-data sufficient statistics for
standard ML parameter estimation. Therefore, the E-step in-
volves computing the expectations conditioned on observa-
tions and model parameters. The RTS smoother described
previously can be used to compute the complete-data esti-
mates of the state statistics. EM for LDM then consists of
evaluating the ML parameter estimates by replacing xt and
xtx

T
t with their expectations.
The EM algorithm converges quickly and is stable for

our synthetic LDM model of two-dimensional states and
one-dimensional observations. After initializing this LDM
model with an identity state transition matrix and random
observation matrix, the first iteration of ML parameter es-
timation was applied to update the model parameters. Log-
likelihood scores of observation vectors were calculated and
saved in order to perform further analysis.

EM training was applied for 30 iterations. After the train-
ing recursion, intermediate log-likelihood scores of obser-
vation vectors for all iterations of LDM were plotted as a
function of the number of iterations. This plot is referred to
as the EM evolution curve. We explored 1-, 4-, 6-, and 10-
dimensions for each state in the LDM approach, and applied
EM training for each specified dimension. In Fig. 4, the EM
evolution curve is shown as a function of the state dimen-
sion. The training procedure converges quickly, requiring no
more than 10 iterations.

3 A hybrid HMM/LDM architecture

One significant drawback of LDMs is that, they are inher-
ently static classifiers—they are not capable of implicitly
modeling the temporal evolution of a speech signal. Static
classifiers are not designed to find the optimal start and stop
times for a phone hypothesis. HMMs, on the other hand,
are very good at optimizing segmentations while perform-
ing classification. Based on our previous work integrating
a Support Vector Machine into a speech recognition sys-
tem (Ganapathiraju et al. 2004), we employed a similar two-
pass hybrid HMM/LDM recognizer. This system, shown in
Fig. 5, leverages the temporal modeling and N best list gen-
eration capabilities of the traditional HMM architecture in a



14 Int J Speech Technol (2014) 17:11–16

Fig. 4 The EM evolution as a
function of iteration is shown
for a variety of state dimensions.
EM training procedure
converges quickly, requiring no
more than 10 iterations

Fig. 5 A hybrid HMM/LDM architecture is shown in which LDM is
used to postprocess phone hypotheses using HMM segmentations

firstpass analysis, and uses a second pass to re-rank candi-
date sentence hypotheses with a phone-based LDM model.
A more thorough analysis of alternate strategies for integrat-
ing LDMs into an HMM framework was explored in Ma
(2010). The hybrid system N -best rescoring approach was
found to be the most promising.

Since the hybrid architecture postprocesses N -best lists,
high performance N -best list generation is critical to achiev-
ing good performance. In our research, a word graph is gen-
erated and converted to an N best list using a stack-based
word graph to N -best list converter. Word lattices or word
graphs are a condensed representation of the search space.
Word graphs are an intermediate representation commonly
used in a multi-pass speech recognition system. Typically,
a word graph contains word labels, start and stop times, a
language model score and an acoustic score. To convert the
word graph to an N -best list, a stack is initialized with the
start node of the graph. A recursive procedure is then used
to grow partial paths according to the word graph and to

re-rank the stack to find the best partial path. During this
procedure, beam pruning is applied to maintain the K best
partial paths in the stack. Upon completion, the N best par-
tial paths (N < K) are traced to produce the final N -best
sentence hypotheses.

Once this list is produced, along with the correspond-
ing segmentations for the acoustic units, LDM classifiers
are used in a second pass to estimate the likelihood scores.
In this work, a transformation-based score combination
scheme is applied for simplicity. The LDM likelihood scores
are first normalized (transformed) to match the range of the
HMM scores, and then a weighted combination of these two
scores is used:

Likelihood

= HMM_Score + LDM_Scale ∗ LDM_Score (13)

Ma (2010) explored methods of combining these two scores
and determined that a weighted sum of the two scores pro-
vided a small gain in performance over using only the LDM
score in the rescoring process. Choice of the normalization
scheme and combination weight is data-dependent and re-
quires empirical evaluation. Alternate approaches such as
classifier-based score fusion and density-based score fusion
could be used, but our experience was that the overall results
are not sensitive to the type of score fusion used.

4 Aurora-4 experiments

In order to evaluate the hybrid HMM/LDM recognizer, the
Aurora-4 Corpus (Parihar et al. 2004) was chosen because
it contains mismatched training and evaluation conditions,
which is a fundamental problem addressed in this work.
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Table 1 Experimental tuning of the scale factor combining LDM and
HMM scores resulted in small improvements in performance

Normalization Factor: LDM_SCALE Hybrid Decoder WER

0.100 12.3 %

0.050 12.1 %

0.010 11.8 %

0.005 11.9 %

0.001 11.9 %

The Aurora-4 Corpus consists of the original WSJ0 data
with digitally-added noise and is divided into two training
sets and 14 evaluation sets. Training Set 1 (TS1) and Train-
ing Set 2 (TS2) include the complete WSJ0 training set
known as SI-84. TS1 consists of the original WSJ record-
ings, while TS2 contains various digitally-added noise con-
ditions. The 14 evaluation sets are derived from data defined
by the November 1992 NIST evaluation set. Each evaluation
set consists of a different microphone or noise combination.
In this work, we use only TS1 dataset for training and use
the 14 evaluation sets for performance analysis.

Traditional 39 dimensional MFCC acoustic features (12
cepstral coefficients, absolute energy, and first and second
order derivatives) were computed from each of the signal
frames within the phoneme segments. Before extraction,
each feature dimension was normalized to the range [−1,1]
to improve the convergence behavior of our LDM training.
A total of 40 phonemes are used for acoustic modeling, so
there are 40 LDM classifiers in the hybrid decoder.

The scale factor for combining HMM and LDM scores is
shown in Table 1. We see that performance varies slightly
with changes in LDM_Scale. It is not surprising that the
variation is small, since the HMM-based segmentations play
an important role in the overall combination of the two
scores. Segmentation is an important part of the recognition
process, and generally if segmentation is correct, recogni-
tion performance is high. The N -best rescoring process is
intimately dependent on the HMM process. A better alterna-
tive would be to embed LDM in the first pass of the recog-
nition system, but that is the subject of future research.

The evaluation results for the clean dataset and six noisy
evaluation sets are presented in Table 2. The results for
the hybrid HMM/LDM decoder for the condition labeled
“Clean,” which represents matched training and testing
in a noise-free environment, are encouraging. The hybrid
HMM/LDM system achieves an 11.6 % WER which repre-
sents a 12.8 % relative WER reduction compared to a com-
parably configured HMM baseline. The hybrid decoder also
achieves 13.2 % relative WER reduction for the babble noise
evaluation dataset, and smaller improvements for a major-
ity of the other conditions, which represent mismatched
training and evaluation conditions. The overall results are

Table 2 Experimental results for the hybrid HMM/LDM system are
compared to a conventional HMM system. Substantial improvements
were obtained on the clean and babble noise conditions

Condition HMM Baseline Hybrid LDM Relative Reduction

Clean 13.3 11.6 12.8 %

Airport 53.0 50.3 5.09 %

Babble 55.9 48.5 13.2 %

Car 57.3 59.8 −4.4 %

Restaurant 53.4 50.6 5.2 %

Street 61.5 59.4 3.4 %

Train 66.1 63.4 4.1 %

promising given that the segmentations have not been opti-
mized for the LDM system and confirms LDM’s capability
to model speech dynamics in a manner that is complemen-
tary to a traditional HMM.

5 Summary

In this paper, we proposed a hybrid framework to integrate
LDMs within the framework of an HMM for large vocab-
ulary continuous speech recognition tasks. The theoretical
foundation of the linear dynamic model is discussed and an
EM-based training paradigm is introduced. The hybrid de-
coder architecture is an off-line processing mechanism and
is bootstrapped using a baseline HMM system. Several is-
sues related to applying an LDM in a hybrid system have
been addressed: modifications to the HMM system; imple-
mentation of the N -best list generation; and development of
an N -best rescoring paradigm using HMM and LDM score
fusion. Results on the Aurora-4 Corpus are encouraging.

In this work, the LDM postprocesses segmentations de-
rived from the first pass of an HMM-based recognition. It is
well known that segmentation plays a major role in high per-
formance speech recognition systems. Future work will be
focused on closely integrating the LDM into the core search
loop of a speech recognizer, providing acoustic scores at the
frame level that can be directly integrated into the Viterbi
search, alleviating the need to do N -best rescoring. This
would allow a deeper analysis of the utterance and improve
performance beyond that achievable with N -best rescoring
and fixed segmentations.
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