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Abstract This work processes linear prediction (LP) resid-
ual in the time domain at three different levels, extracts
speaker information, and demonstrates their significance
and also different nature for text-independent speaker recog-
nition. The subsegmental analysis considers LP residual in
blocks of 5 msec with shift of 2.5 msec to extract speaker
information. The segmental analysis extracts speaker in-
formation by processing in blocks of 20 msec with shift
of 2.5 msec. The suprasegmental speaker information is
extracted by viewing in blocks of 250 msec with shift
of 6.25 msec. The speaker identification and verification
studies performed using NIST-99 and NIST-03 databases
demonstrate that the segmental analysis provides best per-
formance followed by subsegmental analysis. The supraseg-
mental analysis gives the least performance. However, the
evidences from all the three levels of processing seem to
be different and combine well to provide improved per-
formance, demonstrating different speaker information cap-
tured at each level of processing. Finally, the combined ev-
idence from all the three levels of processing together with
vocal tract information further improves the speaker recog-
nition performance.
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1 Introduction

The speaker information in the speech signal is attributed to
the physiological and behavioral aspects of a person (Atal
1972). The physiological aspects are due to the vocal tract
and excitation source that involved in the production (Wolf
1972). The behavioral aspect involves factors like speak-
ing rate, accent etc. (Wolf 1972). The shape, size and the
dynamics associated with the vocal tract contribute to the
speaker characteristics. On the similar lines, the shape, size
and the dynamics associated with the vocal folds contribute
to the speaker characteristics. State of the art speaker recog-
nition systems mostly use vocal tract related speaker in-
formation represented by the spectral or cepstral features
like linear prediction cepstral coefficients (LPCC) or mel
frequency cepstral coefficients (MFCC) (Furui 1981; Davis
and Mermelstein 1980; Reynolds and Rose 1995). These
features provide good recognition performance. The reason
may be that, they nearly represent complete vocal tract in-
formation. However, under degraded conditions, the spec-
tral or cepstral features give poor performance (Reynolds
1994). Hence their is a need for deriving robust features
for speaker recognition. The speech production and percep-
tion theory indicate that source contains speaker informa-
tion and also may be relatively more robust due to its im-
pulsive nature (Mary and Yegnanarayana 2008). Motivated
by this, attempts have been made in exploring methods for
modeling the speaker information from the source (Atal
1972; Thevenaz and Hugli 1995; Hayakawa et al. 1997,
Yegnanarayana et al. 2001; Farrus and Hernando 2009;
Sonmez et al. 1998; Plumpe et al. 1999; Prasanna et al. 2006;
Pati and Prasanna 2010; Zheng et al. 2007). These attempts
demonstrate that source indeed contains significant speaker
information. However, the recognition performance is not at
par with the vocal tract information. The reason may be that
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the methods employed in representing the source informa-
tion may not model all aspects of speaker information. By
that we mean, LPCC or MFCC captures the formants and
their bandwidth information characterizing the vocal tract
completely, but pitch is only one aspect of speaker infor-
mation due to source. Thus to further improve the perfor-
mance of source features, methods need to be developed
that tries to capture the complete source information. For
this, the source signal needs to be derived from the speech.
Earlier studies have shown that for proper linear predic-
tion (LP) order (for example 8-20 in case of speech sam-
pled at 8 kHz), the LP residual can be used as the best
approximation of the source signal (Prasanna et al. 2006;
Plumpe et al. 1999). The LP residual can be processed
in time, frequency, cepstral or time-frequency domains to
extract and model speaker information (Yegnanarayana et
al. 2001; Prasanna et al. 2006; Hayakawa et al. 1997,
Thevenaz and Hugli 1995). Processing the LP residual in
time domain has the advantage that the artifacts of digital
signal processing like block processing or windowing effect
that creep in other domains of processing like frequency will
be negligible. Thus processing LP residual in time domain is
expected to model the speaker information in the best possi-
ble manner.

The existing attempts for processing LP residual in the
time domain may be broadly grouped into subsegmental,
segmental and suprasegmental levels. In Atal (1972), the
temporal variation of pitch termed as pitch contour is used
as the speaker information. The pitch contour spans over
several segments and hence may be viewed as supraseg-
mental processing. Attempts have been made to use pitch
as an additional parameter along with vocal tract features
like MFCC at frame levels, which seem to improve the
performance (Huang et al. 2008; Ezzaidi and Rouat 2004;
Yegnanarayana et al. 2005). In these studies, pitch informa-
tion is extracted for each segmental frame and appended to
MEFCC and hence may be treated under segmental process-
ing. In Yegnanarayana et al. (2001), Prasanna et al. (2006),
information from the LP residual is processed in blocks of
5 msec with one sample shift. In Murty et al. (2004), Murty
and Yegnanarayana (2006) also, the LP residual phase com-
puted from the analytic signal representation of the LP resid-
ual is processed in blocks of 5 msec with one sample shift. In
these studies, the speaker information is implicitly captured
using the auto associative neural network (AANN) models
and demonstrated presence of speaker information. Since
the block length is less than 20 msec, these studies may be
viewed under subsegmental processing. All these studies are
independent and use different approaches for extracting and
modeling speaker information. An unified framework may
be evolved where a given LP residual is processed at subseg-
mental, segmental and suprasegmental levels using a single
signal processing approach and use the same to study the

@ Springer

level of speaker information present at each level and also
their differences. The present work proposes one such ap-
proach and hence it is termed as subsegmental, segmental
and suprasegmental processing of LP residual for speaker
information.

The present work processes the LP residual in blocks of
5 msec with 2.5 msec shift for subsegmental, 20 msec with
2.5 msec shift for segmental and 250 msec with 6.25 msec
shift for suprasegmental, levels of processing. The 5 msec
blocks of LP residual sample sequences in the time domain
are used as feature vectors for modeling speaker information
by Gaussian mixture modeling (GMM) technique to gener-
ate subsegmental speaker models. The 20 msec blocks of
LP residual samples are first decimated by a factor of 4 to
reduce its dimensionality and also to eliminate the informa-
tion that has been modeled at the subsegmental level. The
decimated LP residual sample sequences are modeled by
GMM to generate segmental speaker models. The 250 msec
blocks of LP residual samples are first decimated by a fac-
tor of 50 to reduce its dimensionality and also to eliminate
the information that have been modeled both at the sub-
segmental and segmental levels. The decimated LP resid-
ual sample sequences are modeled by GMM to generate
suprasegmental speaker models. All these models are in-
dependently tested using respective blocks of LP residual
extracted from the test signals to evaluate the amount of
speaker information present at each level. Finally the com-
bination of evidences from all the three levels is made to
observe their different nature of speaker information. The
potential of combined source information is demonstrated
by comparing and also combining its performance with a
speaker recognition system using vocal tract feature. The
earlier attempts of modeling speaker information from the
LP residual in time domain use the AANN models for ex-
ploiting sequence information (Yegnanarayana et al. 2001;
Prasanna et al. 2006). In the present work an alternative view
is taken for the LP residual samples. The LP residual signal
is like a random noise sequence, except for the pitch infor-
mation. If we treat the residual signal as random noise, then
the distribution of the samples will be Gaussian. Since the
LP residual deviates from random noise due to pitch infor-
mation, to that extent the distribution of the residual samples
may be non-Gaussian in nature. However, this can be han-
dled with the help of the GMM. Hence the motivation for
using GMM for speaker modeling from LP residual.

The rest of the paper is organized as follows: Sect. 2 de-
scribes the proposed subsegmental, segmental and supraseg-
mental analysis of LP residual approach for modeling
speaker information from the LP residual. This section will
also describe the speaker recognition studies that have been
performed using the proposed approach. Section 3 describes
an alternative approach for subsegmental, segmental and
suprasegmental analysis using the analytic signal concept
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and demonstrates its significance in modeling speaker infor-
mation. Section 4 describes an alternative approach only for
modeling suprasegmental information using the concept of
instantaneous pitch. The last section summarizes the present
work with a mention on the scope for future work.

2 Processing of LP residual in time domain

In LP model of speech production, each sample of speech
is predicted as a linear combination of the past p samples,
where p represents the order of prediction (Makhoul 1975).
If s(n) is the present sample, then it is predicted by the past
p samples as

P
$(n) =—Zaks(n —k) (1)
k=1

where, ays are the LP coefficients (LPCs) computed by min-
imizing the mean square prediction error. The error between
the actual and the predicted sample value is called as the
prediction error or LP residual and is given by

14
r(n)=s(n)—§(n)=s(n)+2aks(n—k) )

k=1

The LP residual r(n) is obtained by passing the speech sig-
nal through an inverse filter A(z) given by

p
AR =1+ az™* (3)

k=1

The predicted samples §(n) model the vocal tract informa-
tion in terms of (LPCs) (Atal 1974). The suppression of this
information from the speech signal s(n) that results in the
LP residual r(n) is therefore mostly contains information

about the source. So the source signal can be approximated
by the LP residual. The representation of source information
in the LP residual depends upon the order of prediction. In
Prasanna et al. (2006), it was shown that for a speech sig-
nal sampled at 8 kHz, the LP residual extracted using LP
order in the range 8-20 best represents the speaker-specific
source information. In this study, LP residual computed us-
ing 10™ order LP analysis followed by inverse filtering the
speech signal sampled at 8§ kHz is used as the source sig-
nal. Example of the speech and LP residual signal is shown
in Fig. 1(a) and (b), respectively. The instants around the
peaks in the LP residual are termed as epochs (Anantha-
padmanabha and Yegnanarayana 1979; Murthy and Yegna-
narayana 2008). Significant speaker-specific source infor-
mation is present around the region of the epochs (Murty
and Yegnanarayana 2006). This includes the strength and
rate of occurrence of the epochs and their temporal varia-
tions across several glottal cycles.

In this section we describe the methods employed in
processing the LP residual to extract speaker information. In
extracting such information we consider subsegmental, seg-
mental and suprasegmental level processing of LP residual.
In subsegmental processing, features are derived to repre-
sent the speaker information present mostly within one glot-
tal cycle. In segmental processing, features are derived to
represent the speaker information mostly related to pitch and
energy of the excitation present across 2-3 glottal cycles.
In suprasegmental level processing, features are derived to
represent the prosodic aspects of the speaker present across
about 25-50 glottal cycles.

GMM approach is used to build the speaker models
(Reynolds and Rose 1995; Reynolds 1995). Decision is
taken based on the log-likelihood ratio (LLR). Recogni-
tion experiments are conducted for both identification and
verification tasks. In case of identification, the speaker of
the model having highest LLR is identified as the speaker.

(b)
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Fig. 1 Speech and LP residual. (a) Voiced segment of speech. (b) Corresponding 10™ order LP residual
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Fig. 2 Temporal sequences and their spectra from subsegmental, seg-
mental and suprasegmental processing of LP residual. (a) LP residual.
(b)—(c) Subsegmental sequence and its spectrum, respectively. (d) LP
residual decimated by a factor 4. (e)—(f) Segmental sequence and its
spectrum, respectively. (g) LP residual decimated by a factor 50. (i)—

The experiment is conducted on two subsets of NIST-99
and NIST-03 database (Przybocky and Martin 2000; Nist
speaker recognition evaluation plan 2003). NIST-99 is used
as representation of clean data collected over land line and
NIST-03 as relatively noisy data, since it is collected over
mobile phones. Each subset consists of 90 speakers (48
males and 42 females) having matched condition and test-
ing data of at least 30 sec. The performance is expressed
in terms of identification accuracy expressed in percentage.
The speaker verification study is conducted on the whole
NIST-03 database. The performance is given by detection
error tradeoff (DET) curve based on genuine and imposter
LLRs (Martin et al. 1997). From the DET curve, equal error
rate (EER) is found by choosing a threshold such that false
acceptance rate (FAR) is equal to false rejection rate (FRR).
EER is expressed in percentage. All the speaker recogni-
tion studies are performed for text-independent case, where
there is no restriction on the type of text used for recording
the speech during training and testing.

2.1 Speaker information from subsegmental processing of
LP residual

At the subsegmental level, speaker information present
mostly within one glottal cycle is modeled. This informa-
tion may be attributed to the activity like opening and clos-
ing glottal characteristics. To model this information, the LP
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(j) Suprasegmental sequence and its spectrum, respectively. The dotted
box in (a), (d) and (g) represents the nature of the LP residual that will
be processed at subsegmental, segmental and suprasegmental levels,
respectively

residual is blocked into frames of 5 msec with a shift of
2.5 msec. For 5 msec at 8 kHz, the frames have 40 samples.
One such frame is shown in the Fig. 2(b) and its spectrum is
shown in Fig. 2(c). The largest amplitude of the samples of
the vector indicate the strength of excitation. The samples
in the vector represent the sequence information of glottal
cycle. Since these frames are obtained from the LP residual
sampled at 8 kHz, they will have excitation source informa-
tion present as the fine variations represented by frequency
components up to 4 kHz. These frames of LP residual sam-
ples in the time domain are used as the feature vectors to
represent the speaker information at the subsegmental level
and used for speaker recognition experiments. The nature of
the LP residual signal that will be processed at the subseg-
mental level is the one shown in Fig. 2(a). This is nothing
but the original LP residual.

The results of identification and verification experiments
are given in the second column of the Tables 1 and 2, re-
spectively. In these tables the performance of the vocal tract
based features namely, MFCC is also given. It is to be cau-
tioned at this stage that the speaker verification system us-
ing MFCC and GMM is a baseline system without any nor-
malization techniques. Hence the performance itself is poor
compared to the state-of-the-art on NIST-03 (Nist speaker
recognition evaluation plan 2003). Since our objective is
only relative comparison among source and vocal tract fea-
tures, we have settled to the baseline system. The results
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Table 1 Speaker identification performance (in %) of subsegmental
(Sub), segmental (Seg), suprasegmental (Supra) and spectral (MFCC)
information for two subsets of 90 speakers. Src — 1 represents combina-

tion of Sub and Seg source information. Src —2 represents combination
of Sub, Seg and Supra source information

Database Sub Seg Supra Src — 1 Src —2 MFCC Src — 2+ MFCC

Comb — 1 Comb — 2 Comb — 1 Comb —2 Comb — 1 Comb — 2
NIST-99 64 60 31 64 71 68 76 87 84 96
NIST-03 57 58 13 60 67 60 67 66 70 79
Relative 11 3 58 6 6 12 12 24 17 18

Degradation

Table 2 Speaker verification performance of Sub, Seg, Supra, Src — 1, Src — 2 and MFCC information for whole NIST-03 database

Database Sub Seg Supra Src—1 Src =2 MFCC Src =2+ MFCC
Comb — 1 Comb —2 Comb — 1 Comb —2 Comb — 1 Comb —2
NIST-03 41.01 26.96 44.49 32.02 23.21 32.25 21.22 22.94 27.78 17.43

show that subsegmental features provide good performance
and hence contain speaker information. However the perfor-
mance is comparatively poorer than the vocal tract features.
The reason may be that the subsegmental features contain
only one aspect of source information. The performance can
be improved by using additional information from segmen-
tal and suprasegmental levels.

It is interesting to observe that the performance of both
subsegmental source information and vocal tract features de-
grade in case of NIST-03, as expected. However, the amount
of degradation in the performance is relatively less in case
of subsegmental source information, about 11%, as against
to 24% in case of vocal tract features. This demonstrates the
relative robustness of source information present at the sub-
segmental level.

2.2 Speaker information from segmental processing of LP
residual

At the segmental level, speaker information present in two
to three glottal cycles is modeled. This information may be
attributed mostly to pitch and energy. Speaker information
represented by variations within a glottal cycle have already
been modeled by subsegmental analysis. In segmental level
processing of LP residual, other information that can be ob-
served at the segmental level needs to be emphasized. For
this we propose to decimate the LP residual by a factor 4
so that the sampling rate becomes 2 kHz and we may have
source information up to 1 kHz. The decimated LP residual
is shown in Fig. 2(d). Even after decimation, the dominant
speaker information at the segmental level, that is, pitch and
energy information, still can be preserved. Moreover, in seg-
mental level processing, LP residual frames of 20 msec du-
ration are used as the feature vectors. For 20 msec at 8 kHz,

the feature vectors with 160 samples is of very large dimen-
sion for building the models. By decimating the LP resid-
ual by a factor 4, the dimension of the feature vectors is
reduced to 40 samples per vector which is equal to the sub-
segmental feature vectors length. Since the LP residual is
decimated by a factor 4, we prefer to compute the feature
vectors for every 2.5 msec frame shift so that the number of
feature vectors will remain same as the subsegmental fea-
tures. One such feature vector derived from the decimated
LP residual is shown in Fig. 2(e). It contains mainly the pitch
and energy information. The fine variations within the glot-
tal cycle are suppressed by smoothing. Similar observation
can also be made from the spectrum of the feature vector
shown Fig. 2(f). The periodicity and the amplitude of the
spectrum clearly represent the pitch and energy information.
This observation indicate that segmental feature vectors re-
flect different aspect of source information compared to sub-
segmental feature vectors. This will also be confirmed from
the comparison study in Sect. 2.4.

The effectiveness of these features are evaluated from the
identification and verification experiments. The results are
given in the third column of the Table 1 and Table 2, respec-
tively. The high performance show that segmental features
contain good speaker information, even better than those
contained at the subsegmental level. This shows that the
pitch and energy may be dominating speaker-specific source
information. Further, the recognition performance is com-
paratively poor than vocal tract features. The same reason
of incomplete representation of speaker information may be
attributed. The segmental source features are relatively more
robust compared to both vocal tract as well as subsegmen-
tal features, since it shows only about 3% relative degra-
dation in the performance from NIST-99 to NIST-03 data-
base.
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2.3 Speaker information from suprasegmental processing
of LP residual

Subsegmental processing models speaker information up to
4 kHz. Segmental processing models speaker information
up to 1 kHz. Beyond that LP residual also contains some
speaker information at very low frequency range, that is,
may be less than 100 Hz. For example the variation in
pitch and energy across several glottal cycles (Atal 1972;
Farrus and Hernando 2009). In capturing such information,
we need to process the LP residual at the suprasegmental
level, for example, with frames of 100-300 msec range. For
the LP residual sampled at 8 kHz, the feature vectors from
such frames will be of very large dimension for building
models. We prefer to decimate the LP residual by a factor 50
so that the sampling rate becomes 160 Hz and we may have
the source information up to 80 Hz. The dimension of the
feature vector is also reduced by 50 factor. Further, the high
frequency information that is already modeled by subseg-
mental and segmental level processing will be smoothed out.
Therefore in suprasegmental level processing of LP residual,
we decimate the LP residual by a factor of 50 and process in
frames of 250 msec with shift of 6.25 msec. The frame size
is decided so that the dimension of the feature vectors will
remain same as in subsegmental and segmental processing.
However, the minimum possible frame shift in this case is
6.25 msec which corresponds to one same shift. Figure 2(h)
shows a suprasegmental feature derived from the decimated
residual shown in Fig. 2(g). The fast varying components of
the original LP residual are eliminated and it mostly repre-
sent the long term variations. This can also be observed from
the spectrum of the shown feature vector from Fig. 2(i). In-
formation present in the smoothed spectrum is up to 80 Hz.
The periodicity and other high frequency related informa-
tion are absent.

The speaker information present in these features is ver-
ified from the recognition experiments as performed earlier.
The results of the identification and verification experiments

Fig. 3 Confusion patterns of
Sub, Seg, Supra, Src — 2 and
MFCC information for
identification of 90 speakers
from NIST-99 database

Src-2, 76%
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Subsegmental, 84%

are given in the fourth column of the Table 1 and Table 2,
respectively. Results show that suprasegmental level fea-
tures contain some speaker information. Further, the recog-
nition performance is significantly poor compared to sub-
segmental, segmental and vocal tract information. The poor
result indicates that the suprasegmental features may have
large intra-speaker variability. The other major factor is text-
independent mode of operation. However, it may contain
different aspect of speaker information and hence may com-
bine well with other features.

2.4 Combining evidences from subsegmental, segmental
and suprasegmental levels of LP residual

By the way of deriving each feature, the information present
at subsegmental, segmental and suprasegmental levels are
different and hence may reflect different aspect of speaker-
specific source information. By comparing their recognition
performance it can be observed that the segmental features
provide best performance. Thus the segmental features may
have more speaker-specific evidence compared to other level
features. The different performances in the recognition ex-
periments indicate the different nature of speaker informa-
tion present. In this section we use confusion patterns and
scatter diagrams to further explain the different nature of
the speaker information present in the proposed features and
their usefulness for combined use in speaker recognition.

In case of identification, the confusion pattern of features
is considered as an indication of the different nature of infor-
mation present. In the confusion pattern, principal diagonal
represents correct identification and the rest represents miss
classification. Figures 3 and 4 show the confusion patterns of
the identification results conducted for all the proposed fea-
tures using NIST-99 and NIST-03 databases, respectively.
In each case, the confusion pattern is entirely different. The
decisions for both true and false identification are different.
This indicates that they reflect different aspect of source in-
formation. This may help in combining the evidences to fur-

Segmental, 80%

Suprasegmental, 31%

MFCC, 87% Src-2+MFCC, 96%
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Fig. 4 Confusion patterns of
Sub, Seg, Supra, Src — 2 and
MFCC information for
identification of 90 speakers
from NIST-03 database

Src-2, 67%

ther improve the recognition performance from the source
perspective.

For combination we use score level fusion and logical
OR combination scheme (Mashao and Skosan 2006). In this
work the score level and logical OR combinations are ab-
breviated as Comb — 1 and Comb — 2, respectively. In the
score level fusion, the respective scores are weighted by
their performances and linearly combined. For example, the
log-likelihood ratio (LLR) of the combined system, LLR,., is
given by the following relation:

C P,
LLR. = Cilp x LLR; “)

i=1 Zui=111

where, C is the number of systems combined, LLR; and P;
are the LLR and identification performance of the i sys-
tem, respectively. In case of verification mode, the P; in the
above equation is replaced by the reciprocal of the respec-
tive equal error rate (EER) and then the scores of the com-
bined system is computed accordingly. The performance of
the linearly combined systems are given in Table 1 under
the columns with heading Comb — 1 for different cases. In
all the cases, the performance is improved compared to their
respective individual performance. In case of NIST-99 data-
base, the performance is improved from 64% to 68% and in
case of NIST-03 database from 57% to 60%. It should be
noted here that the small improvement in the performance
should not be confused with the worth of combined use of
all the features as a best representation of the source in-
formation. It is because the performance of the combina-
tion system also depends on the combination scheme em-
ployed.

It is well known that, simple linear combination with pre-
defined weights may not necessarily provide the best re-
sult (Zheng et al. 2007). This is because, fusion of scores
may result in a wrong decision. To get a feel of the po-
tential of the combined use of the features in represent-
ing the source information, we use logical OR combina-

Subsegmental, 57%

Segmental, 58%

Suprasegmental, 13%

MFCC, 66%

Src-2+MFCC, 79%

tion. In this combination, if any one system is giving cor-
rect decision, we consider it as a correct decision. The per-
formance of the OR combined systems are also given in
the Table 1. The results show that the maximum benefit
we can achieve from the proposed features for the NIST-
99 and NIST-03 databases are 76% and 67%, respectively.
This result shows that if we have a suitable combination
scheme, we will benefit by the proposed features. Further
in comparison with the vocal tract information, the confu-
sion patterns of the combined system is different from the
vocal tract system. By combining evidences from both the
features, the respective performances given in the last col-
umn of the Table 1 are improved. This indicates that the
proposed feature is well combined with the vocal tract in-
formation.

In case of verification, as suggested in Zheng et al.
(2007), the different aspect of speaker information in the
three features are verified from their distribution of scores
for imposter and genuine trails. Distribution of two dimen-
sional (2-D) LLR scores for genuine and imposter trials
among subsegmental, segmental and suprasegmental fea-
tures are shown in Figs. 5(a)—(c), respectively. In these
figures ‘o’ represent genuine and ‘X’ represent imposter
speaker. In the regions marked as marked as 7 and II,
the respective features give different decision. For exam-
ple, in region I, feature represented by x-axis rejects, but
the other one accepts. Similarly in region I, feature repre-
sented by x-axis accepts but the other one rejects. Further,
in these regions, some genuine rejected and imposters ac-
cepted by one feature are corrected by other. These obser-
vations indicate the different nature of speaker information
present in these features. In combining the evidences, we
use two combination techniques such as linear and logical
OR combination scheme. In linear combination, weighted
scores are combined linearly. In logical OR combination,
the true scores around the mean provided by the good sys-
tem are modified based on the information provided by the
poor system. In case of linear combination, the performance
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(¢) Suprasegmental and subsegmental information

is decreased. The reason may be as mentioned earlier. In
case of logical OR combination, the performance achieved
for the combined system as shown in Table 2 is 21.22%
which is even better than the MFCC features. This shows
that it is indeed possible to get better performance from
the source than vocal tract information, provided we have
suitable combination technique. In case of combining the
evidences from the proposed feature with MFCC, perfor-
mance is further improved by the logical OR combination
scheme.

From this section we observe that the combined use of
subsegmental, segmental and suprasegmental features pro-
vide useful speaker-specific source information. This infor-
mation is also well combined with the vocal tract infor-
mation to improve the recognition accuracy. Further, in-
dividually the subsegmental, segmental and suprasegmen-
tal features are not providing recognition performance at
par with vocal tract information. The reason may be that
each of them represent one aspect of speaker information
due to source. Further, the results given in Tables 1 and 2
show that, the combination of the subsegmental, segmen-
tal and suprasegmental level information performs slightly
better compared to vocal tract information. These results
are interesting because they demonstrate that it is indeed
possible to achieve speaker recognition performance using
only excitation source information, which is either compa-
rable or even better compared to the vocal tract informa-
tion.

The speaker information in the LP residual may be at-
tributed to both the amplitude values and the sequence
knowledge. In the next section we describe a method in
extracting the subsegmental, segmental and suprasegmen-
tal speaker information by separating the amplitude and se-
quence information of the LP residual. The method involves
analytic signal representation of the LP residual. Since the
amplitude and sequence information are two different as-
pects of speaker information, their combined effect may pro-
vide improved performance.
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3 Speaker information using analytic signal
representation of LP residual

In the previous section, speaker information from the LP
residual was derived by direct processing of the LP resid-
ual at the subsegmental, segmental and suprasegmental lev-
els. The dominant speaker information present in these three
levels of processing mostly represents the amplitude and se-
quence information of the source. When the LP residual is
processed directly, the effect of amplitude values dominate
over the sequence information, especially, around the in-
stants of glottal closure (Murty and Yegnanarayana 2006).
It may therefore be better to separate the amplitude and se-
quence information and then process them independently.
One approach to achieve this is with the use of analytic sig-
nal representation of the LP residual (Cohen 1995). In this
representation, the magnitude of the analytic signal of LP
residual represents the amplitude values of the LP resid-
ual and the cosine of the phase of the analytic signal rep-
resents the sequence information. Thus the analytic signal
representation of the LP residual may help in exploiting the
amplitude and sequence information separately. We propose
to derive the subsegmental, segmental and suprasegmental
features from the analytic signal representation of the LP
residual.

The analytic signal of the LP residual r,(n) correspond-
ing to the LP residual r(n) is given by (Cohen 1995)

ra(n) =rn) + jra(n) &)

where rj, (n) is the Hilbert transform of r(n) and is given by

rp(n) =IFT[Ry(w)] (6)
where

B —jR(w), 0<w<m
Ry (w) = JR(w), O0>w>-—m @
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Fig. 6 Decomposition of 1
subsegmental, segmental and
suprasegmental feature vectors
using analytic signal
representation.
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R(w) is the Fourier transform of r(n) and IFT denotes the
inverse Fourier transform. The magnitude of the analytic
signal, called as the Hilbert envelope (HE) of the LP residual
is given by (Murty and Yegnanarayana 2006)

[ra(n)] = \/r2(n) + 2 (n)

and the cosine of the phase, called as the residual phase (RP)
is given by Murty and Yegnanarayana (2006)

®)

Re(ra(n))  r(n)
ram)|  |ra(n)]

The procedure to compute the subsegmental, segmental
and the suprasegmental feature vectors from HE and RP of
the LP residual is same as described earlier except the input
sequence. In one case the input will be HE and the other case
it will be RP. Example of subsegmental information derived
from the LP residual and HE of the LP residual are shown
in Figs. 6(a) and (b), respectively. The unipolar nature of the
HE helps in suppressing the bipolar variations representing
sequence information and emphasizing only the amplitude
values. As a result, the amplitude information in the subseg-
mental sequence of the LP residual is further emphasized by
its HE counterpart. Similar observation can also be made in
case of segmental and suprasegmental levels processing as
shown in Figs. 6(d) and (e), and Fig. 6(g) and (h), respec-
tively. On the other hand, the residual phase represents the
sequence information of the residual samples. Figures 6(c),
(f) and (i) show the residual phase of the subsegmental, seg-
mental and suprasegmental processing, respectively. In all
these cases, the amplitude information is absent. Hence ana-
lytic signal representation provides amplitude and sequence
information of the LP residual samples independently. In

cos(6(n)) = ©)]
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(Murty and Yegnanarayana 2006), it was shown that infor-
mation present in the residual phase significantly contributes
to the speaker recognition. We propose that, the information
present in the HE may also contribute well to speaker recog-
nition. Further, as they reflect different aspect of the source
information, the combined representation of both the evi-
dences may be more effective for speaker recognition. We
conduct different experiments to verify this proposal. The
observation from all these experiments are described next.

Subsegmental, segmental and suprasegmental sequences
are derived from the HE and RP of the LP residual. In
this study subsegmental, segmental and suprasegmental se-
quences derived from the LP residual, HE of the LP resid-
ual and phase of the LP residual are called as the residual
features, HE features and RP features, respectively. The po-
tential of the HE and RP features are verified from differ-
ent recognition experiments. For fair comparison with the
residual features, the experimental conditions remain same
as mentioned earlier, except for the use of the HE and RP
features.

The speaker identification performances of these features
for both the databases are given in Tables 3 and 4 and the
verification performances for whole NIST-03 database is
given in Table 5. In these tables the performance of the resid-
ual features are also given for comparison purpose. For both
the tasks, the performance of individual HE and RP features
is comparatively poorer than their corresponding residual
features. Because, as mentioned earlier, HE and RP features
independently represent two different aspects of the infor-
mation that is present in the residual features. The different
nature of the information present in the HE and RP features
can also be observed from their confusion patterns obtained
from the identification tasks. Figure 7 shows the confusion
patterns of the identification results conducted for HE and
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Table 3 Speaker identification

performance of residual, HE, Feature Sub  Seg  Supra Src—2 MFCC Src—2+MFCC
RP and HE + RP features for 90 Comb—1 Comb—2 Comb—1 Comb—2
speakers from NIST-99 database
Residual 64 60 31 68 76 84 96
HE 44 56 8 66 71 g7 88 94
RP 49 69 17 69 73 86 93
-1 7 1 74 7
HE 4+ RP Comb 5 69 3 88 8 98
Comb—2 64 78 22
Table 4 Speaker identification
performance of residual, HE, Feature Sub  Seg Supra Src—2 MFCC Src -2+ MFCC
RP and HE + RP features for 90 Comb—1 Comb—2 Comb—1 Comb—?2
speakers from NIST-03 database
Residual 57 58 13 60 67 70 79
HE 32 39 7 47 54 66 70 76
RP 23 51 14 48 56 69 77
Comb—1 40 54 12 58 72 70 83
HE + RP
Comb—2 48 59 17
Table 5 Speaker verification
performance of residual, HE, Feature Sub Seg Supra  Src —2 MFCC Src—2+MFCC
RP and HE+RP features for Comb—1 Comb—2 Comb—1 Comb —2
whole NIST-03 database
Residual 41.01 2696 4449 3225 21.22 27.78 17.43
HE 45.52 3292 45.66 36.27 22.31 2204 26.92 21.01
RP 41.73 26.83 45.84 31.39 22.13 ’ 20.01 20.46
Comb—1 4390 27.19 4494 3328 20.41 22.99 16.67
HE + RP
Comb—2 30.12 2136 32.83

RP features using NIST-99 database. At each level, the con-
fusion patterns of the HE and RP features are different. Their
decisions for both true and false identification are different.
This indicates that the information present in HE features
is different from that of RP features. By combining individ-
ual evidences, the respective performances may be further
improved.

There are two approaches that can be used for combining
evidences from HE and RP. In one approach, at each level,
HE and RP can be combined independently (vertically) and
this evidence at each level can be further combined to ob-
tain overall source information. Alternatively, the HE and
RP from all the three levels can be combined first (hori-
zontally) and then these combined HE and RP evidences
are further combined to obtain complete source information.
From the experimental results we observed that the later ap-
proach seem to give better performance. The reason may
be that HE and RP information from all the three levels to-
gether may combine well to become more speaker-specific,
because their origin is same.

In combining the evidences we employ both Comb — 1
and Comb — 2 combination schemes described earlier. The
identification performance of the various combinations for
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NIST-99 and NIST-03 databases are given in Tables 3 and 4,
respectively and the verification performance for the whole
NIST-03 database is given in Table 5. The results show
that for less noisy data (i.e. NIST-99), the performance
achieved from combined HE and RP features is better than
the residual feature. For noisy data (i.e. NIST-03), for both
the tasks, the performance is slightly poor than the resid-
ual feature. The reason may be the quality of the data and
the combination technique employed. For example in case
of combination scheme Comb — 2, the recognition perfor-
mance is improved. Further in noisy condition, with MFCC
features, the combined representation of the HE and RP
features is providing better performance than the residual
feature. This shows the robustness of the combined HE
and RP representation of the source in providing the ad-
ditional information to the MFCC feature. From this ob-
servation we conclude that combined representation of HE
and RP features may be better than the residual feature
alone.

The above observations indicate that complete infor-
mation present in the source can be represented by the
combined representation of the HE and RP features. Fur-
ther, to achieve maximum benefit, it may be better to
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Fig. 7 Confusion patterns of
HE and RP features for
identification of 90 speakers
from NIST-99 database

Subsegmental-HE, 44% Segmental-HE, 56% Suprasegmental-HE, 8%

Subsegmental-RP, 49% Segmental-RP, 69% Suprasegmental-RP, 17%

first combine the HE and RP at subsegmental, segmen-
tal and suprasegmental levels separately and then com-
bine them. The speaker recognition performance of the in-
formation present in the segmental level is comparatively
better than the other two levels. The segmental level fea-
tures namely, pitch and energy seem to be more speaker-
specific. The recognition performance of the information
present in the suprasegmental level is very poor compared
to the other levels. The suprasegmental level information
may have large intra-speaker variability and also due to
the text-independence. In the next section, we propose
an alternative approach for extracting only suprasegmen-
tal level speaker information using the instantaneous pitch
concept proposed in Yegnenarayana and Murthy (2009).
This study enables us to understand whether poor perfor-
mance is due to the level of processing or the method em-
ployed.

4 Suprasegmental speaker information using
instantaneous pitch and epoch strength

In this section an alternative approach is employed for ex-
tracting the suprasegmental level information. The objec-
tive is to verify the effectiveness of the proposed method
employed in extracting the suprasegmental level informa-
tion using LP residual described in Sect. 2.3. The exci-
tation source at the suprasegmental level mostly contains
the pitch contour and epoch strength contour information.
Epoch strength represents the strength at the instant of glot-
tal closure in case of voiced speech (Murty and Yegna-
narayana 2006). In an alternative approach, we directly com-
pute the pitch and epoch strength contours and then use
them as features to represent the suprasegmental level in-
formation. To compute the pitch and epoch strength values,
we use the recently proposed instantaneous pitch estima-
tion method (Yegnenarayana and Murthy 2009; Murthy and
Yegnanarayana 2008, 2009). The advantage of using this

method is that it computes the instantaneous pitch values
and hence gives accurate values for pitch and epoch strength
contours. A brief description of this method is given below.

Instantaneous pitch estimation method locates the glottal
closure instants (GClIs) by passing the speech signal through
a zero-frequency resonator twice. The zero-frequency res-
onator is a second order infinite impulse response (IIR) fil-
ter located at 0 Hz (Murthy and Yegnanarayana 2009). The
purpose of passing the speech signal twice is to reduce the
effects of all (high frequency) resonances (Murthy and Yeg-
nanarayana 2008). Passing the speech signal twice through
a zero frequency resonator is equivalent to four times suc-
cessive integration. This will result a filtered output that
grows/decays as a polynomial function of time. The trend
in the filtered signal is removed by subtracting the local
mean computed over an interval corresponding to the av-
erage pitch period. The resulting mean subtracted signal is
called as zero-frequency filtered signal. Following steps are
involved in processing the speech signal to derive the zero-
frequency filtered signal.

(1) Difference the speech signal s(n)
x(n)y=sn)—sn—1) (10)

(2) Pass the difference speech signal x(n) twice through
zero-frequency resonator

2
yi(n) ==Y ayi(n—k) +x(n)

(11)
k=1
and
2
»m) ==Y ayr(n—k) + yi(n) (12)
k=1
where, a1 = —4,a =6,a3=—4and aqs = 1

(3) compute the average pitch period using the autocorrela-
tion over a 20 msec speech segment
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(4) Remove the trend in y,(n) by subtracting the mean com-
puted over average pitch period. The resulting signal

N

Z y2(n+m)

m=—

y(n) =y2(n) — (13)

2N +1

is the zero-frequency filtered signal. Here, 2N + 1 cor-
responds to the number of samples in the window used
for mean substraction.

The positive zero crossings in the zero-frequency filtered
signal correspond to the locations of the GCIs (Murthy and
Yegnanarayana 2008). The interval between successive pos-
itive zero-crossings gives the instantaneous pitch period #.
The reciprocal, fo = % is the instantaneous pitch frequency
(Yegnenarayana and Murthy 2009). The slope of the zero-
frequency filtered signal around the zero crossings corre-
sponding to the location of the epochs gives a measure of
epoch strength ap (Murthy and Yegnanarayana 2009).

The zero-frequency resonator filter out a mono-compo-
nent centered around the O frequency from the speech sig-
nal. However, in case of the telephonic speech, the frequency
components below 300 Hz are heavily damped. The output
of the zero-frequency resonator obtained from processing
the telephonic speech may not give correct estimation of the
pitch and epoch strength. To avoid this difficulty, we pur-
pose to use the positive zero-crossings in the zero-frequency

filtered signal derived from the HE of the LP residual for
computation of pitch and epoch strength contours. Due to
impulse-like nature of the LP residual, the information about
the fundamental frequency will spread across all the fre-
quencies including the zero frequency. The purpose of us-
ing the HE is to emphasize the peaks around the GClIs in
each glottal cycle (Ananthapadmanabha and Yegnanarayana
1979; Yegnanarayana and Prasanna 2010).

To verify the effectiveness of the proposed approach, we
compute the epochs from a telephonic speech and compare
them with the estimated epochs from the zero-frequency fil-
tered signal of the corresponding clean speech. For this,
we collect the speech data of a speaker from TIMIT and
NTIMIT databases (Zue et al. 1990; Jankowski et al. 1990).
For both the cases the text of the speech remains same.
The speech data collected from TIMIT database represents
the clean speech and from the NTIMIT database represents
the corresponding telephonic speech. Figures 8(a) and (b)
show a segment of clean speech and the corresponding zero-
frequency filtered signal derived from the clean speech, re-
spectively. The arrows in the zero-frequency filtered signal
indicate the location of the positive zero-crossings. It can be
observed that the instants of the positive zero-crossings in
the zero-frequency filtered signal clearly indicate the loca-
tion of the epochs. Further, Figs. 8(c), (d) and (e) show the
segment of telephonic speech of the same text as in case of

oJWMMW\/\W @

Fig. 8 Estimation of pitch period from clean and telephonic speech
signal. (a) Clean speech. (b) zero-frequency filtered signal derived from
the speech signal in (a). (¢) Speech signal of the same text as in (a)
collected over telephone channel. (d) The HE of the LP residual of the
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speech signal in (c). (€) Zero-frequency filtered signal derived from the
signal in (d). The location of the positive zero-crossings in the filtered
signal (b) and (e) are shown by arrows
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Fig. 9 Examples of speech
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clean speech, HE of the LP residual of the telephonic speech
and zero-frequency filtered signal derived from the HE of the
LP residual of the telephonic speech, respectively. It can be
observed that the time instants of the zero-crossings indi-
cated by arrows in the zero-frequency filtered signal corre-
sponds to the original epochs shown in Fig. 8(b). From this
observation we conclude that in case of telephonic speech,
the zero-frequency filtered signal derived from the HE of
the LP residual can be used to compute the pitch and epoch
strength.

In this work, zero-frequency filtering approach as de-
scribed above is used for computation of pitch and epoch
strength contours. Figure 9 shows the examples of pitch and
epoch strength contours of two female speakers collected
from TIMIT database. It can be observed that contours are
significantly different across the speakers. This shows that
pitch and epoch strength contours contain speaker-specific
information. Since the contours are computed across a
longer segment of the voiced speech, the speaker-specific
information present in them is attributed to the supraseg-
mental level. The suprasegmental level information is usu-
ally extracted from 100-300 msec segments and hence we
need on an average around 25-50 pitch values to represent a
feature vector. Since the nature of pitch and epoch strength
contours have large intra-speaker variability, the dimension
of the feature vectors consisting of 25-50 values may not
seem to be effective for the recognition task. Further, pitch
and epoch strength are computed from voiced speech only.
The number of feature vectors obtained with 25-50 dimen-
sion may be comparatively less.

With large dimension and less number of feature vectors,
speaker information may not be modeled well. Thus due to
intra-speaker variability and poor modeling, matching may
be difficult. For this reason we prefer to use lower dimension
feature vectors. To select suitable dimension, we conduct a
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Fig. 10 Speaker identification performance of pitch vectors for differ-
ent dimension

speaker identification study for different dimensions of pitch
values for 30 speakers set collected from NIST-99 database.
In this experiment the feature vectors are made by sequence
of pitch values with a shift of one pitch value. The reason for
considering every sample shift of the pitch values is to get
the maximum number of feature vectors. The result of this
experiment is shown in Fig. 10. From this figure we observe
that with increase in the dimension from 1 to 10 the perfor-
mance is increased. With further increase in dimension, the
performance is decreased. The reason may be that with in-
crease in dimension, the intra-speaker variability may also
be increased. So we use 10 pitch values with shift of one
value to represent pitch feature vectors. We call them as 7
vectors. Similarly we use 10 epoch strength values with shift
of one value to represent epoch strength features. We call
them as ag vectors. The combined evidences from 7y and ag
vectors called as (fg + ag) vectors is used as the complete
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Table 6 Comparison of speaker
identification and verification Feature Performance
performances of Supra, t0 and Identification Verification
a( feature vectors NIST — 99 NIST — 03
Supra Perf — 1 31 13 44.49
Perf —2 31 17 32.83
tOvectors 29 18 45.39
aOvectors 9 7 49.27
(10 + aO)vectors Perf — 1 32 13 45.32
Perf —2 33 21 31.21
Sub + Seg + Supra Perf — 1 74 60 33.28
Perf —2 88 72 20.41
Sub + Seg+(t0 + aO)vectors Perf —1 74 59 31.16
Perf —2 90 74 19.78
Sub + Seg + Supra + mfcc Perf — 1 87 70 22.99
Perf —2 98 83 16.67
Sub + Seg+(t0 + a0)vectors + mfcc Perf — 1 88 69 25.34
Perf —2 96 86 16.53
mfcc 87 66 22.94

suprasegmental information of the source. In combining the
evidences we employ Comb — 1 and Comb — 2 techniques as
described earlier. Using these feature vectors the recognition
experiments are conducted.

The effectiveness of the methods employed in extract-
ing the suprasegmental information is verified by compar-
ing the recognition performances of the two approaches.
The results of the identification and verification experiments
are given in Table 6. The performance of the suprasegmen-
tal feature derived from the decimation of the LP residual
(Supra) is given for comparison. In this table Perf — 1 rep-
resent the maximum performance of a feature vector that
can be achieved either from LP residual or by combination
of its analytic signal decomposition. Perf — 2 represents the
maximum performance that can be achieved by using even
the logical OR combination, that is, Comb — 2. For example,
in case of identification task for NIST-03 database, Perf — 1
is 13% and Perf — 2 is 17%. The results show that for both
identification and verification tasks, the combined represen-
tation of the pitch and epoch strengths is providing nearly
same performance as compared to the suprasegmental fea-
tures derived from the decimation of the LP residual. Similar
observation is also made when they are combined with other
two levels information of the source. The combined perfor-
mance in both the cases are nearly same. It is also observed
that both are providing almost same additional information
to MFCC. When they are combined with MFCC separately,
the combined performance in both the case is almost same.
This observation indicates that the effectiveness of the in-
formation present in pitch and epoch strength contours and
in suprasegmental features derived from the LP residual are
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almost same. Further in case of pitch and epoch strengths
features there is a slight improvement in the performance in
some cases, but the computation involved in this approach
is all together different. For unified processing, we therefore
recommend that the features derived from the LP residual
decimated by a factor 50 can be used to represent the source
information at the suprasegmental level. These studies indi-
cate that the information present at the suprasegmental level
may be less effective due to large intra-speaker variability
and also due to text-independent mode of operation.

5 Summary and conclusion

In this work an unified framework is proposed for the ex-
traction of complete source information by the time domain
analysis of the LP residual. Speaker specific information in
the LP residual include those within one glottal cycle, pitch
and energy across two to three glottal cycles, and variation
of the pitch and energy across several glottal cycles. In the
proposed method, speaker information within one glottal cy-
cle is extracted by the subsegmental processing of the LP
residual. The pitch and energy information is extracted by
the segmental processing of the LP residual. Pitch and en-
ergy contour information is extracted from the suprasegmen-
tal processing of the LP residual. To model the speaker infor-
mation effectively using GMM, the segmental and supraseg-
mental level information is decimated by a factor of 4 and
50, respectively. Experimental results show that subsegmen-
tal, segmental and suprasegmental levels contain speaker in-
formation. Further combining the evidences from each level,
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the performance improvement indicates the different nature
speaker information at each level. In direct processing of
the LP residual the effect of the amplitude dominate the se-
quence information. To minimize this, the amplitude and se-
quence information is captured independently using the an-
alytic signal representation of the LP residual. The combi-
nation of amplitude and sequence information seem to be a
better choice. At the individual level, information provided
by segmental level of the LP residual is most effective com-
pared to the other two levels. The information provided at
the suprasegmental level processing of the LP residual is
poor due to intra-speaker variability and text-independence.
This is also confirmed by an alternative approach using pitch
and epoch strength contours to capture the suprasegmental
information.

In this work the excitation source information is extracted
by processing the LP residual in the time domain. The time
domain processing of the LP residual is computationally in-
tensive. Because the waveform itself is directly modeled. To
explore the possibility of compact parametric representation
of the excitation information, LP residual can be processed
from the other domains like frequency or cepstrum. This has
to be done by keeping in view of the blocking effect that is
present in these domains. Further, in this work we use the
combination scheme based on logical OR to demonstrate the
potential of source evidence. New combination techniques
need to be explored to exploit the same.
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