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Abstract
Graph algorithms are challenging to implement due to their varying topology and irreg-
ular access patterns. Real-world graphs are dynamic in nature and routinely undergo
edge and vertex additions, as well as, deletions. Typical examples of dynamic graphs
are social networks, collaboration networks, and road networks. Applying static algo-
rithms repeatedly on dynamic graphs is inefficient. Further, due to the rapid growth of
unstructured and semi-structured data, graph algorithms demand efficient parallel pro-
cessing. Unfortunately, we know only a little about how to efficiently process dynamic
graphs onmassively parallel architectures such asGPUs. Existing approaches to repre-
sent and process dynamic graphs are either not general or are inefficient. In this work,
we propose a graph library for dynamic graph algorithms over a GPU-tailored graph
representation and exploits the warp-cooperative work-sharing execution model. The
library, named Meerkat, builds upon a recently proposed dynamic graph represen-
tation on GPUs. This representation exploits a hashtable-based mechanism to store
a vertex’s neighborhood. Meerkat also enables fast iteration through a group of
vertices, a pattern common and crucial for achieving performance in graph applica-
tions. Our framework supports dynamic edge additions and edge deletions, along with
their batched versions. Based on the efficient iterative patterns encoded in Meerkat,
we implement dynamic versions of popular graph algorithms such as breadth-first
search, single-source shortest paths, triangle counting, PageRank, and weakly con-
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nected components. We evaluated our implementations over the ones in other publicly
available dynamic graph data structures and frameworks: GPMA, Hornet, and faim-
Graph. Using a variety of real-world graphs, we observe that Meerkat significantly
improves the efficiency of the underlying dynamic graph algorithm, outperforming
these frameworks.

Keywords Dynamic graph algorithms · GPU programming · Parallel computing ·
CUDA

1 Introduction

Real-world graphs undergo structural changes: nodes and edges get deleted, and new
nodes and edges are added.Handling dynamic updates poses newchallenges compared
to a static graph algorithm. Efficient handling of these dynamic changes necessitates
(i) how to represent a dynamically changing graph, (ii) how to update only the rel-
evant part of the graph depending upon the underlying algorithm, and (iii) how to
map this update effectively on the underlying hardware. These issues exacerbate on
massively parallel hardware such as GPUs due to SIMD-style execution, the need to
exploit on-chip cache for optimal performance, and nuances of the synchronization
protocols to deal with hundreds of thousands of threads. Effectively addressing these
issues demands new graph representations, binding of the theoretical and systemic
graph processing, and tuning the implementation in a GPU-centric manner. Former
research has invented multiple graph representations in diff-CSR [1], SlabGraph [2],
faimGraph [3], Hornet [4] and cuStinger [5] to maintain the changing graph structure.
The SlabGraph framework [2] proposes the SlabHash [6]-based graph data structure
and follows warp based execution model, which we build upon in this work.

Dynamic graph algorithms can be categorized as (i) incremental wherein nodes and
edges are only added, (ii) decremental wherein nodes and edges are only deleted, and
(iii) fully dynamic which involves both the incremental and the decremental updates.

Existing solutions to deal with dynamic graphs are plagued with one of the two
issues: they apply to certain types of graphs, or they are inefficient at scale. Thus,
the solutions may work well for low-diameter graphs such as social networks but are
expensive on road networks which are characterized by large diameters. Alternatively,
the algorithms may work on CPUs, but may not be readily translatable to massive
multi-threading on the GPUs. Central to solving these issues lie two fundamental
questions related to storage and compute: how to represent a dynamic graph, and how
to enumerate through a set of graph elements (such as vertices). Graph representation is
crucial because the optimal representation for static processing quickly goes awrywith
dynamic updates. Thus, due to dynamic edge addition, memory coalescing on GPUs
can be adversely affected, resulting in reduced performance. Similarly, two types of
iteration patterns are common in graph processing: through all the current graph ver-
tices, and through the latest neighbors of a vertex (which change across updates). Both
these operations are so common that we treat them like primitives, whose performance
crucially affects that of the underlying dynamic graph algorithm. Note that unlike in
the case of a static graph algorithm which may suffer from load imbalance due to dif-
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ferent threads working on vertices having differently-sized neighborhoods, the issue
of load imbalance is severe in a dynamic graph algorithm, as the load imbalance itself
may vary across structural updates, leading to unpredictable performance results. This
makes applying optimizations in a blanket manner difficult for dynamic graphs and
demands a more careful custom processing. Such customization allows the techniques
to apply to different algorithms as well as to different kinds of updates for the same
dynamic graph algorithm.

In particular, this paper makes the following contributions:

1. We illustratemechanisms to represent andmanipulate large graphs inGPUmemory
using a hash-table based data-structure. Our proposed dynamic graph framework,
Meerkat, makes primitive operations efficient (such as iterating through the cur-
rent neighbors of a node, iterating through the newly added neighbors of a node,
etc.).

2. Using the efficient primitives and warp-cooperative work sharing strategy in
Meerkat, we demonstrate dynamic versions of popular graph algorithms on
GPUs: breadth-first search (BFS), single source shortest path (SSSP), Triangle
Counting, PageRank and weakly connected components (WCC). Apart from the
common patterns among these algorithms, we highlight their differences and how
to efficiently map those for GPU processing.

3. We qualitatively and quantitatively analyze the efficiency of our proposed tech-
niques implemented in Meerkat using a suite of large real-world graphs and five
dynamic graph algorithms. Meerkat eases the programming of dynamic graph
algorithms and readily handles both the bulk and the small updates to the under-
lying graph object. The performance obtained by the dynamic algorithms built on
top of Meerkat’s primitives is significantly better than their static versions.

4. We evaluated Meerkat framework against GPMA,Hornet, FaimGraph, which
are popular dynamic graph data structures for GPUs.

The rest of the paper is organized as follows. Section2 describes the background and
Sect. 3 describes themotivation for ourwork. Section4 describes our proposal in detail,
highlighting the graph representation, and efficient implementation of graph primi-
tives. Based on the primitives, Sect. 5 builds various graph algorithms and explains
their efficient execution on GPUs. Section6 quantitatively evaluates the effectiveness
of our proposed dynamic graph processing using a suite of large graphs. Section7
compares and contrasts against related work. We conclude in Sect. 8.

2 Background

Frameworks for dynamic graph algorithms on GPUs are hitherto largely unexplored.
Selecting an efficient data structure to represent dynamic graph objects is not intuitive
as a graph object undergoes insertion and deletion of edges and vertices over time
in presence of several worker threads. Providing an efficient framework with good
dynamic graph data structure, auxiliary data structures and constructs for programming
parallel dynamicgraph algorithms is challenging.GPUfollowsSIMTarchitecturewith
a group of threads called warp following the same control path. It also has exposed
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memory hierarchy. Such peculiarities exacerbate the challenges for dynamic graph
algorithms on GPUs.

Our framework Meerkat addresses these challenges and provides API for devel-
oping efficient processing of graphs under structural modifications. It builds upon
SlabHash data structure. Awad et al. [2] propose a dynamic graph data structure
(which we shall refer to as SlabGraph) that uses the SlabHash data structure [6] for
maintaining the vertex adjacencies. SlabGraph provides efficient ways for inserting
and deleting edges in dynamic graph objects. Unlike other dynamic graph data struc-
tures, such as Stinger [7], GPMA [8], faimGraph [3] and Hornet [4], SlabGraph
relies on Warp Cooperative Work Sharing (WCWS) execution model [6], which is
crucial for optimal performance on GPUs. In the warp cooperative work-sharing strat-
egy, each of the 32 threads within a warp has a unique piece of work to process. In
our context, each thread is mapped to a unique vertex. All threads of a warp need
not have a vertex whose adjacencies must be processed. A warp may have up to 32
vertices to process. These pieces of work are serialized by an intra-warp work queue
to be processed one at a time by all the warp threads in parallel. Two intra-warp
communication operations are crucial: (i) ballot polls for threads in a warp which
have items to process using a boolean expression. (ii) the shfl warp-wide intrinsic
broadcasts this item from the elected thread to the entire warp, to be processed by all
the warp threads. The warp cooperative work-sharing execution model desires that all
the threads of a warp are active at any point for the successful execution of the warp-
cooperative intrinsics it relies on. The benefit of this is that it avoids warp divergence,
and enables coalesced access of the neighbours of a vertex. We discuss SlabGraph
in detail below.

2.1 SLABGRAPH Data Structure

An efficient dynamic graph structure demands a dynamic adjacency list. SlabGraph
exploits a concurrent hash table for every vertex, to store adjacency lists using a form
of chaining. The data structure is designed and optimized for warp-based execution
on the GPU. SlabGraph allocates a SlabHash object for each vertex. A SlabHash

object has a fixed number of slab lists (buckets) for a vertex v ∈ G.V determined
a priori, where G is the graph object. The number of slablists allocated for a vertex
v is � outdegree(v)

load f actor×slabsi ze �, where 0 < load f actor < 1 and slabsize is 31 and 15
for unweighted and weighted graphs respectively. Lower values of loadfactor allocate
more slablists per vertex. Insert, Delete, and Query operations for an edge (u,v) use a
hash function to index into one of the allocated slab lists. The hash function depends
upon both the source vertex u and the destination vertex v. A slablist is a linked list
of slabs and is also called a bucket. Each slab is 128 bytes long to match the L1 cache
line size for coalesced memory access within a single warp. The adjacent vertices of a
source vertex are stored in one of the slab lists determined by a hash function. The 128
bytes in a slab form 32 lanes with 4 bytes per lane (32 is the GPU’s warp size). Each
lane is to be processed by a corresponding thread in the warp. The last lane is reserved
for storing the address of the next slab. SlabHash’sConcurrentSet (Concurrent
Map, respectively) is used for unweighted (weighted, respectively) graphs to store the
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Table 1 Summary of elementary components of Slabgraph data structure

Item Use Description

Slab Stores weighted or unweighted
neighbours of a vertex

128-byte memory block

Slablist (Bucket) Stores adjacency of a vertex Linked-list of slabs; the adjacencies
of a vertex could be distributed
over multiple slablists as
determined by a hashing function

Head slab – First slab of a slablist

Collision slab Accommodate vertices that cannot be
stored in the current slab list

Slabs chained sequentially from the
end of the head slab

ConcurrentSet Store the adjacencies of a vertex
using a set of slablists in an
unweighted graph; one instance for
every vertex

Hashtable; each slab storing up to 31
unweighted adjacent neighbours,
for a specific vertex

ConcurrentMap Store the adjacencies of a vertex
using a set of slablists in a weighted
graph; one instance for every vertex

Hashtable; each slab storing up to 15
pairs of adjacent neighbours and
their corresponding weights, for a
specific source vertex

Device—context object Maintains pointers to slab lists of a
vertex, and book-keeping data
structures (such as degree count,
slab list size, etc.)

GPU device memory instance of
ConcurrentSet / ConcurrentMap for
a vertex

adjacent neighbours for each vertex. Every slab in the ConcurrentSet can store up
to 31 neighbouring vertices (31×4 bytes). Every slab in the Concurrent Map can
store up to 15 neighbouring vertices and edge weights (15 × 8 bytes). The last lane in
a slab for ConcurrentSet and ConcurrentMap is reserved for storing the address
of the next slab. Each SlabHash object for a vertex maintains one device pointer for
each slablist allocated for the vertex using a context object. Table 1 lists elementary
components of Slabgraph data structure.

Figure 1 shows the SlabGraph data structure with the vertex vi having three
slablists. Initially, each slablist is allocatedwith one empty slabwhichwecallheadslab.
When the head slab becomes full, new slabs are chained to the slablist. In Fig. 1,
adjacencies of vertex vi are stored in three slablists. The slablist vi [0] has two slabs,
slablist vi [1] has only the headslab and vi [2] has three slabs.

According to the implementation heuristics of SlabGraph, a graph with an aver-
age degree greater than 15 would allocate approximately 2× more slabs for the
weighted SlabGraph representation with ConcurrentMap than the unweighted
representation with ConcurrentSet. While all threads participate in retrieving a
single ConcurrentSet slab, only 31 threads participate actively in query/traversal
operations, since their corresponding slab lanes potentially could have vertex data.
A ConcurrentMap slab is used for representing weighted graphs. It can store up
to 15 pairs of the neighbouring vertices and their respective edge weights. When a
slab is retrieved by a warp, every pair of a neighbouring vertex and an edge weight is
fetched by a pair of threads. While 30 threads are involved in fetching edge-related
data, only 15 threads process 15 pairs in the ConcurrentMap slab. The last thread in
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Fig. 1 SlabGraph data structure

ConcurrentMap and ConcurrentSet fetches the next slab’s address and is used
for performing traversal to the next slab.

AnEMPTY_KEY1 is stored in a slab lane if it has not been populatedwith an adjacent
vertex previously, and with a special TOMBSTONE_KEY2 if the slab lane previously
held a valid vertex, and is now deleted. Elements within a slab are unordered, allow-
ing efficient concurrent access. A slab can be processed efficiently by all the threads
of a warp by using warp-wide communication intrinsics such as __ballot_sync,
__shfl_sync, and __shfl_down_sync [9]. The warp-cooperative work strat-
egy (WCWS) for searching in a SlabHash hash table is described by [6] and is used
in the Meerkat framework.

Each SlabHash object for a vertex maintains one device pointer for each slablist
allocated for the vertex using a context object. Every graph search operation indexes
into an array of SlabHash context objects to retrieve the object for the source vertex of
an edge. The particular slablist to store the destination vertex of an edge is determined
by using a hash function. The target slablist is then linearly traversed by the warp
which has the source vertex in its work queue. For insertions, if the slablist is full,
the underlying SlabHash data structure invokes a custom allocator to obtain a new
slab that gets added to the end of the slablist. The SlabGraph context object provides
APIs for vertex adjacency access and graph manipulation operations inside a device
(GPU) kernel by utilizing a work-cooperative work strategy. The SlabHash context
object supportsmethods such asInsert() and Delete()which execute in awarp-
cooperative fashion. These methods are internally used by SlabGraph’s device API
such as InsertEdge() and DeleteEdge(), for inserting and removing adjacent
vertices for a specific vertex respectively.

1 EMPTY_KEY is defined as UINT32_MAX-1 for ConcurrentSet and UINT64_MAX-1 for
ConcurrentMap.
2 TOMBSTONE_KEY is defined as UINT32_MAX-2 for ConcurrentSet and a 64-bit pair
〈UINT32_MAX-2, UINT32_MAX-2〉 for ConcurrentMap.
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3 Motivation

The SlabGraph data structure suffers from the following shortcomings: (i) it does not
provide efficient ways to traverse the current vertex adjacencies, which are crucial for
implementing optimized dynamic graph algorithms, (ii) itsmemorymanagementmod-
ule is inefficient, and (iii) lack of programming abstractions to ease the programming
of dynamic graph algorithms. Meerkat framework addresses these shortcomings.
Meerkat provides optimizations for the dynamic graph data structure, iterators for
programminggraph algorithms, andwarp levelAPI functions such as reduction,broad-
cast, and dequeue.

Whenwe look intoSlabGraph’s (thedynamic-graphbranchof theGunRock)
public repository,3 the source code does not appear to be complete. From the repository
point of view: Implementation such as update/delete operations are missing. Many
methods (for example, SlabGraph to CSR conversion (and vice versa), the CPU API
for batch edge insertion/deletion of edges) appear to be incomplete stubs. It is also not
clear how the SlabAlloc allocators are integrated with the underlying SlabHash

[6] data structures, for the (de)-allocation of collision slabs.
Our work Meerkat builds and improves upon SlabGraph [2] by extending the

publicly available source code for SlabHash.4 The Meerkat framework extends
SlabGraph data structure to a framework for dynamic graph analytics using the
WCWS execution model. Meerkat also provides Frontier auxiliary data structure
to support efficient implementation of dynamic graph algorithms.

Unlike SlabGraph, the Meerkat iterators are oblivious to the number of slabs
for each vertex. Our iterators provide the ++ operator abstraction to obtain the next
slab in sequence. When the available slabs are exhausted, the ++ operator yields a
logical sentinel value. In Meerkat, we provide three different iterator abstractions
(see Sect. 4.3) and two different iteration schemes, for programming our dynamic
graph algorithms. BucketIterator provides traversal only over a specific slab-
list. The SlabIterator internally maintains a BucketIterator to traverse
over slabs over all the slab lists. The UpdateIterator also builds over the
BucketIterator abstraction with the additional ability to traverse over incre-
mentally updated slabs.

With the help of cooperative groups [10], Meerkat uses the shared memory avail-
able private to each thread block efficiently. This is used in the implementation of
single source shortest Path (SSSP), breadth-first search (BFS) (Sect. 6.2), and in tri-
angle counting (with sorted adjacencies, see Sect. 6.4).

The limitations with traversal scheme and memory allocation in SlabGraph are
described in below subsections.

3.1 Traversal in SLABGRAPH

Traversal over the neighbours of a vertex is achievedwith the help of an iterator abstrac-
tion. Algorithm 1 shows how neighbours of a vertex src are retrieved, in SlabGraph.

3 https://github.com/gunrock/gunrock/tree/dynamic-graph.
4 https://github.com/owensgroup/SlabHash.
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Firstly, there is a call to the si ze()method (in line 1), which iterates over each slablist
and counts the number of slabs depending on the number of edges stored in the slab
list. This slab count is aggregated over all the slab lists. This operation takes linear
time proportional to the number of slabs allocated a priori (a vertex with a large out-
degree will have a larger number of initial slab lists allocated for storing its adjacent
neighbours). Each slab is identified by a unique index i . The base slabs have an index
0 < i < number of slablists ≤ si ze(). Accessing the base slabs is fairly simple.
However, to access a specific collision slab, say slab 6, stored in slablist 2 (see Fig. 1),
the iterator counts the number of collision slabs starting from the first slablist. The
iteration stops when the required slablist is found: that is, the number of slabs counted
so far up to slablist 2 exceeds the slab index i . Further, a traversal is performed within
slab list 2 until the slab with the required index i is found. Traversal within a slab list
incurs additional memory access with the next pointer next_ptr of the slab until the
required slab i is found.

Algorithm 1: SlabGraph - Traversal of a neighbours of a vertex
/* Collision slabs are indexed starting from the first head slab

*/
/* Convention for slablist:

Head Slab → Collision Slab � · · · � Collision Slab */
/* Example: */

/* SlabList[0] : 1 → 4 */

/* SlabList[1] : 2 */

/* SlabList[2] : 3 → 5 → 6 */
1 int limit = i tersrc .size() // Count the number of slabs for source vertex src
2 for i ← 0 . . . (limit − 1) do

/* Step 1: Retrieve the neighbours in the i th slab */
3 VertexT dst = i tersrc .value(i, n) /* dst=neighbour at index n (0 ≤ n ≤ 31)

in the i th slab */
/* Step 2: process neighbouring vertex dst here. */

4 end for

What are the drawbacks of neighbourhood traversal in SlabGraph? For traversal
algorithms (such as BFS, SSSP, and PageRank), retrieval of neighbours of vertex
(shown in lines 2–3, Algorithm 1) incurs an overhead from two-pronged linear traver-
sal for each collision slab: one traversal along the head slabs of the slab lists, and one
traversal within the slab list. The running time, is thus, proportional to the slab list
count and the (average) slablist length. Indexed access of slabs is not meaningful for
the traversal of neighbours in traversal algorithms such as BFS/SSSP/PageRank.

3.2 Memory Usage of SLABGRAPH andMEERKAT

The original SlabHash data structure assumes the responsibility of allocating the
head slab (first slab of each slablist) via cudaMalloc() function. This is required
for maintaining the dynamic graph capabilities of SlabGraph. Every vertex has
ownership of one SlabHash object, which contains at least one slab list. The exact

123



International Journal of Parallel Programming

SlabGraph

+ Allocation of Head Slabs
+ UpdateSlabPointers()
+ Frontier Abstractions

SlabHash - ConcurrentMap

- Allocation of Head Slabs
+ Record Slab Updates

SlabHash - ConcurrentSet

- Allocation of Head Slabs
+ Record Slab Updates

Traversal - Iterators

+ BucketIterator
+ SlabIterator
+ UpdateIterator

SlabAlloc SlabAllocLight

Unweighted EdgeWeighted Edge

Dynamic Graph Representation

Store / iterate edge
adjacencies for
each source vertex

Slab Allocators: Adjacent
vertices stored in slabs

Fig. 2 Our proposed Meerkat framework and its dependencies

number of slab lists received by each vertex is dictated by the initial number of vertices
and the reciprocal of the load factor.

Since real-world input graphs often have millions of vertices, we observed that a
large number of cudaMalloc calls (as many as the number of vertices) for a slab of
size 128 bytes results in a significant explosion in the total memory allocated, much
beyond the theoretical limit. To alleviate this issue, Meerkatmakes a crucial design
change: it moves the responsibility of allocating the head slabs from SlabHash to
the (outer) SlabGraph object which decides the number of slabs required per vertex
according to the load factor. A large array of head_slabs with the needed space
is allocated using a single cudaMalloc() function call. Each vertex is assigned a
specific number of head slabs according to the initial degree. We maintain an array
slab_list_count such that slab_list_count[v] is the initial number of
head-slabs allocated for a given vertex v. By performing an exclusive_scan
operation on the entries of the slab_list_count array, we can determine the
offset to the head slab for each vertex.

We observe significant savings. As the number of vertices increases, the memory
requirement increases rapidly, if the memory allocation for head slabs is performed by
SlabHash objects. It is particularly visible for LJournal and USAfull input graphs,
with the latter going out of memory (OOM).

4 The Meerkat Library

Our work Meerkat builds upon and significantly enhances SlabGraph [2] by
extending the publicly available source code for SlabHash.5 Fig. 2 shows the exten-
sions done by us to SlabGraph in our framework Meerkat.

5 https://github.com/owensgroup/SlabHash.
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Dynamicgraph algorithmsonGPUsdemand twocrucial considerations: (i)memory
efficiency due to dynamic updates, and (ii) computation efficiency since the dynamic
processing should be faster than rerunning the static algorithm on the modified graph.
Based on this goal, Meerkat offers a two-pronged approach. In Meerkat, we move
the responsibility of allocating the head slabs in SlabHash outside (to SlabGraph
part of Meerkat) for all the vertices, as the framework has a better picture of the
overall allocation. Meerkat efficiently uses the shared memory of GPU (Sect. 4.2)
and uses warp cooperative execution model to further optimize the dynamic graph
processing.

Second, Meerkat provides a set of iterators for traversing through the neighbours
of a vertex, which is a fundamental requirement for almost all graph algorithms, such
as BFS and SSSP. SlabGraph [2] focuses mainly on the representation and opera-
tions of dynamic graphs. In many incremental algorithms such as weakly-connected
components, it is sufficient to process the updates performed on the graph representa-
tion. Our iterators in Meerkat (discussed in Sect. 4.3), enable us to traverse through
individual slab lists selectively, through all the slablists for a vertex, or visit only those
slabs holding new updates, depending on the requirements of the underlying dynamic
graph algorithm. This helps us improve performance.

4.1 Meerkat API

The DynamicGraph data structure of Meerkat on host and device provides API to
ease programming dynamic graph algorithms.Host API functionsInsertEdges()
andDeleteEdges() are provided for inserting and deleting a batch of edges respec-
tively. On the device side, GetEdgeHashCtxts(src) returns device-context SlabHash
object for accessing the neighbors of a vertex src, through our iterator abstrac-
tions. The Meerkat framework provides different types of iterators to traverse
over the neighbours of a vertex. These iterators are named as SlabIterator,
BucketIterator, and UpdateIterator (see Sect. 4.3). These iterators are
equipped with functions begin(), end(), beginAt(), and endAt(), briefed in
Table 2.

Meerkat provides API for warp cooperative work sharing execution model. Warp
cooperative execution relies on each warp processing the neighbours of the same ver-
tex, using warp intrinsics. The warp maintains a queue of such vertices which are
elected in turns, in First in First Out (FIFO) fashion, using lane-id’s of the threads in a
warp. Meerkat provides an abstraction for such a queue (FIFO) for each warp. This is
implemented using the warp level primitives __ballot_sync() and __ffs().
The pseudocode for the enqueue operation of the warp-private queue is given in Algo-
rithm 2. The Meerkat framework also provides API for warp level reductions and
broadcast.

4.2 Frontier

A frontier stores the set of graph elements to be processed. A frontier F of type
F<T> is internally an array of elements of type T. Each frontier object supports
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Table 2 Meerkat: iterator API of SlabHashCtxt representing a source vertex

API Parameters Description

begin() – Returns a SlabIterator to the first slab, in the first slab
list for a vertex

end() – Returns a sentinel SlabIterator to the logically last
slab, in the last slab list for a vertex (implemented using
an invalid address)

beginAt() index Returns a BucketIterator to the first slab in the
index’th slab list for the source vertex

endAt() index Returns a BucketIterator to a logically last slab in the
index’th slab list

updateBegin() – Returns an UpdateIterator to the first slab holding
incremental updates. The iterator is invalid if updates are
not available for a vertex

updateEnd() – Returns an UpdateIterator to the logically last slab

integer-based indexing for accessing its elements by our kernel threads, along with a
si ze attribute. Meerkat privatizes Frontier object into a shared memory partition
that is exclusive to a warp. A warp-exclusive partition removes the need for block-
level synchronization for overcoming memory hazards. Thus each warp enqueues
the frontier edges into its shared memory partition, and flushes them into the global
memory frontier on exhaustion. The writes from the shared memory partition to the
global memory frontier are performed as a sequence of coalesced writes with the help
of a warp-stride loop full memory bandwidth. Further, a private partition ensures that
warps canwork independently. Insertion of elements into a frontier object is performed
by the warp-cooperative EnqueueFrontier() function (see Algorithm 2). The
EnqueueFrontier() function takes a frontier object F , an edge e to be enqueued,
three array pointers, (namely src, dst , and wgt), for storing the frontier edges to be
flushed to the globalmemory frontier F , and si ze parameter. The si ze parameter refers
to a thread-local variable; each warp thread redundantly storing the number of frontier
edges cached within its warp-exclusive shared memory partition at a given point. This
redundancy enables every thread determine its offset to enqueue its edge, without
relying on intra-warp communication. The number of edges to be enqueued by a warp
is calculated and stored in the variable edge_n using the functions __ballot_sync() and
popc() (see lines 2–3, Algorithm 2); the shared memory partition is flushed if it cannot
accomodate new frontier edges (see lines 4–5). Warp threads holding a valid edge
(line 7) compute a unique offset (line 8), and frontier edge is subsequently enqueued
(lines 9–11). The thread-local si ze parameter is updated by the number of edges
enqueued by the warp (line 13); the FlushQueue() function first increments the
size of the global memory frontier F by the number of edges in the shared memory
partition (line 18) using a single atomic compare-and-swap, and empties the cached
enqueued frontier edges into the global memory frontier using a warp-size stride loop
(see lines 22–24).

The BFS and SSSP computation in Meerkat rely on using a pair of frontiers for
driving their iterations: a frontier fcurrent holding a set of edges whose destination
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Algorithm 2: Meerkat Warp device API: Frontier Enqueue
1 device function EnqueueFrontier (Frontier<Edge> F, Edge e, Vertex ∗src, Vertex

∗dst, uint32 ∗wgt, uint32 &si ze) {
2 uint32 bitset = ballot_sync(e == INVALID_EDGE)

/* Flush the shared memory partition if more edges cannot be
inserted by warp */

3 uint32 edges_n = popc(bitset)
4 if (si ze + edges_n > SMEM_MAX_QUEUE_LENGTH) then
5 FlushQueue(F , src, dst , weight , si ze)
6 end if

/* Insert a valid edge into the shared memory partition */
7 if (e �= INVALID_EDGE) then
8 uint offset =

popc(brev(bitset) & (UINT32_MAX << (WARP_SIZE − warp_thread_rank())))
9 src[size + offset] = e.src

10 dst[size + offset] = e.dst
11 wgt[size + offset] = e.wgt
12 end if
13 size += edges_n // size: thread-local variable received from the

caller global kernel function
14 }
15 device function FlushQueue (Frontier<Edge> F, Vertex ∗src, Vertex ∗dst, uint32

∗weight, uint32 &si ze) {
16 uint offset = 0
17 if (warp_thread_rank() == 0) then
18 offset = atomicAdd(&F.size, size)
19 end if

/* Obtain the offset into the frontier to start flushing */
20 warpbroadcast(offset, 0)
21 uint32 index = warp_thread_rank()

/* Warp flushes its shared memory partition into the global
memory frontier for the next SSSP iteration */

22 while (index < si ze) do
23 F[offset + index] = Edge{src[index], dst[index], weight[index]}
24 index += WARP_SIZE
25 end while
26 size = 0
27 }

vertices must be inspected; the outgoing edges from these destination vertices which
have been updated populate the frontier fnext to be used for the next iteration.

4.3 Graph Primitives

One of the primitive graph operations is to iterate through the neighbours of each
vertex.

Our Meerkat framework maintains three types of iterators: SlabIterator,
BucketIterator, and UpdateIterator (see Table 3). UpdateIterator
is an optimized version of SlabIterator customized for incremental-only graph
processing.
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Table 3 Meerkat iterators

Iterator Description

SlabIterator traverses through all the slabs contained in the slablists for a given
vertex, one slablist at a time

BucketIterator our primitive form of SlabHash iterator; traverses through all the
slabs of a single slab-list only

UpdateIterator traverses through only those slabs containing new adjacent vertices,
contained in updated slab-lists

The unit of access for all Meerkat’s iterator variants is a slab. The sameAPI is pro-
vided (see iterator-specific methods in Table 4) for both the weighted and unweighted
graph representations of Meerkat.

A BucketIterator is constructed for a specific slablist in the slab-hash
table. For example, in Fig. 1, a BucketIterator on slablist vi [2] only can
traverse over the following sequence of slabs: 3 → 5 → 6 . Invoking
the begin_at(slab_list_id) method on a slab hash table, constructs a
BucketIterator to the first slab of the slab list indexed with slab_list_id.
The end_at(slab_list_id) method returns an iterator for a logical sentinel
slab for the slablist indexed with slab_list_id.

The SlabIterator is used for traversing all the slabs in the hash table of a given
vertex. For example, in Fig. 1, a SlabIterator for vertex vi can traverse over the
following sequence of slabs: 1 → 4 → 2 → 3 → 5 → 6 . When the first
slablist has been traversed, it iterates over the slabs in the second slablist, and so on,
until all the slablists for a vertex are visited. The begin() method on a slab hash
table constructs a SlabIterator object pointing to the first slab in the first slablist.
The end() method returns a SlabIterator referring to a logical sentinel slab.
See Table 4) for detailed API descriptions.

Our iterators have been designed to be decoupled from the underlying graph repre-
sentation using ConcurrentSet for unweighted graphs and ConcurrentMap for
weighted graphs (See Table 1). Our iterators behave identically in themanner of traver-
sal of slabs and the retrieval of slab content, regardless of whether ConcurrentSet
or ConcurrentMap is used for storing the neighbours of a vertex.

We describe two different schemes for enumerating neighbours. IterationScheme1
makes use of SlabIterator. IterationScheme2 makes use of BucketIterator. Both
schemes can apply to all algorithms. IterationScheme1 and IterationScheme2 are
explained in sufficient detail in Appendix A.1 and Appendix A.2, respectively. Here,
we present a summary of the two iteration schemes availabe in Meerkat. In Itera-
tionScheme1, each warp takes at most 32 vertices from the set of active vertices as
its work queue. A warp processes its vertices in turns; the neighbours of every ver-
tex (stored in several slabs distributed over multiple slab lists) are accessed with the
help of the SlabIterator abstraction. The total number of threads spawned by the
kernel invocation is equal to the nearest multiple of the warp size above the number
of vertices whose adjacencies are to be traversed. In IterationScheme2, a warp loops
over a queue of slab lists to be processed: each slab list (which holds a partial set of
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Table 4 Meerkat primitives

Function Description

Meerkat Iterator-specific methods:

iter.operator++() Advances the iterator to the next slab in sequence

iter.get_pointer() Accepts a lane-id (0–31), returns a pointer to an
element within a slab with an offset of lane-id

iter.first_lane_id() Used when iter is an UpdateIterator;
returns laneid of the first new neighbor in the slab

Meerkat context object-specific methods:

G.get_vertex_adjacencies() Returns pointer to a device vector of SlabHash
objects; i’th element has neighbors of i’th vertex

begin() Returns a SlabIterator to the first slab, in the
first slablist

begin_at(i) Returns a BucketIterator to the first slab in the
i’th slablist

update_begin() Returns an UpdateIterator to the slab at
alloc_addr located within the first updated
slablist

end(), update_end(),end_at(i) Returns an iterator to a logically invalid slab (that is,
at INVALID_ADDRESS)

Meerkat Other intrinsics:

thread_id() Returns global id of calling thread (blockDim.x
× blockIdx.x + threadIdx.x)

lane_id() Returns the position of a thread within a warp (in the
range [0, 31]) (threadIdx.x & 0x1F)

global_warp_id() Returns the global id for a warp
(thread_id() » 5)

is_valid_vertex() Returns true if v is a valid vertex-id (v �=
INVALID_KEY and v �= TOMBSTONE_KEY)

neighbours of the vertex) is identified by a vertex ID and the index of the slab list. If
the kernel grid has n warps, every warp processes those slab lists in the queue located
at index k = (warpid+(i×n)) < queuesi ze, where, i ≥ 0 is a loop variable local to
a warp. A slab list is subsequently traversed by a warp using the BucketIterator
abstraction.

IterationScheme1 is useful for a majority of situations when the working set of
vertices is sufficiently larger than the total number of running warps in the GPU (our
GPU has 68 SMs with 64 threads per SM. IterationScheme1 is beneficial when the
working set is larger than 68 SMs × 64 threads per SM = 4352 threads or 136 warps).
However, it may not be the case when the working set of vertices is small, and with a
possibility that the out-degree of some vertices is unevenly large. It must be recalled
that a SlabIterator performs a traversal of all slabs, and the distribution of slabs
among multiple slab lists has no positive effect in algorithms where all the neighbours
of a vertex are to be traversed (that is, all the slabs have to be visited, even though the
neighbours are distributed over multiple slab lists). Further, only one warp of threads
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Fig. 3 Processing incremental updates in Meerkat

is responsible for the traversal over all the slabs allocated for a vertex assigned to it.
This could lead to a small number of warps ending up performing long traversals over
the slabs of a few large-degree vertices, while other small-degree vertices in the same
work queue are held hostage for a long time, waiting to be serviced by the same warp.

When the active working set is small, IterationScheme2 can take advantage of the
consequences of hashing, which distributes the neighbours of a vertex evenly over
multiple slab lists. IterationScheme2 avoids the possible tailing effect observed in
IterationScheme1 when the active working set is small, by distributing slab lists of a
vertex to different warps for performing the traversal of neighbours. In such situations,
IterationScheme2 enables more warps to access a fewer number of slabs on average
and ensures better load balance.

4.3.1 UpdateIterator for Incremental Graph Processing

In incremental graph algorithms, such as incremental WCC, it is sufficient to iterate
over slabs for which new adjacent vertices have been inserted. To facilitate iteration
over the updated slabs alone, Meerkat maintains the following fields per slablist.

Each slablist is augmented with a bool value is_updated, which is set to true
if new edges are inserted into the slablist. Each slablist stores an allocator address field
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alloc_addr to store the allocator address of the first slab in which new edges have
been inserted. Since head slabs are allocated through cudaMalloc(), we use a
special value A_INDEX_POINTER in the alloc_addr field, to distinguish the
head slab from other slabs returned by the Meerkat allocator. Each slablist also
stores the lane-id of the first updated value, in the first updated slab.

Initially, is_updated for a slablist is set to false. The InsertEdge()
device method is responsible for setting is_updated for a slablist to true if
an insertion occurs at the end of the slablist. For every SlabHash object associ-
ated with a vertex, we define UpdateIterators to iterate over only the slabs
storing new vertices. In other words, we can traverse only over those slabs in
which new vertices have been inserted. An UpdateIterator skips over slab-
lists for whom is_updated is false. Once the updates have been processed,
Graph.UpdateSlabPointers() sets the is_updated field to false
for all the slablists previously set to true. For such slablists,
Graph.UpdateSlabPointers() sets alloc_addr to the last slab in the slab-
list, and lane id l to the next lane, where subsequent insertions of adjacent vertices
are to take place. Figure3a shows an example portion of a slab list holding the incre-
mental updates. The slab at address 0x20 records the first incremental update at
its first free lane holding an EMPTY_KEY (lane 14). This location of the first incre-
mental update in the slablist is recorded by the InsertEdge() device function.
Subsequent incremental updates fill up the slab and could be accommodated in more
collision slabs chained as a linked list, the last collision slab allocated at address
0x2a (The last collision slab has accommodated incremental updates up to lane
21). Our UpdateIterators rely on this metadata for identifying the incremen-
tal updates. Once the incremental updates are processed, they are ‘commited’ by
UpdateSlabPointers() which resets the slab list metadata to the next location
where the new batch of incremental updates are to inserted. That is, the address of the
last collision slab (0x2a), and its first free lane holding an EMPTY_KEY (lane 22) is
recorded in the slablist metadata entries.

In a special case, if the slablist is full (as shown in Fig. 3b), the lane id field lane
is assigned a special value INVALID_LANE to denote that the updates would occur
at newly allocated collision slabs, chained at the end of the last slab.

In summary, an UpdateIterator behaves like a SlabIterator, but, iter-
ates over slabs that are recognized to be holding incremental updates. Hence,
like the SlabIterator, the use of UpdateIterators is compatible with
IterationScheme1.

5 Dynamic Algorithms using Meerkat

We evaluate Meerkat using the dynamic versions of five fundamental graph algo-
rithms: Weakly Connected Components (WCC), Breadth First Search (BFS), Single
Source Shortest Path (SSSP), Triangle Counting (TC), and PageRank (PR). BFS,
SSSP, TC, and PR are programmed for both incremental and decremental processing,
whereas WCC is programmed only for incremental processing. The BFS, PR, TC,
and the WCC algorithm operate on unweighted graphs. On the other hand, the SSSP
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algorithm requires a weighted graph representation. The fully dynamic versions are
implemented with incremental and decremental processing as two computation steps.

5.1 Dynamic Single Source Shortest Path and Breadth First Search

The single-source shortest path (SSSP) algorithm, described in Algorithm 3, takes a
dynamic graph object G, and single source vertex SRC, and computes the shortest
path to all other vertices from SRC. In the dynamic setting, the algorithm is batch-
dynamic in nature: it takes a sequence of edge batches, where each batch is either
an incremental or a decremental batch. The incremental/decremental SSSP algorithm
re-computes the shortest paths/distances for the affected vertices in the graph, from
the vertex SRC. For each node v, let Pv = (SRC � · · · � parent(v) → v) be
a shortest path from the source vertex SRC. Our SSSP processing is responsible for
updating 〈distancev, parent(v)〉 pair, where distancev is the length of the shortest
path Pv , and parent(v) is the unique predecessor to the vertex v in path Pv . Every
vertex v other than SRC must have a unique parent(v) in a given shortest path Pv ,
which implicitly implies that shortest path of v from the source SRC goes through
the parent(v). It is therefore understood, that by identifying the parent(v) for every
vertex v, in its shortest path Pv , we are implicitly maintaining a directed tree TG , such
that for each edge e = (u, v) ∈ TG , u is the parent of v in Pv . Our batch-dynamic
incremental/decremental algorithm is responsible for maintaining this dependence
tree. In the ensuing discussion, a subtree in TG , rooted at vertex v, will be represented
by Tv . A formal discussion on value dependence in shortest distance computation and
its representation as a dependence tree can be found in [11].

Our static/dynamic SSSP and BFS algorithm implementations on Meerkatmake
use of our frontier based abstractions. The active set of vertices whose distances may
be updated, changes from one iteration to the next. The frontier abstraction enables
us to visit only this subset of all vertices, avoiding the need for full-graph traversal as
needed in iterative SSSP and BFS algorithms.

5.1.1 Preliminaries on the Implementation

• Representation of tree- node: In our implementation, we have represented the
〈distancev, parent(v)〉 pair as a 64-bit unsigned integer, with 32-bits reserved
for each half of the pair, where, distancev occupies the most significant bits, and
parent(v) the least significant bits. This allows us to consistently update both
halves of a pair with a single 64-bit atomic operation on Nvidia GPUs.

• Use of Cooperative Groups: We use cooperative groups for implementing
our BFS/SSSP kernels. The kernel grid size is equal to the number of streaming
processors (SPs) on theGPU. Every thread block remains resident on the streaming
multi-processor (SMs) throughout the lifetime of the kernel, and a grid-stride loop
is used for accessing the elements of the frontier for each iteration.

• Use of Shared Memory: The shared memory of the SMs is equally divided among
the warps residing on it. Hence, each warp is assigned its own private region of
shared memory, improving access latency.
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Algorithm 3: Dynamic SSSP - Computation Kernel
1 function SSSP_Dynamic_Kernel(Graph G, Batch batch, tree_node D[],
Frontier<Edge> Fcurrent , Frontier<Edge> Fnext ) {

2 Vertex_Dictionary *vert_adjs[] = G.get_vertex_adjacencies()
3 shared Vertex src[SMEM_MAX_QUEUE_LENGTH]
4 shared Vertex dst[SMEM_MAX_QUEUE_LENGTH]
5 shared uint32 wgt[SMEM_MAX_QUEUE_LENGTH]
6 uint32 size = 0
7 uint32 loop_index = thread_id()
8 if (batch.is_insertion()) then
9 Incremental Algorithm Prologue:

10 uint32 loop_bound = roundup(batch.size, WARP_SIZE)
11 while (loop_index < loop_bound) do
12 Edge e = INVALID_EDGE
13 bool to_consider = false
14 if (index < Fcurrent .si ze) then
15 e = Fcurrent [index]

/* Compute and atomically update tree node for vertex
e.dst */

16 tree_node ddst = <D[e.src].distance + e.wgt, e.src>
17 to_consider = (D[e.src] �= 〈INF,INVALID〉) and (atomicMin(&D[e.dst],

ddst ) > ddst )
18 end if
19 SSSP_Frontier_Enqueue(vert_ad js, to_consider , e.dst, Fcurrent , src, dst,

wgt,&si ze)
20 loop_index += threads_n() // threads_n() returns number of

threads in the grid
21 end while
22 end if
23 else
24 Decremental Algorithm Prologue:
25 Invalidate(batch, D)
26 grid sync
27 PropagateInvalidation(D,SRC)
28 grid sync
29 uint32 loop_bound = roundup(vertex_n, WARP_SIZE)
30 while (loop_index < loop_bound) do
31 bool to_consider = (loop_index < vertex_n) and (D[loop_index] �=

〈INF,INVALID〉)
32 SSSP_Frontier_Enqueue(vert_ad js, to_consider , loop_index, Fcurrent , src,

dst, wgt,&si ze)
33 loop_index += threads_n() // thread_n() returns total threads

in the grid
34 end while
35 end if

/* Update SSSP distance */
36 FlushQueue(Fcurrent , src, dst, wgt,&si ze)
37 grid sync
38 SSSP_Frontier_Loop(vert_ad js, Fcurrent , Fnext , src, dst, wgt, &si ze,&D)
39 grid sync
40 }

It must be recalled that a slab can hold upto 31 adjacent vertices in an unweighted
graph, and upto 15 pairs of adjacent vertices and edge weights in a weighted graph.

123



International Journal of Parallel Programming

Algorithm 4: SSSP - Frontier Enqueue
1 device function SSSP_Frontier_Enqueue(Vertex_Dictionary V A[], bool to_consider ,
Vertex v, Frontier<Edge> Fnext , Vertex ∗src, Vertex ∗dst, uint32 ∗wgt, uint32
&si ze) {

2 Edge e = INVALID_EDGE
3 unsigned int32 dequeue_lane = 0

/* Loop enqueues outgoing neighbours of vertex v */
4 while ((dequeue_lane = warpdequeue(&to_consider)) �= −1) do
5 Vertex current_v = warpbroadcast(v, dequeue_lane)
6 SlabIterator iter = vert_adjs[current_v].begin()
7 SlabIterator last = vert_adjs[current_v].end()
8 while (i ter �= last) do

/* Iterate over neighbours */
9 Pair p<dst, weight> = *(iter.get_pointer(lane_id()))

10 Edge enext = INVALID_EDGE
11 if (is_valid_pair(p)) then
12 enext = {current_v, p.dst, p.weight}
13 end if

/* Enqueue outgoing edges of v into next frontier Fnext */
14 EnqueueFrontier(Fnext , enext , src, dst, wgt,&si ze)
15 ++ iter
16 end while
17 end while
18 }

Further, the slab occupancy is much lower in low-outdegree graphs such as the road
networks. Since the out-neighbours and the respective edge weights are enqueued
into the SSSP frontier, low slab occupancy leads to poor utilization of global memory
bandwidth. Further, one atomic operation per slab is required to shift the frontier
index stored in the global memory. To alleviate this problem, we privatize the frontier
into a shared memory partition that is exclusive to a warp. A warp-exclusive partition
removes the need for block-level synchronization for overcoming memory hazards.
Thus each warp enqueues the frontier edges into its shared memory partition, and
flushes them into the global memory frontier on exhaustion. Each flush operation
involves parallelwrites and only one atomic operation to advance the frontier limit. The
writes from the sharedmemorypartition to the globalmemory frontier are performed as
a sequence of coalescedwriteswith the help of awarp-stride loop utilizing fullmemory
bandwidth. Further, a private partition ensures that warps can work independently
either in the frontier traversal or in private shared-memory partition flushing mode.

The use of cooperative groups provides for grid-wide synchronization within the
kernel, thus avoiding theneed for explicitly invokingcudaDeviceSynchronize()
from the host CPU.

5.1.2 Incremental SSSP

The addition of a new edge (u, v) could result in distance(v) only getting reduced if
((distance(u)+weight(u, v)) < (distance(parent(v))+weight(parent(v), v)).
In such a case, the sub-tree Tv for vertex v is transplanted under a new parent u
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in TG . All such shortest paths Px = (SRC � parent(v) → v � x), are now
Px = (SRC � u → v � x). Therefore, it is necessary to re-compute the shortest-
path distances for all the vertices in the sub-tree Tv (v � x). Our incremental SSSP
processing takes an incremental batch of edges as the initial frontier for our static
SSSP.

5.1.3 Decremental SSSP

If an edge (u, v) which is a part of the shortest path tree TG is deleted from the graph
G, then it invalidates distance(v) from the source vertex SRC, and the shortest paths
Px for all vertices x in the subtree Tv . If distance(v) is invalidated on the deletion
of an edge (u, v), vertex u ceases to be parent(v). This prompts a propagation of
invalidations for the shortest distances (from SRC) and the parent vertices determined
for all the vertices in Tv . In effect, the previously computed Tv ceases to exist in TG . At
this juncture, there are three types of vertices in the graph: (i) a set of vertices Vvalid
whose shortest distances and parent information have not been invalidated (ii) a set
of vertices Vinvalid whose shortest distances and parent information have incurred
invalidations, as a direct consequence of being destination vertices of deleted edges
present in TG , or indirectly, as a consequence of the propagation of invalidation, and
(iii) a set of vertices Vunreachable which were not part of TG owing to an absence of a
path from the vertex SRC in G. Such vertices in Vunreachable will continue to remain
unreachable even after a batch of edge deletions. Thus, the shortest paths for vertices in
the Vinvalid , still reachable from SRC, can be computed by taking all edges (u, v) such
that u ∈ Vvalid and v ∈ Vinvalid , as the initial frontier for our static SSSP processing.

We now discuss the specific details of the implementation of the static SSSP, and
the incremental/decremental algorithms, presented in Algorithm 3. The static SSSP
computation kernel performs frontier-based computation: it accepts a frontier of edges
Fcurrent and produces a new frontier Fnext for the next invocation. The SSSP kernel
is repeatedly invoked until it produces an empty frontier Fnext . A frontier of type
F<T> is internally an array of elements of type T . Each frontier object supports
integer-based indexing for accessing its elements by each thread. Every frontier object
maintains a si ze attribute to indicate the number of elements in the frontier array. Inser-
tion of elements into a frontier object is jointly performed by the warp-synchronous
EnqueueFrontier(..) and FlushQueue(..) functions. The tree nodes for
all the vertices in the array D (except the source SRC) are initialized with 〈INF,
INVALID〉 that is, the shortest path distance for all the vertices is set to INF (infin-
ity), and their parent(v)’s to INVALID vertex. The tree node for the source vertex
SRC is initialized to 〈0,SRC〉. We reiterate that the order 〈dist,parent-id〉 is
important for the SSSP and BFS algorithm implementations.

The SSSP kernel updates the tree node D[vi ]=〈dcurrent , pcurrent 〉 to 〈dnew, ui 〉 if
(dnew = distance(ui ) + ei .weight) < dcurrent . This update is done atomically to
preserve sequential consistency. The neighbours of vi are enqueued into the edge
frontier Fnext , if D[vi ] is updated.

In Algorithm 3, lines 10–21 define the prologue for the incremental SSSP process-
ing. It takes an incremental batch of edges as the initial frontier Fcurrent . Lines 14–17
check whether the destination vertex of the edge e, that is, edst has a new shortest path
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through esrc. If the shortest path of edst is updated, the variable to_consider is set to
true (line 17). If to_consider is set to true, the neighbours of edst are added to the
frontier Fcurrent by calling the warp-synchronous SSSP_Frontier_Enqueue(. . . )
function (shown in Algorithm 4). This function is based on IterationScheme1.
A pair of SlabIterators are used for traversing over all the slabs holding the
neighbours of the vertex edst .

Lines 25–34 define the prologue for the decremental SSSP processing. It involves
using the edges in the batch invalidation (see Line 25, expanded in Algorithm 12,
in Appendix B) and propagation of shortest path invalidation in the shortest path
tree (see Line 27, expanded in Algorithm 13, in Appendix B). Then all the vertices
whose distances are valid in the shortest path tree, and their neighbors whose distances
are invalid are added to the frontier Fcurrent (see lines 29–33). Lines 36–39 define
the incremental/decremental computation. The dynamic computation utilizes static
SSSP procedurewith the frontiers produced by the incremental/decremental prologues
for the given batch. The static SSSP computation kernel executes until convergence,
i.e., until Fnext becomes empty. The incremental/decremental BFS processing uses
the same kernels as that of incremental/decremental SSSP described in Algorithm 3
(lines 8–34). However, the static algorithm uses a fast level-based BFS computation.

We compared the performance of the BFS frontier-based algorithm (on the
unweighted graph), and the SSSP algorithm with weights 1 for the edges, with a
single slab list allocated for each vertex. The distinction lies in the fact the former
can receive up to 31 neighbours per slab access, and the latter receives up to 15 when
the slab is fully occupied. Our analysis reveals that when dealing with benchmark
graphs where the average degree is approximately 15 and above, the weighted graph
representation incurs an overhead of approximately 19.36% (up to 31.7% for Higgs).
For graphs with a low degree (average degree 15 or less), the average overhead was
under 0.6% (Wiki-talk had an exceptionally higher overhead of 27.7% owing to few
high-degree vertices). It is important to note that the neighbours of vertex with an out-
degree of 15 or less, can be accomodated within a single slab, regardless of whether
the graph representation is weighted and unweighted. Consequently, the difference in
the total number of slabs allocated for the entire graph is very small for low-degree
graphs. As a result, there is a nearly equal number of memory accesses for slabs, in
both weighted and unweighted graphs for the two cases that were discussed here.

5.2 PageRank

The PageRank algorithm assigns a score to every vertex in the range [0, 1], which
determines its importance in the input graph object. The PageRank value of a vertex
in a graph object can be understood as a probability that a random walk in the graph
(with N vertices), will arrive at that vertex, computed by an iterative application of
equation 1 for all vertices in a sequence of super-steps until a steady state/ convergence
condition is met [12].

PR(v) = 1 − d

N
+ d ·

∑

u→v

PR (u)

|out (u)| (1)
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Algorithm 5: Page Rank - Static / Incremental / Decremental Algorithm
1 function ComputePageRank (Graph G, float PageRanks[vertex_n], float error_margin =
1e-5, float damping_factor = 0.85, int max_iter = 100) {

2 int iterations = 0
3 float NewPageRanks[vertex_n]
4 float ContributionPerVertex[vertex_n]
5 float delta = 1.0
6 float teleport_value = 0.0
7 while (delta > error_margin and i terations < max_iter) do
8 FindContributionPerVertex(PageRanks, G.VertexOutDegrees,

ContributionPerVertex)
9 Compute(G, ContributionPerVertex, damping_factor, NewPageRanks)

10 if (find(G.VertexOutDegrees, 0) == true) then
11 FindTeleportProb(G.VertexOutDegrees, &teleport_value)
12 foreach i in 0 . . . (vertex_n − 1) parallel do
13 NewPageRanks[i] += damping_factor × teleport_value
14 end foreach
15 end if
16 FindDelta(PageRanks, NewPageRanks, &delta)
17 PageRanks ← copy(NewPageRanks)
18 ++ iterations
19 end while
20 }

The pseudocode for static/dynamic PageRank is discussed in Algorithm 5. Algo-
rithm 5 accepts a dynamic graph objectG, and an array PageRanks[vertex_n]which
identifies the PageRank value for each vertex in the input graph object. In the case
of the static algorithm, each element in the array PageRanks[vertex_n] is initial-
ized with the value 1

vertex_n . In the incremental/decremental case, the array element
PageRanks[v] contains the PageRank value of a vertex v, computed before inser-
tion/deletion. Each iteration of the loop (in lines 7–18) represents a "super-step". The
PageRank values of iteration i , are determined from those computed in iteration i −1.
The maximum number of iterations is upper bounded by max_i ter . The iterations
continue until delta = ∑

v∈G.V |PRi (v) − PRi−1(v)| > error_margin. In other
words, delta is the L1- Norm between the PageRank vectors PRi and PRi−1, and is
computed at line 16. Line 8 initializes VertexContribution[v] = PR[v]

|out(v)| for each
vertex v, which can be performed with coalesced memory access. The new PageRank
values are computed in line 9 according to equation (1) and are adjusted to account
for teleportation from zero-outdegree vertices to any other vertex in the input graph
object (at lines 10–13). The teleportation probability is added to the PageRank value
for every vertex (lines 12–13), if there exists any vertex vz whose out-degree is zero
(see line 10). The teleportation probability to be computed at iteration i is given by∑

vz

P Ri−1(vz)
vertex_n is computed in the FindTeleportProb kernel.

The Compute kernel (in Algorithm 6), based on IteratorScheme1, describes the
computation of PageRank values for all vertices according to equation (1). The
Compute kernel is invoked with a dynamic graph object G storing incoming edges,
an array of PageRank contributions for each vertex, the damping factor, and an array of
new PageRank values. Each thread, with thread-id equal to v, represents a unique ver-
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Algorithm 6: Page Rank - Compute Kernel
1 function Compute (Graph G, float VertexContribution[], float DampingFactor, float
NewPageRanks[]) {

2 Vertex_Dictionary *vert_adjs[] = G.get_vertex_adjacencies()
3 if ((thread_id() − lane_id() < edge_n)) then
4 bool to_compute = (thread_id() < vertex_n)
5 unsigned int pr_value = 0
6 unsigned int32 dequeue_lane = 0
7 while ((dequeue_lane = warpdequeue(&to_compute)) �= −1) do
8 Vertex current_v = thread_id() - lane_id()+ dequeue_lane
9 SlabIterator iter = vert_adjs[current_v].begin()

10 SlabIterator last = vert_adjs[current_v].end()
11 float local_prsum = 0.0f
12 while (i ter �= last) do
13 Vertex u = *(iter.get_pointer(lane_id()))
14 if (is_valid_vertex(u)) then
15 local_prsum += VertexContribution[u]
16 end if
17 ++ iter
18 end while
19 warpreduxsum(&local_prsum)
20 if (thread_id() == current_v) then
21 pr_value = local_prsum
22 end if
23 end while
24 if (thread_id() < vertex_n) then
25 NewPageRanks[thread_id()] = pr_value
26 end if
27 end if
28 }

tex v in the graph object G. Hence, each thread maintains a private variable pr_value
(line 5) to hold the new PageRank value for the vertex it represents. Lines 7–25 com-
pute the new PageRank values for all the vertices collectively represented by the warp,
using thewarp-cooperative execution strategywith a pair of SlabIterators. After
selecting a warp lane (in line 7 using the Meerkat primitive warpdequeue()),
line 8 computes the corresponding id of the vertex (current_v) to be processed
by the warp. A pair of SlabIterators (lines 9–10) are constructed to traverse
the slabs holding the in-edges of vertex current_v in graph object G. The accu-
mulation of the contribution of the in-edges to the PageRank of current_v is
commutative. Hence, we maintain a thread-local variable local_prsum (defined at
line 11), where we accumulate the PageRank contributions of the neighboring ver-
tices along the incoming edges encountered by the warp threads (line 15). Given that
VertexContribution[u] = PR[u]

out[u] , re-computing this ratio for every adjacent vertex
u of a vertex v, leads to two non-coalesced memory accesses for every edge (one
memory access for accessing PR[u], and another for out[u]) by the warp. Every warp
thread uses a neighbour u of the vertex v for indexing into the arrays PR[] and out[].
It must be recalled that these neighbouring vertices are fetched by the warp from a
slab. Their vertex-id’s need not be contiguous as indices, leading to memory accesses
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by the warp that are non-coalesced). Since these ratios are invariant in every PageRank
super-step, they are pre-computed (at line 8, in Algorithm 5), and stored in the array
VertexContribution, thus reducing the number of non-coalesced memory accesses
per edge to one.

Algorithm 7: Triangle Counting - Count Kernel
1 function Count(Graph G1, Graph G2, Edge edges[edge_n], int *TotalCount) {
2 Vertex_Dictionary *vert_adjs[] = G2.get_vertex_adjacencies()
3 if ((thread_id() − lane_id() < edge_n)) then
4 bool to_count = (thread_id() < VertexN)
5 unsigned int count = 0
6 unsigned int32 work_queue = 0
7 Vertex u = INVALID_VERTEX
8 Vertex v = INVALID_VERTEX
9 if (to_count == true) then

10 u = edges.src[thread_id()]
11 v = edges.dst[thread_id()]
12 end if
13 unsigned int32 dequeue_lane = 0
14 while ((dequeue_lane = warpdequeue(&to_compute)) �= −1) do
15 Vertex current_u = warpbroadcast(&u, current_lane)
16 Vertex current_v = warpbroadcast(&v, current_lane)
17 SlabIterator iter = vert_adjs[current_v].begin()
18 SlabIterator last = vert_adjs[current_v].end()
19 while (i ter �= last) do
20 Vertex adj_v = *(iter.get_pointer(lane_id()))
21 bool edge_present = G1.SearchEdge(is_valid_vertex(adj_v), current_u, adj_v)
22 if (edge_present) then
23 count += 1
24 end if
25 ++ iter
26 end while
27 end while
28 warpreduxsum(&count)
29 if (lane_id() == 0 and count �= 0) then
30 atomicAdd(TotalCount, count)
31 end if
32 end if
33 }

5.3 Triangle Counting

Our library’s dynamic triangle counting algorithm is adapted from [13], which is
based on an inclusion–exclusion formulation. Algorithm 7 consumes a pair of undi-
rected graphs, namely, G1 and G2, and a sequence of edges. For each such edge
(u, v) ∈ edges, Algorithm 7 computes the cardinality of the intersection of the
ad jacency(u) inG1 and ad jacency(v) inG2 in a warp-cooperative fashion. For each
edge, its pair of end-points u, v are initialized at lines 10–11. An edge is processed
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by a warp, one at a time. After electing the thread whose edge needs processing using
the warpdequeue function of Meerkat (line 14), the end-points are broadcasted
to the warp threads using warpbroadcast function of Meerkat (see lines 15–16). A
pair of SlabIterators are constructed (lines 17–18) to iterate over the neighbours
of vertex v in G2. For each such adjacent vertex ad j_v (line 20), we check if the edge
u → ad j_v exists. Such an edge indicates the presence of the triangle comprising
of vertices 〈u, ad j_v, v〉, and the thread-local count is incremented by one (see line
23). It must be remembered that each thread in the warp sees a different ad j_v; hence
lines 21–23 detects different triangles, at the same time. The thread-local triangle
counts are finally accumulated at warp level using warpreduxsum API of Meerkat
(see line 28) and then updated to the global variable TotalCount (see line 30).

It must be noted that when G1 = G2 = G and edges is the full set of edges in G,
Algorithm 7 degenerates to the static triangle counting case. Edge insertions create
three types of new triangles: 1) T i

1 , triangles with two old edges and one new edge.
2) T i

2 , triangles with one old edge and two new edges 3) T i
3 , triangles with three new

edges. The undirected nature of the graph also implies that the triangles are computed
multiple times. For example, in the static triangle counting case, each vertex of a
triangle contributes twice to the triangle count. Hence, the measured count is six times
that of the actual count.

Algorithm 8: Triangle Counting - Incremental
1 function TC_Incremental (Graph PostInsertionGraph, Graph UpdateGraph, Vertex
Src[vertex_n], Vertex Dst[vertex_n], unsigned int edge_n) {

2 unsigned int Si1 = 0, Si2 = 0, Si3 = 0

3 Count(PostInsertionGraph, PostInsertionGraph, Src, Dst, edge_n, Si1)

4 Count(PostInsertionGraph, UpdateGraph, Src, Dst, edge_n, Si2)

5 Count(UpdateGraph, UpdateGraph, Src, Dst, edge_n, Si3)

6 return 0.5 × (Si1 - Si2 + Si3 / 3)
7 }

We first find the number of new triangles formed through the intersection of at least
one edge. The intersection of the adjacencies of the end-points of the new edges in
the post-insertion graph obtains this count Si1. As such, owing to the undirected nature
of the post-insertion graph, computing such an intersection results in a new triangle
of type T i

1 being detected twice; a new triangle of type T i
2 is detected four times, and

that of type T i
3 is detected six times. Thus, Si1 = 2 · T i

1 + 4 · T i
2 + 6 · T i

3 . This count is
obtained in line 3 of Algorithm 8. Next, we detect triangles formed by at least two new
edges. Let us call this count Si2. This is possible if there exists a pair of edges 〈p, u〉
and 〈p, v〉 that share a common end-point p. Intuitively, at most one old edge pre-
existed in the pre-insertion graph, and at least two new edges were added to a common
end-point (case 1); or three new edges were added to the pre-insertion graph, (case 2).
For each edge 〈u, v〉 compute the cardinality of the intersections of the adjacencies of
u in the post-insertion graph and the adjacencies of v in the update-graph. In case 1,
a triangle with two new edges is counted twice. In case 2, a triangle with three new
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edges is counted six times. Thus Si2 = 2 · T i
2 + 6 · T i

3 . This count is computed in line 4
(in Algorithm 8). Likewise, Intersecting all the edges in the update-graph finds us
triangles with only three new edges giving us Si3 = 6 · T i

3 (See line 5 in Algorithm 8).

Thus, in the insertion case, we have
∣∣T i

1

∣∣ + ∣∣T i
2

∣∣ + ∣∣T i
3

∣∣ = Si1
2 − Si2

2 + Si3
6 .

Algorithm 9: Triangle Counting - Decremental
1 function TC_Decremental (Graph PostDeletionGraph, Graph UpdateGraph, Vertex
Src[vertex_n], Vertex Dst[vertex_n], unsigned int edge_n) {

2 unsigned int Sd1 = 0, Sd2 = 0, Sd3 = 0

3 Count(PostDeletionGraph, PostDeletionGraph, Src, Dst, edge_n, Sd1 )

4 Count(PostDeletionGraph, UpdateGraph,Src, Dst, edge_n, Sd2 )

5 Count(UpdateGraph, UpdateGraph, Src, Dst, edge_n, Sd3 )

6 return 0.5 × (Sd1 + Sd2 + Sd3 / 3)
7 }

Likewise, Algorithm 9 describes the pseudo-code for computing the number of
triangles removed after deleting a batch of edges. The number of deleted triangles is

given by
∣∣T d

1

∣∣ + ∣∣T d
2

∣∣ + ∣∣T d
3

∣∣ = Sd1
2 + Sd2

2 + Sd3
6 .

5.4 IncrementalWCC

AWeakly Connected Component (WCC) of an undirected graph is a subgraph where
all the vertices in the subgraph are reachable from all other vertices in the subgraph.
An efficient way to compute the set of all WCCs in a graph object is by using the
Union-Find data structure. A root-based union-find tree, followed by full path
compression can be used efficiently for computing the labels for the vertices, which
are representatives of their WCCs, in both the static and the incremental computation.

Incremental WCC: find the WCCs, for inserting batches of updates, iteratively.
After inserting a batch of edges, we identify the source vertices for which outgoing
edges are inserted. These are added to an array to_union. This is followed by a
union operation on these source vertices and their newly inserted adjacent edges. Full
path-compression of the union-find tree is applied to finalize the labels which are
representatives of the weakly connected components for each vertex.

The incrementalWCCkernel implemented in Meerkat uses a union-find auxiliary
data structure. It largely follows IterationScheme1 using UpdateIterator.
Since an UpdateIterator iterates also over the partially updated slabs, it is imper-
ative that we ignore those parts of the slab which are populated by the previous
incremental updates, for performance. The decremental WCC on GPU is an unsolved
problem.
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Table 5 Properties of input graphs. (M=106, K = 103)

Graph #Nodes #Edges Average
degree

Max
degree

Max
diameter

Memory alloca-
tion within
SlabHash
object

Meerkat object

Higgs [14] 45.6K 14.9M 32 1259 9 405M 271M

LJournal [15] 4.85M 69M 14 20293 16 2617M 993M

Pokec [16] 1.63M 30.6M 18 8763 11 983M 467M

Rand10M 10M 80M 8 27 11 5035M 1373M

BerkStan [17] 685K 7.6M 11 249 573 491M 253M

Wiki-talk [18] 2.4M 5M 2 100022 9 1345M 471M

Wikipedia 3.4M 93.4M 27 5333 262 2063M 1017M

Orkut [19] 3.1M 234.4M 76 33313 9 2421M 1725M

USAfull [20] 23.9M 58.3M 2 9 6261 OOM 6175M

6 Experimental Evaluation

We evaluate our implementation for five graph algorithms: Incremental Weakly Con-
nected Components (WCC), dynamic Breadth First Search (BFS), dynamic Single
Source Shortest Path (SSSP), dynamic Triangle Counting (TC), and dynamic PageR-
ank (PR). The experimental evaluation was performed on the NVidia RTX 2080 Ti
GPU. The GPU is equipped with 11GB of global memory with a memory bandwidth
of 616GB/s, and 4352 CUDA Cores (68 SMs and 64 cores/SM). All the implemen-
tations were compiled with -O3 and –use_fast_math flags on the nvcc version
11.7 compiler.

We compared the performance of static versions of the above algorithms on
Meerkat, against publicly available dynamic graph data-structures on GPUs: Hor-
net, GPMA, and faimGraph. The graph inputs used for the experimental evaluation
are presented in Table 5.

6.1 Performance of Insert, Query, and Delete Operation

The warp-cooperative work-sharing execution strategy (WCWS) is adopted by
Meerkat for insert, delete, and query operations. Data is exchanged among threads
using warp cooperative functions such as ballot_sync, ffs, etc. which are fast, as
they work only with registers. In WCWS, multiple threads within a warp thread have
different tasks (vertices/edges) assigned to them. The warp threads form a queue for
processing these tasks (using ballot_sync); a task to be processed is collectively
elected by the warp (using ffs). Each slab occupies 128 bytes, which closely
matches the GPU’s L1 cache line size. All warp threads perform coalesced vectorized
memory accesses on a slab storing a vertex’s adjacent neighbours. We chose a load
factor of 0.65 for performing the insert, delete, and query benchmarks on Meerkat.
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The load factor and outdegree of a vertex decides the number of slablists allocated for
every vertex, based on its initial degree.

Our incremental batches of edges (in the insert operation) are generated randomly
and the edges in a batch are not already present in the graph object. The decremental
batch of edges is generated by randomly choosing edges of the benchmark graph. For
the query benchmark, edges are simply generated in random, without the previously
mentioned restrictions.

For an insert 〈u, v〉 operation, Meerkat applies a hashing function on the destina-
tion vertex v in order to determine which slab-list of vertex u should be used to store
v. By distributing the destination vertices among multiple slab lists, hashing implic-
itly reduces the number of slabs retrieved for checking the existence of a previously
inserted edge 〈u, v〉 to avoid duplicate insertion of edges. New edges are recorded
at the end of the chosen slab list, only if the edge was not previously inserted. This
requires a traversal till the end of the slab list. If the last slab of the slab list is full,
Meerkat obtains a new slab from the pool of pre-allocated slabs, by invoking the
slab allocator. The new slab is linked to the end of the slab list, and the new edge is
recorded in it.

We experimentedwith different batch sizes for insertion. Figure4 compares the rela-
tive performance of Meerkat, against Gpma,Hornet, and faimGraph, in inserting
a batch of 100K edges across various benchmark graphs. Across insertion batch sizes
of 10K…100K edges, Meerkat on an average performs 8.39×–12.29× better than
Gpma, 10.32×–15.66× better than Hornet, and 3.02×–4.51× better than faim-

Graph. Figure5 compares the relative performance of Meerkat, against Gpma,
Hornet, and faimGraph, in deleting a batch of 100K edges across various bench-
mark graphs. Across deletion batch sizes of 10K…100K edges, Meerkat on an
average performs 2.69×–4.05× better than Gpma, 17.41×–29.37× better than Hor-
net, and 2.75×–4.34× better than faimGraph. Figure6 compares the performance
of a query benchmark for a batch of 220 edges. On an average, across query batches
of 216 to 220, Meerkat performs 5.25×–12.29× better than Gpma, 1.72×–3.93×
better than Hornet, and 2.77×–8.81× better than faimGraph.

In Gpma, each thread in the insertion algorithm is assigned an edge. Each thread
identifies an empty location within the leaf segment to insert the edge. The deletion
algorithm proceeds to check for the existence of the edge in the leaf segment and
invalidates the entry. For insertion, the edge updates are sorted, and theGPU threads are
responsible for identifying leaf segments with empty slots. Both insertion and deletion
algorithms check for the violation of density thresholds for the leaf segment, and the
violations are rectified by rebalancing the segments bottom-up. The rebalancing of the
segments is performed at the warp-level, block-level, or device-level depending on the
size of the segment until the density thresholds are satisfied at all the levels from the
affected leaf segments. This rebalancing of leaf nodes leads to overhead in running
time for GPMA.

Hornet migrates the adjacent neighbours of a vertex to a larger edge block if the
current block cannot accommodate incoming edges. In the case of deletion, if the
number of adjacent edges is smaller than a threshold, the edges are migrated to a
smaller block. This migration of blocks adds overhead to the running time inHornet.
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220

In faimGraph, the adjacencies of a vertex are stored in fixed-sized pages. The
insertion of an edge is assigned to one worker thread. Each worker thread locks (with
a spin-lock) the source vertex before performing the insertion. The adjacencies are
inspected for previously inserted duplicate edges, by linear traversal. If no duplication
is found, faimGraph performs an insertion at the first available location in the last
page. If existing pages cannot accommodate the edge to be inserted, a new page is
allocated and linked to the last page. The spin-lock is released only after a successful
insertion, or if a duplicate edge is found. In faimGraph, once the edges are marked
deleted, the last edges from the adjacency list are copied to fill up for the deleted edges.
This is followed by sorting of adjacencies and edge compaction.

In Meerkat, the hashing function seeks to evenly distribute the adjacencies among
the multiple slab lists, and the rebalancing is not necessary. The insertion operation
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requires adding new slabs once a slab list becomes full. The deletion benchmark
shows better performance, as the deletion operation simply flips a valid entry to
TOMBSTONE_KEY. Unlike the insertion operation, the adjacent neighbour to be
deleted could occur anywhere within a slab list. The traversal of the slab list halts
once the adjacent edge to be deleted is found.

Compared to Hornet, performance improvement in Meerkat is due to better
coalesced access, and lack of memory block migration in Meerkat. In Meerkat,
each thread in a warp processes slabs holding neighbours of the same vertex, resulting
in better load balance and coalesced memory access. Unlike, faimGraph, Meerkat
uses atomics for performing fast insertions in free locations in the slab. The sorting
of adjacencies in faimGraph acts as an overhead compared to Meerkat. Sorting of
adjacency is not meaningful for a hashing-based graph representation of Meerkat
with multiple slab lists for a vertex.

6.2 BFS and SSSP

TheBFS andSSSP computations are programmed in Meerkat using two approaches.
The vanillaBFS/SSSP algorithms use 32-bit atomics and their corresponding tree-
based implementations use 64-bit atomics.

The vanilla implementation computes only the shortest distances for reachable
vertices from the source vertex, and is thus suitable for static situations. The tree

variant, however, also computes thedependency tree, trackinghow thesedistances have
been computed, i.e., the shortest paths. This dependency maintenance is necessary for
the correct working of our incremental and decremental SSSP and BFS computations.

The Vanilla BFS and SSSP algorithms on Meerkat are implemented in two
approaches: a naïve approach named baseline, and an improved implementation
named cg- sm. The BFS- baseline uses level-based traversal of the graph, while
SSSP- baseline uses an edge-frontier based approach. Both the baseline algorithms
update the global memory frontier immediately upon visiting the neighbouring edges
of the current frontier. The static/dynamic BFS and SSSP algorithms are programmed
in cg- sm.

Populating the frontier for the next iteration i+1 requires traversal over the outgoing
edges of the destination vertices of the edges in the current iteration i . It is prudent to
disable hashing for the BFS and SSSP benchmarking since it forces the maintenance
of a single slab list for every vertex. The number of slab lists allocated a priori for a
vertex is proportional to its degree and varies inversely with the chosen load factor.
Increasing the load factor has a direct consequence in improving the slab occupancy,
especially in graphs having a high average out-degree (such as Orkut, Higgs, and
Wikipedia), and in reducing the total number of allocated slabs to store the initial
graph.

Figure 7 shows how the performance of BFS- baseline is influenced by various
chosen load factors for Orkut (avg. degree 76, 2.38× slab size), Wikipedia (avg.
degree 27, 0.87× slab size), LJournal (avg. degree 14, 0.44× slab size), and USA-
full (avg. degree 2). We observe 24.76% improvement in the running time across
the load factors, for Orkut, Wikipedia, and LJournal. USAfull which has a very low
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Fig. 7 Load factor vs Static BFS performance

average out-degree, can accommodate the neighbours of most of its vertices with a
single slab (in a single slab list). Hence, it exhibits a meagre 5.68% improvement in
performance. On disabling hashing on an unweighted graph representation, the aver-
age slab occupancy improves by 24% for Orkut, 14.35% for Higgs, 8% for Pokec,
and 5% for LJournal, with 6.26% improvement across all our benchmark graphs,
relative to the graph representation with a load factor of 0.7. Disabling hashing for
the BFS- baseline processing produces an average of 10.78% improvement (up to
28.1%) in performance. Similarly, we observe an average of 9.1% improvement (up
to 23.28%) in performance for the tree- based variant. Similarly, disabling hashing
for the SSSP- baseline benchmark produces an average of 9.9% improvement (upto
35%) in performance. The tree- based variant shows a similar average improvement
of 11% (upto 28.95%).

The cg- sm variants improve upon the baseline variants by making effective use
of cooperative groups and shared memory.

• Use of Cooperative Groups: We use cooperative groups for implementing our
BFS/SSSP kernels. The number of blocks in the grid is equal to the number of
streaming multiprocessors (SMs) on the GPU. The number of threads per block is
equal to the number of Streaming Processors (SPs) in an SM.
Every thread block remains resident on the SM throughout the lifetime of the ker-
nel, and a grid-stride loop is used for accessing the elements of the frontier for each
iteration. The shared memory for each thread block is equally divided among the
warps. Hence, each warp is assigned its own private region of shared memory. The
use of cooperative groups provides for grid-wide synchronizationwithin the kernel,
thus avoiding the need for explicitly invoking cudaDeviceSynchronize()
from the host CPU. It is observed that for low-diameter graphs (such as Orkut,
LJournal, Pokec, and Wiki-talk), the use of cooperative groups incurs an addi-
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Fig. 8 Shared memory allocation size vs Static BFS performance

tional overhead of ≈8.67%. However, large diameter graphs have proportionately
higher kernel barrier synchronizations and produce an improvement of ≈11.76%
on average (9% for USAfull, 8.36% for Wikipedia, and upto 36.36% for Berk-
Stan). The use of cooperative groups prohibits a thread block size from exceeding
the maximum number of resident threads on an SM, for the correct application of
grid-wide synchronization.

• Privatization of frontier: It must be recalled that a slab in the unweighted rep-
resentation can hold up to 31 adjacent vertices, and up to 15 pairs of adjacent
vertices and their respective edge weights. Further, the slab occupancy is much
lower in low-outdegree graphs such as road networks. Since the out-neighbours
and the respective edge weights are enqueued into the SSSP frontier, low slab
occupancy leads to poor utilization of global memory bandwidth. In the baseline
approach, one atomic operation per slab is required to shift the frontier index stored
in the global memory. To alleviate this problem, we privatize the frontier into a
shared memory partition that is exclusive to a warp. A warp-exclusive partition
removes the need for block-level synchronization to overcome hazards. Each warp
enqueues the frontier edges into its shared memory partition, and flushes them into
the global memory frontier on exhaustion. Every flush operation requires only a
single atomic operation to advance the frontier limit. The writes from the shared
memory partition to the global memory frontier are performed as a sequence of
coalesced writes with the help of a warp-stride loop utilizing full memory band-
width. Further, a private partition ensures that warps can independently be either
in the frontier traversal or private shared-memory partition flushing mode.

Our Cuda compute 7.5 capable GPU allows for carving out a maximum of 64KB
shared memory out of the unified shared memory-L1 cache for each thread block.
However, as shown in Fig. 8, we have discovered that an allocation of 32KB of shared
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Fig. 9 Static BFS—Speedup of Meerkat over Gpma, Hornet, faimGraph

memory delivers optimal performance for most of our benchmark graphs. Since the
operation offlushing awarp-private frontier cache into the globalmemory is amemory-
intensive operation, awarp performing a globalmemorywrite is scheduled out until the
write completes. A large private sharedmemory impacts the performance negatively, if
severalwarps becomememory-bound in flushing their private sharedmemory frontiers
into the globalmemory, at the same time. A similar situation also bodes for small warp-
private frontier cache sizes. On an average, BFS- cg- sm is 1.39× (upto 1.83×) faster
than BFS- baseline. Similarly, SSSP- cg- sm performs 1.17× (upto 1.33×) better
than SSSP- baseline, with 32kB shared memory allocated per thread block.

6.2.1 Static BFS and SSSP

Figure 9 compares the performance of publicly available implementations of
the static BFS algorithm in Hornet, GPMA, and faimGraph, with Meerkat’s
BFS- cg- sm variant.Hornet’sBFS algorithm implementation uses an iterative level-
based approach using a pair of vertex frontiers: one for the traversal of the current
level, and the other for holding the unvisited vertices of the subsequent level. A
similar approach is also adopted by the faimGraph’s naïve implementation. The
faimGraph framework also provides three other variants (namely BFS- Dynamic-

Parallelism, BFS- Classification, and BFS- Preprocessing) that improve over
the naïve implementation. These implementations make use of Cuda’s dynamic par-
allelism for enabling level-based traversal of graph edges from the source vertex.
BFS- Classification maintains separate degree-specific frontier queues for small-
degree, medium-degree, and large-degree vertices; the enqueuing of unvisited vertices
is performed into only a single raw queue. The vertices from this raw frontier queue
are classified into the degree-specific frontier queues. The traversal in the subsequent
iteration is performed individually on these degree-specific queues. Since every thread
is assigned a unique vertex for the traversal of its neighbours, the classification of
vertices into degree-specific frontier queues seeks to reduce warp divergence during
frontier enqueue operation and efficient dynamic parallelism within the kernel. The
BFS- Preprocessing is similar, except that it eliminates this Raw frontier queue,
and maintains separate degree-specific pairs of frontiers for enqueueing and traver-
sal.Meerkat’s BFS- cg- sm implementation on an average performs 1.48×, 1.24×,
and 1.68× better than faimGraph, GPMA, and Hornet respectively. Gpma goes
out-of-memory (OOM) for two large graphs, namely Wikipedia and Orkut, on our
11GB Gpu. Gpma stores every edge as a 64- bit key-value pair within one of the
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Fig. 10 Static SSSP—Speedup of Meerkat over Hornet

memory segments in the PMA array. Furthermore, Gpma over-subscribes memory
allocation for its Pma arrays in the Gpu’s global memory (beyond the CSR graph
storage requirements), for maintaining the occupancy threshold invariants for each of
its memory segments.

Static SSSP of Hornet, and Meerkat’s SSSP- cg- sm are compared in Fig. 10.
Both versions follow an iterative processing using a pair of frontiers. The public source
code for Gpma and faimGraph are not available, and are hence, missing from this
comparision.

Meerkat’s SSSP- baseline is on average, 1.32× (up to 1.85×) faster than Hor-
net’s implementation. Likewise, Meerkat’s SSSP- cg- sm outperforms Hornet’s
SSSP implementation by 1.62× (upto 2.11×).

The privatization of the frontier queue inMeerkat always ensures coalescedwrites
into the global memory queue. Hornet, GPMA, and faimGraph, in contrast, write
directly to their global memory frontier. To obtain the frontier queue’s offset,Hornet
and faimGraph perform an exclusive scan on the number of unvisited adjacent ver-
tices for each thread in the block; each thread within the block obtains a unique local
offset within the global frontier to write its share of frontier vertices. Only one atomic
operation per thread block is necessary to shift the frontier’s end-pointer. These oper-
ations require block-wide synchronization with the help of __syncthreads().
Further, the offset obtained by each thread does not permit warps within the thread
block to perform coalesced writes into the global memory frontiers. In contrast, in
Meerkat, a shared memory partition is exclusive only to a warp of threads. This
avoids the need for block-wide synchronization while a warp flushes its exclusive
shared memory partition into the global memory frontier.

For traversal of neighbours, Hornet divides the edges to process equally among
thread blocks, and further, equally among the threads within a thread block. Warp
divergence is avoided significantly, and load balance within the warp is achieved as
the threads have approximately an equal number of edges to process. Each thread, in
fact, stores offsets to the edges to be processed, and not the edges themselves. Since the
edges are divided into sequential chunks among threads, it results in divergent mem-
ory access among warp threads. Further, extra memory access is required to translate
offsets to actual edge data. For faimGraph’s BFS traversal of neighbours, each thread
is assigned a unique vertex from the frontier queue. Though traversal of neighbours is
achieved with faimGraph’s iterator abstractions, their flexibility to iterate over neigh-
bours of different vertices within a warp leads to uncoalesced reads from the frontier
queue. Although the average slab occupancy in Meerkat is about 36.61% across
all our benchmark graphs, our iterators always perform coalesced memory accesses
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to retrieve adjacent vertices using the warp-cooperative work strategy. Meerkat’s
iterator abstraction enforces that a warp of threads always refers to a unique slab, for
a specific vertex.

6.2.2 Dynamic BFS and SSSP

Incremental/Decremental BFS and SSSP algorithm implementations are missing
from the publicly available source-codes for Hornet,Gpma, and faimGraph. More-
over, we have demonstrated that our Meerkat’s static BFS and SSSP algorithms
perform better than those publicly available with Hornet, Gpma, and faimGraph.
Hence, we compare the performance of our incremental/decremental BFS and SSSP
algorithms against their static counterparts in Meerkat itself.

The tree- based BFS and SSSP computations in Meerkat, in contrast to the
vanilla implementations initialize tree-nodes (a 64-bit sized 〈distanceSRC,parent〉
ordered pair with distance stored in most significant 32 bits) and updates the pair
using 64-bit atomics. This is necessary for setting up the initial data structures for
incremental and decremental variants of our BFS and SSSP implementations on
Meerkat. The tree- based BFS- cg- sm has an average overhead of 35.27% over
its vanilla counter-part, as seen in the execution time. A similar overhead of ≈18%
was seen with the case of tree- based SSSP- cg- sm. Figure11a shows the speedup
of incremental/decremental BFS over static BFS in Meerkat. The speedup for incre-
mental/decremental SSSP over static SSSP in Meerkat, is shown in Fig. 11b. The
batch size ranges from 10K to 100K . The incremental BFS and SSSP are bound to be
faster than the decremental algorithm. The incremental BFS and SSSP are performed
by choosing the input batch of edges as the initial frontier and iterative application of
the static algorithm to recompute the tree. The decremental variant involves inval-
idation of the affected vertices in the tree, the propagation of invalidation up the
tree, computation of the initial frontier from unaffected vertices and re-computation
of the tree invariant by iterative application of the static algorithm.While the speedup
decreases empirically for the increase in the batch sizes, anamolies are exhibited for
certain batch sizes (for example, in BerkStan, batches of 40K edges show lower aver-
age speedup than the batches of 60K edges). The speedups show a dependence on
the batch size and the edges of the batch themselves. It must be recalled that, for our
experimental evaluation, the batch edges are randomly chosen from a uniform dis-
tribution. Certain incremental batches induce the reachability of more vertices which
were previously unreachable. This increases the size of our spanning Tree compris-
ing of vertices reachable from the source, and consequently, the BFS/SSSP distance.
This is particularly observed in BerkStan for incremental SSSP (as shown in Fig. 11b).
With exception to USAfull and BerkStan, the execution times of repeated application
of the static algorithm were on an average 7.3% and 5.6% lower than static running
time on the original graph, for incremental BFS and incremental SSSP respectively.
For USAfull and BerkStan, this difference was close to 80% and 71% respectively. In
the case of incremental BFS on USAfull, we observed that there was 11.53× decrease
in the average distance of vertices reachable from the source vertex, after the addition
of first 10K, and nearly 2× decrease from the first to the tenth batch. USAfull has a
single large connected component, and hence no significant increase in the number of
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Fig. 11 Incremental/Decremental BFS and SSSP
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reachable vertices was observed. In the case of BerkStan, while the average distance of
reachable vertices decreased from 11.7 to 8.58 for our sequence of ten incremental
batches of 10K, we observed that the number of reachable vertices increased from
≈460K to≈591K . Due to this graph topology, the speedup for incremental BFS/SSSP
was much lower for the USAfull and the BerkStan graphs compared to other graphs.
We have not seen any significant increase in the number of reachable vertices or a
decrease in the average distance of reachable vertices for other benchmark graphs.

Like the case of incremental BFS and SSSP, the decremental counterparts also show
dependence on the nature of batch edges, while showing lower speedups empirically
with increasing batch sizes. A batch of a certain size is likely to show a lower speedup if
it contains a tree edge, with one endpoint close to the source, and the other end-point
being the root of a large sub-tree (several vertices can trace their distance computation
through this intermediate vertex). If the vertices in this invalidated sub-tree are still
reachable, re-computation of their invalidated distances from the source vertex leads
to a lower speedup. In the case of decremental BFS and SSSP, the number of edges in
the dependence tree that have been invalidated depends on the average in-degree of the
vertex.We observed that for low average in-degree graphs, the likelihood of tree edges
being invalidated was higher than those of high in-degree graphs. For example, in the
case of decremental BFS for a sequence of ten 10K batches, for USAfull (with an
average in-degree 2), an average of 38.97% of the decremental batch were tree edges,
while it was 0.769% of the decremental batch for Orkut (with an average in-degree
76). It must be understood that the depth of the dependence tree is the BFS distance.
Smaller tree depth (BFS distance) and large average degree favour only fewer vertices
to be invalidated. In our observation of decremental BFS for 10K batches, we saw an
average of 0.23K vertices for Orkut, 0.4K for Wikipedia, 1K for LJournal, 3.94K
for BerkStan, 6K vertices for Rand10M, whose distances were invalidated in the
Tree, while it was an average of 9.54M vertices for USAfull, after each batch. This
explains why USAfull performs poorly with our decremental BFS/SSSP algorithm.
In the case of BerkStan, we have observed a decrease in the average distance of
vertices reachable from the source vertex, for successive decremental batches, while
other graphs have shown a marginally increasing trend in the average distance for
successive decremental batches. This is because BerkStan has several critical edges:
the presence of critical edges in the decremental batches produces new components
whose vertices are unreachable from the source vertex. In other graphs, the vertices
continued to remain reachable from the source, but with alternativew longer shortest
paths. The number of reachable vertices for BerkStan reduced by ≈2% after ten
batches; Rand10M and Orkut did not show any decrease as the single large graph
component continued to remain connected; the decrease was on an average 0.047%
(upto 0.18% for USAfull) for other graphs.

6.3 PageRank

For our experimental evaluation of PageRank, we have set the damping factor to be
0.85, the error computationwith L1- Norm as the convergence strategy, and the error
margin to be 0.00001. The computation of PageRank (See Algorithm 5) involves
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the traversal of neighbours of each vertex, along their incoming edges. Hashing was
disabled in the PageRank implementation as done in SSSP and BFS to improve
performance.

Disabling hashing improves the slab occupancy, especially in graphs with a higher
average in-degrees. For low average in-degree graphs such as USAfull, Rand10M, and
Wiki-talk, there is no performance improvement observed, as disabling hashing has
virtually no effect: most vertices owing to their low in-degree have single slab lists.
However, for large average in-degree graphs such as Orkut, and Wikipedia, disabling
hashing produces a speedup of about 1.36−1.62× in the static PageRank running
time.

6.3.1 Static Pagerank

Figure 12 compares the performance of static PageRank on Meerkat, with that
of Hornet and GPMA. It is observed that in seven out of nine graphs(that is, except
Rand10M,Higgs),Meerkat performs 1.18−2.93× (with an average of 1.89×) faster
thanHornet. The PageRank implementation on both Meerkat,Gpma, andHornet
are traversal-based algorithms. Each iteration applies the computation of PageRank
on all vertices. We were unable to compare Gpma’s PageRank implementation for
Orkut and Wikipedia due to out-of-memory (OOM) errors. Gpma pre-allocates
larger arrays to leave empty slots to accomodate new neighbours for a vertex, and
to satisfy its internal thresholds for maintaining tree-balancing. Gpma’s array allo-
cation for Orkut and Wikipedia exceeded the available global memory on our GPU.
Meerkat performed on an average, 8.16× (upto 22.73× forWiki- talk) better than
Gpma’s implementation for other graphs.

For our comparison, convergence in all the benchmark implementations is achieved
when the L1- Norm between PageRank vectors PRi and PRi−1 for iterations i and
i − 1 respectively is less than the error margin. The performance improvement in
Meerkat can be attributed to our efficient iterators performing coalesced accesses
in retrieving adjacent vertices. While Hornet attempts to avoid warp-divergence, its
traversal mechanism does not perform coalesced accesses.

Gpma attempts to perform a clever load-balancing for the traversal of neighbours
based on the average degree of vertices. The threads within a block are grouped by the
smallest multiple of two greater than the average degree, or the warp size, whichever
is smaller. Each such group of threads t is assigned a particular vertex v in a grid-stride
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Fig. 12 Static PageRank—Speedup of Meerkat over Gpma, Hornet
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Fig. 13 PageRank Incremental/Decremental—Speedup over Static PageRank in Meerkat

loop. Such a thread-group t is responsible for the traversal of neighbours of v: each
thread in the thread-group t accesses a unique neighbour of v. Full coalesced access
may be possible if the size of t is equal to the warp size. The memory accesses become
increasingly diverged within a warp if the average degree of vertices becomes smaller.
In the case of Higgs, the ratio of the number of edges to the number of vertices is equal
to the warp size, and a full warp is used for the traversal of the adjacencies of every
vertex, and approximates the warp-cooperative work execution strategy in Meerkat.
Hence, Meerkat has a small speedup over Gpma for this graph. For Wikipedia,
only four threads are assigned for every vertex. This graph has few vertices with a
large out-degree, even though its average degree is small. Hence, Gpma incurs a huge
execution time. In graphs such as LJournal, Pokec, and Rand10M, a warp becomes
memory-bound, before it performs a PageRank for a relatively short duration. Firstly,
each thread group t within a warp issues its memory requests at the same time to fetch
the neighbours of their respective vertices. Secondly, it must be remembered that the
ratio of the PageRank of an incoming neighbour to its out-degree is invariant for an
iteration. While Meerkat and Hornet pre-compute and cache this ratio for every
vertex for every iteration,Gpma’s implementation does not. Since every thread within
a warp could potentially have a different in-neighbour, every thread performs two
uncoalesced memory accesses for the computation of this ratio.
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6.3.2 Dynamic PageRank

The incremental and decremental algorithms are identical: the same static PageR-
ank algorithm is applied on the entire graph after performing insertion/deletion of
edges, respectively. The Fig. 13 speedup for incremental/decremental PageRank over
static PageRank computation for batch sizes, ranging from 10K to 100K. We make
two important observations in our evaluation. Firstly, the number of vertices, whose
PageRank values are invalidated, increases with the batch size.

Hence, we observe an decreasing trend in the speedup as the batches increase
in size. We have also observed that decreasing trend in the speedup is due to the
increase in number of iterations to reach convergence, with growing batch sizes. In
Fig. 13, Orkut, USAfull, and BerkStan have consistently shown a decreasing trend
in the speedup for incremental and decremental batches, as number of iterations to
achieve convergence increases with increasing batch sizes. For Rand10M, we observe
that some flattening of the speedup curve. This is because of the number of iterations
to achieve convergence remaining stable with increasing batch sizes. For an example
sequence of ten10K incremental (decremental) batches of random edges, we observed
that Orkut achieved convergence with ≈ 20% (≈ 13%) of iterations required for the
static variant. Whereas, the Rand10M converged in ≈ 64% of iterations required for
the static variant, for both incremental and decremental algorithms, registering the
slowest speedup. It must be recalled that Rand10M has a low average out-degree
compared to Orkut. According to equation 1, for a batch edge u → v, the change in
vertex u’s PageRank contribution to vertex v is higher with Rand10M than Orkut,
leading to more iterations to achieve convergence, and hence a lower speedup.

Secondly, since all vertices of a graph participate in the computation of incremental
and decremental PageRank, the per iteration running time also depend on the number
of vertices. Hence, the average per iteration running time per iteration is higher for
graphs with a large number of vertices, such as USAfull and Rand10M.

Since, awarp performs the PageRank computation of one vertex at a time, eachwarp
fetches an average of two neighbours for the PageRank computation, in an iteration.
USAfull has the highest number of vertices and a low average degree. This combined
effect make USAfull show the highest running time per iteration among all graphs. A
similar effect is also shown with Rand10M. Owing to their small diameters, Orkut,
LJournal, and Pokec converge with fewer iterations compared to static PageRank.

6.4 Triangle Counting

Hornet and faimgraph provides implementation of static triangle counting. The
implementation of triangle counting in Hornet and faimgraph pre-processes the
input batch, sorting the edges so that adjacent neighbours of every vertex can be
accessed in ascending order before running the triangle counting algorithm.

This ordering of edges is beneficial for performing intersections of the adjacencies
of the endpoints of an edge. In a dynamic setting, such an algorithmwill require sorting
of adjacencies, and re-construction of the graph object, before each triangle-count
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recomputation. Hence, algorithm with sorted adjacencies will not scale in dynamic
triangle counting.

6.4.1 Static Triangle Counting

We compare two different implementations of the static triangle counting algorithm
on Meerkat:

TC- Query: This naive approach iterates over every edge (u, v): for every edge
(u, w), it checks the existence of the edge (v,w) using the SearchEdge() for com-
puting the intersection of adjacencies of vertices u and v.

Enabling hashing distributes the slabs among multiple slab lists; only the slab list
that could potentially accommodate the search vertex can be inspected. This reduces
the number of slabs to inspect while performing SearchEdge() operation during the
intersection operation.

TC- Sorted: In this method, the adjacencies of the input graph are first sorted.
Hashing is disabled and only one slab list is allocated for every vertex to store its adja-
cencies in sorted order. Each warp thread is assigned one edge at a time. Consequently,
each thread holds a pair of iterators for each end-point of the assigned edge, for the
traversal of their respective adjacencies, during the intersection operation.

Initially, the shared memory allocation for each warp thread is initialized with the
head (first) slabs of the slab lists for both end-points of the edge, in a warp-cooperative
fashion. The intersection of the adjacencies by a warp thread is performed by a linear
scan of both slabs fetched into the sharedmemory. If one of the slabs for all threads has
been exhausted by linear scan, the successor slabs are fetched using warp-cooperative
work execution.

For five out of nine graphs (Orkut, LJournal, Pokec, Rand10M, Wiki-talk), we see
an average speedup of 2.78× (upto 6.58×) for TC- Sorted over TC- Query. In TC-
Query, the SearchEdge() executes in a warp-cooperative fashion: a work queue
maintains a list of outstanding threads whose edges are left to be queried.

The presence of hashingmitigates the number of slabs inspected, but cannot enforce
sorted property among adjacent vertices. However, in TC- Query, all the warp threads
perform independent intersection operations on their respective pairs of slab lists,
yielding higher throughput. As the USAfull has a very low average degree, both the
SearchEdge() in TC- Query and the linear scan in TC- Sorted will fetch a similar
number of slabs for the intersection operation. USAfull has similar performance with
both TC- Query and TC- Sorted. TC- Query performs 5.33× and 3.57× better
than TC- Sorted, for BerkStan and Wikipedia, respectively. This is a result of a few
vertices having a large degree in these graphs, leading to a fewwarp threads performing
long-tail intersection operations.

Figure 14 compares the performance of the static triangle counting algorithm on
Meerkat against Hornet and faimGraph. It is observed in our experimental eval-
uation that Hornet performs on an average 23.2× (upto 53.06×) faster than that of
Meerkat on our benchmark graphs. Similarly, faimGraph performs on an average
3.38× faster than Meerkat.

In Meerkat, the neighbours of a vertex are stored in fixed-size slabs. While these
neighbours are contiguous within a slab, the slabs themselves are not contiguous with
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Fig. 14 Static Triangle Counting—Slowdown over Hornet, faimGraph

Fig. 15 Triangle Counting incremental/decremental—Speedup over static triangle counting in Meerkat

each other. InHornet, all the neighbours of a vertex are contiguously available within
an edge block, whose size is the smallest power of two greater than the number of
adjacent neighbours.

Meerkat cannot use efficient methods which Hornet can use due to this lack of
ordering of edges. The sorting adjacencies is useful in a static setup, but will lead to
high overhead in the dynamic triangle couting algorithm to maintain the sorted order
of edge adjacencies. Hornet does not have an implementation of dynamic TC.

6.4.2 Dynamic Triangle Counting

Fig. 15 shows the speedup of our incremental/decremental algorithms over the static
algorithms on Meerkat. Across the benchmarks, superlative speedups are observed
since, for each batch, the static algorithm counts the number of triangles by performing
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Fig. 16 Static WCC—Speedup of Meerkat over Gpma, Hornet

an intersection for the adjacencies of both end-points for every graph edge, while the
dynamic algorithm performs intersection only for the end-points of the edges in the
batch. The speedup observed is very large if the batch size is very small compared to the
number of edges in the graph. Hence, large graphs such as Orkut, LJournal, Rand10M,
and Wikipedia enjoy very high speedups compared to the repeated application of the
static algorithm.

6.5 Weakly Connected Component (WCC)

We evaluate the performance of the staticWCC algorithm on Meerkat againstHor-
net and Gpma, followed by the performance of incremental WCC in Meerkat for
various optimizations. faimGraph’s public repository does not provide a complete
implementation for weakly connected components, and is thus, excluded from the
comparison.

Static WCC in Meerkat: The Fig. 16 compares the performance of staticWCC
onMeerkat againstHornet andGpma.Hornetuses amodified-BFS like algorithm
discovering connected components, using a two-level queue. With a two-level queue,
the insert() and dequeue() operations are performed on two separate queues.
In the first step, the discovery of the largest connected component is attempted using
a BFS from the source vertex with the help of a two-level queue. All the reachable
vertices are marked with the same color. Then all unvisited vertices are incrementally
assigned a unique color.

This iterative process continues until all the endpoints of the edges have the same
color. In Meerkat, the static WCC implementation uses the union-find approach for
discovering weakly-connected components. It performs a single traversal through all
the adjacencies of the graph: it uses the Union- Async strategy [21] for the union()
operation for the adjacent edges discovered, and full path compression for determining
the representative elements for the vertices in find() operation. The Gpma’s imple-
mentation also uses the union-find approach: a grid-stride loop scans over the array
of edges: for edge (u, v), it hooks the parent (the representative element) of one of
the end-points (say parent(u)) as a child of the parent of the other end-point (say
parent(v)), if both the end-points do not have identical representative parent vertices.

We observe that while Meerkat performs 6.11× on an average across all our
input graphs, the speedup against Hornet is lower if there are vertices with very large
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Fig. 17 Incr. WCC using UpdateIterator + Single slab list—Speedup over Naive

out-degree. This is observed in graphs such as Orkut, LJournal, and Wikipedia. This
is because a large-out degree vertex will cause many vertices to be enqueued into
the BFS frontier queue, thereby improving parallelism. However, for networks such
as USAfull, BerkStan, with high diameter, the BFS-approach in Hornet performs
significantly worse compared to Meerkat. Meerkat performs 4.09× on an average
across all our input graphs over Gpma(except for Orkut and Wikipedia which could
not fit on our GPU global memory on Gpma).

The parent hooking operation used by Gpma is a simple non-atomic update. The
union-find path-compression kernel is executed in parallel to the parent-hooking ker-
nel. In this implementation a Find(v) operation on a vertex v may not return the
representative element of its weakly connected component. Thus several iterations of
parent-hooking followed by path compression may be required until a fixed point of
Find(v) is reached for every vertex v. Each iteration inevitably involves a linear scan
of all edges in the Gpma graph. This results in high execution time.

Incremental WCC in Meerkat: Incremental WCC of Meerkat is evalu-
ated with two schemes. (i) Naive: traverses through all the slab lists as it is ignorant
about the location of the new updates. Hence, it is expected to be the least performant
implementation. This algorithm is identical to the naive staticWCC algorithm on Slab-
Graph. (ii) UpdateIterator + Single slab list: Evaluates the UpdateIterator approach
in the absence of hashing. Intuitively, this should ensure that a warp operating on an
UpdateIterator would see more updates in single memory access while traversing a
slab list. This method produced good speedup with respect to the Naive variant..

Figure 17 compares the performance of UpdateIterator + Single slab list against
the naive scheme. The running time of naive scheme is proportional to the number of
edges present in the graph representation. The UpdateIterator’s optimized processing
iterates over only the updated slabs (See Sect. 4.3.1). Therefore, the running time is
proportional to the number of slabs holding new updates. The speedup over the naive
scheme is determined by the ratio of total slabs in the graph to the number of slabs
holding the newly inserted edges. The UpdateIterator process only slabs with new
edges while the naive scheme process all the slabs.

The use of UpdateIterator with the vertex flag, and the allowance of multiple slab
lists seems to have lower performance than the use of a single slab list for high-degree
graphs that follow the power-law distribution: Orkut, Wikipedia, and Wiki-talk. In
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Table 6 Related works summary

Related work (1) (2) (3) (4) (5) (6)

(D) STINGER [7] ✓ ✗ Adjacency list of edge-blocks ✗ ✗ ✗

(F) KickStarter [11] ✓ ✗ (n/a) ✗ ✗ ✗

(F) LiveGraph [22] ✓ ✗ Edge-block arrays + persistent storage ✓ ✓ ✗

(D) GraphTinker [23] ✓ ✗ Adjacency list of edge-blocks ✗ ✗ ✗

(F) GraphOne [24] ✓ ✗ Adjacency List + persistent storage ✓ ✓ ✗

(D) Teseo [25] ✓ ✗ Packed-memory Array (PMA) + B+-Tree ✓ ✓ ✗

(D) Sortledon [26] ✓ ✗ Adjacency skiplist of edge-blocks ✓ ✓ ✗

(F) GraphFly [27] ✓ ✗ Dependence-flow tree ✗ ✗ ✗

(F) Terrace [28] ✓ ✗ Edge-block arrays + PMA + B+-Tree ✗ ✗ ✗

(F) Aspen [29] ✓ ✗ Compressed functional tree ✗ ✗ ✗

(F) CommonGraph [30] ✓ ✗ Compressed Sparse Row ✗ ✓ ✗

(D) cuSTINGER [5] ✗ ✓ Adjacency list of edge-blocks ✗ ✗ ✗

(D) Hornet [4] ✗ ✓ Adjacency list of edge-blocks ✗ ✗ ✗

(D) GPMA/GPMA+ [8] ✗ ✓ Packed-memory array ✗ ✗ ✗

(D) LPMA [31] ✗ ✓ Packed-memory array ✗ ✗ ✗

(D) aimGraph [32] ✗ ✓ Edge-block arrays ✗ ✗ ✗

(D) faimGraph [3] ✗ ✓ Adjacency list of edge-blocks ✗ ✗ ✗

(D) SlabGraph [2, 6] ✗ ✓ Hash Tables ✗ ✗ ✓

(F) EGraph [33] ✗ ✓ see [34] ✗ ✓ ✗

(D): Data Structure (F): Framework (1): CPU (2): GPU (3): Data Structure Used for Graph Representation
(4): Transactional Support for Updates (5): Snapshot-based Graph updates (6): Warp Cooperative Work
Sharing

the presence of multiple slab lists, the UpdateIterator must sequentially probe if the
update flag for a slab list is set for every slab list of the source vertex. This overhead
is overcome in the use of a single slab list by subsuming the function of the update
flag of a slab list within that for the source vertex. In high-degree graphs such as
social networks (namely, Orkut, Wikipedia, and Wiki-talk), the UpdateIterator over
a single slab list overcomes previously inserted vertices, with the updates restricted
contiguously to a single slab list, resulting in marginal increase in performance over
multiple slab lists.

7 RelatedWork

In the recent past, multiple works have addressed the challenges dealing with dynamic
graphs on CPUs, GPUs.

DynamicGraphData Structures onCPU: ThePackedMemoryArray (PMA) [35] is
a sequential data structure for dynamic graphs. PMA is maintained as a self-balancing
binary tree [36] in which the memory is divided into multiple leaf segments, and the
non-leaf segments identify the memory occupied by their children segments. Graph-
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Tinker [23] is aCPU-based dynamic graph data structure that overcomesStinger’s [7]
edgequeryperformance (required for insertion/deletionoperations) usingRobin-Hood
and tree-based hashing. GraphTinker uses one of the store-and-static computation
(full-graph processing) and the incremental-computation mode for every iteration in
processing graph algorithms. If the ratio of active vertices to total edges processed
exceeds a threshold, full graph processing is chosen, otherwise incremental com-
putation is performed. Teseo [25] extends the PMA-based graph data structure with
transactional semantics for graph updates. Sortledon [26] proposes a sorted adjacency-
list-based transactional graph data structure providing for concurrency control for
graph update, versioned storage and consistency guarantees.

Dynamic Graph Frameworks on CPU: KickStarter [11] formalizes a transitive
dependence-tracking approach for computing monotonic graph algorithms (such as
CC, and SSSP) for streaming graph applications. A similar approach is used in depen-
dence tree-based dynamic BFS and SSSP algorithms in Meerkat. CommonGraph
[30] extends the KickStarter framework: to avoid expensive deletion and mutation
operations in the graph, it considers a subset of edges common to all graph snapshot
versions (known as CommonGraphs) and translates edge deletion operations to inser-
tions. LiveGraph [22] proposes a new data structure called transactional edge log based
on an optimized OLTP protocol, for concurrent edge queries and edge insertions. Gra-
phOne [24] attempts to isolate the data store from stream/batch analytics and supports
analytics from the data store and from fast data streams.Adjacency lists are used for old
graph snapshots, and circular edge logs are used for incoming updates; the adjacency
store is updated from the edge log after crossing an archiving threshold. GraphFly
[27] proposes D-trees based on elimination trees, for quick detection of independent
graph updates, identification of dependency flows which reduces redundant memory
accesses for streaming graphs. Aspen [29] is a graph streaming framework that extends
Ligra [37] interface to provide dynamic graph updates. It builds upon their proposed
C-Trees functional data structure to provide for fast graph update/query operations
for the CPU architecture. Terrace [28] is a CPU-based framework providing a hybrid
storage approach for handling skewness in streaming graphs: sorted arrays for low-
degree vertices, PMA for medium-degree vertices, and B-trees for vertices with large
degrees.

Dynamic Graph Data Structures on GPU: The cuSTINGER [5] data structure
uses structure-of-arrays (SoA) representation for maintaining edges and large over-
provisioned arrays for maintaining the vertex adjacency lists. The SoA representation
helps improve coalesced memory accesses. Hornet [4] maintains several block arrays.
Each block has a fixed size of a power of two. A vertex maintains its adjacency list
within one such fitting block. On insertion, if the allocated block cannot accommo-
date the new edges, the adjacency list is migrated to a larger block in another block
array. The GPMA [8] extends PMA for GPU. The GPMA data structure suffers from
uncoalesced memory accesses, overheads in obtaining locks, and lower parallelism if
threads conflict on the same segment. These issues get exacerbated especially on real-
world graphs with a power-law distribution. The limitation of GPMA are addressed
with GPMA+ [8]. LPMA [31] overcomes the array expansion problem of GPMA+
by using a leveled array for maintaining the dynamic graph updates. The aimGraph
[32] data structure mainly focuses on the memory management for handling updates
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for a dynamic graph. By allocating a single large block of global memory, aimGraph
eliminates round trips between the CPU and the GPU for memory allocations. Like
aimGraph, faimGraph [3] utilizes a memory manager to handle allocation requests
entirely on the GPU. When the edge data contains a single value, SoA representation
is used, while AoS (array of structures) representation is used when the edge data
comprises of several fields.

Dynamic Graph Frameworks on GPU: EGraph [33] is a CPU-GPU-based frame-
work for applying the same algorithm on a sequence of different snapshots of the same
graph. The framework avoids redundancies in full graph processing by observing that
some graph partitions are identical for a sequence of snapshots (spatial similarity),
and are likely to be processed again in a short duration (temporal similarity), and
proposes a new Loading-Processing-Switching execution model for exploiting these
graph snapshot similarities, ensuring workload balance between the GPU SMs, and
reduce data transfers between CPU and GPU.

Dynamic Graph Algorithms: ConnectIt [38] implements incremental WCC for
multi-core CPUs. GConn [21] extends ConnectIt for GPUs. A few other works have
addressed challenges in incremental WCC on GPUs [39–41]. Dynamic SSSP, BFS,
and MST algorithms are programmed using diff-CSR data structure [1]. A detailed
study on dynamic graph algorithms in available in [42]. The computational complexity
of sequential dynamic graph algorithms is explored in Ramalingam and Reps [43].

8 Conclusion and FutureWork

We presented Meerkat, a framework for dynamic graph algorithms on GPUs.
It builds upon and significantly enhances a hash-based SlabHash data structure.
Meerkat offers a memory-efficient alternative, proposes new iterators, and opti-
mizes their processing to improve on both the execution time as well as the memory
requirement. These enhancements allow dynamic graph algorithms, containing both
incremental and decremental updates, to be implemented efficiently on GPUs. We
illustrated the effectiveness of the framework using fundamental graph algorithms
such as BFS, SSSP, TC, and WCC. As part of future work, we would like to imple-
ment more complex graph algorithms using our framework, and also check for the
feasibility of approximations to reduce the memory requirement of Meerkat further.

Appendix A Iteration Schemes

We describe two different schemes for enumerating neighbours of a vertex in
Meerkat object.

A.1 IteratorScheme1

Algorithm 10 describes the first iteration scheme, namely IterationScheme1. The
CUDA kernel that uses IterationScheme1 accepts a dynamic graph object G, and
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Algorithm 10: Iteration Scheme 1 (using SlabIterator)

1 device function int warpdequeue (bool *to_process) {
2 int work_queue = __ballot_sync(0xFFFFFFFF, *to_process);
3 index = __ffs(work_queue) - 1;
4 if (lane_id() == index) then
5 *to_process = false;
6 end if
7 return index;
8 }
9 function IterationScheme1 (Graph G, Vertex V[vertex_n]) {

10 Vertex_Dictionary* vert_adjs[] = G.get_vertex_adjacencies();
11 if ((thread_id() − lane_id)) < vertex_n)) then
12 bool to_process = (thread_id() < vertex_n);
13 int dequeue_lane = 0; /* queue size is warpsize (i.e 32) */

/* warpdequeue() API internally uses __ballot_sync() and
__ffs warp primitive */

14 while ((dequeue_lane = warpdequeue(&to_process)) �= −1) do
15 int common_tid = (thread_id() - lane_id() + dequeue_lane);
16 Vertex src = V[common_tid]; /* all warp threads process

neighbours of vertex src */
17 SlabIterator iter = G.vert_adjs[src].begin();
18 SlabIterator last = G.vert_adjs[src].end();

/* warp cooperative processing of adjacency slabs of vertex
src */

19 while (i ter �= last) do
20 Vertex v = iter.get_pointer(lane_id()); /* each warp thread index to

different slab entry */
21 if (is_valid_vertex(v)) then

/* Process adjacent vertex, if the slab-entry is not
TOMBSTONE_KEY */

22 end if
23 ++iter;
24 end while

/* Post-processing */
25 end while
26 end if
27 }

an array of vertices A of size vertex_n, whose adjacencies in the graph G are to be
visited. For example, this array A could be holding a frontier of vertices in the BFS
algorithm whose adjacencies have to be visited in a given iteration. The CUDA kernel

is invoked with t threads where, t =
⌊
vertex_n+BS−1

BS

⌋
. BS refers to the threads-per-

block chosen for the CUDA kernel and it must be a multiple of the warp size. In other
words, the kernel is invoked with a number of threads equal to the smallest multiple
of the thread-block size above or equal to vertex_n.

The thread-block size must be a multiple of the warp size for the successful exe-
cution of intra-warp communication primitives such as __ballot_sync [9], used
for work-cooperative work strategy extensively used in algorithms programmed using
Meerkat. The expression (thread_id()− lane_id()) finds the thread-id of the first
thread in a warp (See Table 4). The predicate at Line 11 allows only those warps which
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have at least one thread with thread-ids less than the number of vertices in the graph,
to proceed with the computation.

At line 12, we identify those threads whose thread-ids are less than vertex_n and
can validly index into V , the array storing the list of vertices to process.

The warpdequeue() function (see lines 1–7) identifies those threads within the
warp having a vertex remaining to be processed and stores in the variable work_queue
(see line 2). Each set bit in the work queue corresponds to one unique thread within the
warp that needs to be processedwith the value of variable to_process equals totrue.
Using the CUDA function __ffs()(find first set-bit), we elect the first outstanding
thread from work_queue and store it in the local variable index (see line 3). The
first outstanding bit is the first set bit starting from the least significant bit position.
If all the bits in the variable work_queue have a value of zero, then the variable
index will get a value of -1. The local variable to_process passed by reference to the
warpdequeue() function is set to false for the warp thread at lane_id index. The
warpdequeue() function then returns the value of the variable index (see line 7).

The value returned by the warpdequeue() function is assigned to the variable
dequeue_lane (see line 14). The while loop terminates when the value returned by
the warpdequeue() function is -1. Thus the loop at Lines 14–25 continues as long
as there is an outstanding thread within the warp whose associated vertex is left to
process. All the threads within the warp index into the same position of the Vertex
array V , and the Vertex variable src will have the same value for all threads in the
warp (see lines 15–16). A pair of SlabIterators, namely iter, and last, are
constructed (lines 17–18) to traverse through the slabs storing the adjacent vertices
of the Vertex src (within the loop at lines 19–23). All the threads within the warp
perform a coalesced memory access to the contents of the slab represented by iter
(see line 20). If the value fetched by the thread from the current slab represents a valid
vertex, (see line 21), the thread processes it as the adjacent vertex. After processing
the current slab, the iterator iter is incremented (see line 23) so that it refers to the
next slab in the sequence.

A.2 IteratorScheme2

The Algorithm 11 presents IterationScheme2. Unlike IterationScheme1 which uses
SlabIterators, IterationScheme2 uses BucketIterators and eliminates the
use of a work queue of vertices, and instead operates with a grid-stride loop [44].
This iteration scheme does not restrict the number of thread blocks. However, for the
warp-level primitives (such as __shfl_sync) to work correctly on the slabs, the
number of active threads within a thread block must be a multiple of the warp size.
Since the adjacencies of a vertex are distributed among multiple slab-lists, a slab-list
can thus be identified with a 〈v, i〉 pair, which refers to the i th slab-list of a vertex
v. Such pairs are stored in the slab_list_vertex and slab_list_index
device vectors. Each loop iteration (in lines 6–17) within a warp traverses and pro-
cesses all the slabs contained in one slab-list uniquely identified by its 〈v, i〉 pair. The
〈v, i〉 pairs are represented in the slab_list_vertex and slab_list_index
device vectors. For example, if a vertex frontier contains two vertices vi and v j , con-
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Algorithm 11: Iteration Scheme 2 (using BucketIterator)

1 function IterationScheme2 (Graph G, Vertex slab_list_vertex[n], int slab_list_index[n]) {
2 Vertex_Dictionary *vert_adjs= &(G.Vert_Dict[0])
3 int warps_n = (blockDim.x * gridDim.x) / warp_size()
4 int global_warp_id = thread_id() / warp_size()
5 int i = global_warp_id
6 while (i < n) do
7 Vertex src = slab_list_vertex[i]
8 int index = slab_list_index[i]

/* Process source vertex */
9 BucketIterator iter = vert_adjs[src].begin_at(index)

10 BucketIterator last = vert_adjs[src].end_at(index)
/* Iterate over adjacent vertices */

11 while (i ter �= last) do
/* each thread in the warp fetches different vertex from

based on its lane-id. */
12 Vertex v = *iter.get_pointer(lane_id())
13 if (is_valid_vertex(v)) then

/* Process adjacent vertex */
14 end if
15 ++iter
16 end while

/* Post-processing */
17 i += warps_n
18 end while
19 }

taining 3 and 2 slablists respectively. To enable IterationScheme2 to traverse through
all the their respective slabs, slab_list_vertex [] is initialized as

[
vi , vi , vi , v j , v j

]
,

and slab_list_index [] is initialized as [0, 1, 2, 0, 1].
The total number of warps in the kernel is computed and stored in warps_n (at

line 3). Each warp is uniquely identified with a global warp id (computed at line 4).
By using its global_warp_id as the initial value for index variable i , each warp iden-
tifies its slab list 〈v, i〉 to process by indexing into the slab_list_vertex and
slab_list_index vectors (see lines 7–8). This index is incremented at the stride
of the total number of warps in the grid for the CUDA kernel (line 17). CUDA kernel
can be called with a total number of threads being lesser than the total number of slab
lists for the input graph object.
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Appendix B Decremental SSSP - Helper Functions for SSSP Distance
Invalidation and its Propagation

Algorithm 12: Decremental SSSP - Invalidate Distance Kernel
1 device function Invalidate (Edges batch_edges[N ], tree_node D[vertex_n]) {
2 uint t = thread_id()
3 while (t < N ) do
4 Vertex dst = batch_edges[t].dst

/* Invalidate tree node for vertex dst if (parentdst , dst) is a
batch edge for deletion */

5 if (D[dst].parent == batch_edges[t].src) then
6 D[dst] = 〈INF,INVALID〉
7 end if
8 t += threads_n()
9 end while

10 }

Algorithm 13: Decremental SSSP - Propogate Invalidation Kernel
1 device function PropogateInvalidation (tree_node D[vertex_n], Vertex src) {
2 uint i = threads_id()

/* Grid-stride loop: each thread checks if the vertex i is
reachable to source src in the dependence tree */

3 while (i < vertex_n) do
4 if (D[i] �= 〈INF,INVALID〉) then
5 Vertex ancestor = D[i].parent
6 while (ancestor ! = src) do

/* Traverses to the source vertex src: loops until src or
invalidated vertex is found in path */

7 tree_node da = D[ancestor ]
8 if (da == 〈INF,INVALID〉) then

/* Invalidate vertex i if ancestor a is invalidated */
9 D[i] = 〈INF,INVALID〉

10 break
11 end if
12 ancestor = D[da ].parent
13 end while
14 end if
15 i += threads_n()
16 end while
17 }
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