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Abstract

As a result of frequency and power limitations, multi-core processors and acceler-
ators are becoming more and more prevalent in today’s systems. To fully utilize
such systems, heterogeneous parallel programming is needed, but this introduces new
complexities to the development. High-level frameworks such as SkePU have been
introduced to help alleviate these complexities. SkePU is a skeleton programming
framework based on a set of programming constructs implementing computational
parallel patterns, while presenting a sequential interface to the programmer. Using the
various skeleton backends, SkePU programs can execute, without source code modi-
fication, on multiple types of hardware such as CPUs, GPUs, and clusters. This paper
presents the design and implementation of a new backend for SkePU, adding support
for FPGAs. We also evaluate the effect of FPGA-specific optimizations in the new
backend and compare it with the existing GPU backend, where the actual devices used
are of similar vintage and price point. For simple examples, we find that the FPGA-
backend’s performance is similar to that of the existing backend for GPUs, while it
falls behind in more complex tasks. Finally, some shortcomings in the backend are
highlighted and discussed, along with potential solutions.
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1 Introduction

For a long time, the trend in computer architecture has been the move to multi-core
processors. Additionally, the use of accelerators such as massively parallel GPUs has
increased, leading to many of today’s systems being heterogeneous. An alternative
accelerator to GPUs is the field-programmable gate array (FPGA). The strength of
FPGAs is that they can be reconfigured and adapted for the type of algorithms to
execute, mapping an algorithm one-to-one to the FPGA hardware. This involves “’pro-
gramming” the FPGA using a hardware description language (HDL) such as VHDL
or Verilog [6]. The HDLs are used to generate a circuit description which is loaded
onto the FPGA.

Historically, this process of programming FPGAs has required specialized train-
ing since HDLs lack many high-level constructs found in conventional programming
languages, and use a parallel data flow model rather than a sequential one. There are
also differences between FPGA platforms, leading to difficulties of reusing existing
designs [12]. To alleviate these issues, there have been many attempts to create tools
that utilize higher-level languages, such as C or C++, to automatically produce a circuit
specification in a HDL. These high-level synthesis (HLS) tools allow developers to
program FPGAs faster and without hardware expertise [20]. More recently, both Intel!
and Xilinx? introduced HLS toolchains based on OpenCL, a framework for creating
portable parallel programs targeting multiple types of platforms.

While these tools make it easier to program FPGAs, developers still need to han-
dle the challenges of programming against heterogeneous processors. This includes
communication, memory management and synchronization. Here, skeleton program-
ming frameworks can provide a more high-level interface for the developer [11] by
abstracting from some of the more complex interactions and specifics of a multipro-
cessor system. One such framework is SkePU,> an open-source skeleton programming
framework for heterogeneous parallel systems. Today SkePU supports multi-core
CPUs, GPUs and clusters. By adding support for FPGAs, it would allow develop-
ers to program FPGAs without the need for hardware expertise or deep knowledge of
OpenCL.

To this end, we design and implement a new backend in SkePU targeting reconfig-
urable architectures by integrating an existing OpenCL HLS toolchain. This will allow
SkePU to further accelerate the types of problems that FPGAs are particularly suitable
for, such as problems that can take advantage of the high-throughput pipelines that
FPGAs can create, while keeping full source-code portability with multicore CPU,
GPU and cluster execution.

Overall, this paper makes the following main contributions:

— We present the design and implementation of a new OpenCL-based backend
for FPGA, including FPGA-specific optimizations, atop Intel OpenCL SDK for
FPGA, for the SkePU skeletons Map, Reduce, MapReduce, Scan, and MapOver-
lap.

! https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
2 https://www.xilinx.com/html_docs/xilinx2017_4/sdaccel_doc/ehb1504034292718.html
3 https://skepu.github.io/
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#include <skepu>

float mult(float a, float b) { return a * b; }
float add(float a, float Db) { return a + b; }

int main(int argc, char *argv[])
{
size_t const size = 100;
skepu: :Vector<£float> a(size), b(size);
auto dot_product = skepu::MapReduce (mult, add);
float res = dot_product(a, b);

Listing 1: SkePU program that calculates the dot product of two vectors.

— We evaluate the FPGA backend on an Intel Programmable Acceleration Card with
an Arria 10 GX FPGA. We demonstrate the great performance benefit of applying
FPGA-specific optimizations such as loop unrolling, register pipelining and skele-
ton fusion in the backend. We also identify challenges for future improvements of
the FPGA backend, such as performance issues with complex kernels.

The remainder of this paper is organized as follows: Sect. 2 presents background on
algorithmic skeletons and SkePU, and Sect.3 on FPGAs. Section4 discusses related
work. Section 5 presents the implementation of the FPGA backend, Sect. 6 experimen-
tal results and discussion. Section 7 proposes future work and Sect. 8 concludes.

2 Skeleton Programming and SkePU

Skeleton programming is a programming model offering pre-built skeletons, generic
programming constructs derived from higher-order functions that match different com-
putation patterns for which parallel implementations are provided by the framework.
Problem-specific user code is inserted as function arguments (user functions) into a
skeleton to instantiate a complete algorithm [5].

SkePU [9] is a C++ open-source skeleton programming framework that provides an
interface to create parallel computations with support for different backends: sequen-
tial, multi-core CPU (OpenMP), GPU (CUDA or OpenCL), cluster (StarPU-MPI), and
combinations of those. SkePU programs define user functions that the skeletons use as
operators. SkePU contains a source-to-source compiler that translates user functions
for each backend and a runtime library that handles the scheduling, communication,
and memory management between the host and backend [10]. Listing 1 shows an
example SkePU program that calculates the dot product of two vectors, using the
MapReduce skeleton and two user functions: mult and add.

SkePU implements a set of data-parallel skeleton patterns. The basic Map is a fun-
damental building block in SkePU programs, as it provides a flexible interface, e.g.,
with variadic input and output arity and optional use of non-trivial memory access
patterns. MapOverlap and MapPairs are optimized extensions of Map for stencil
computations and Cartesian-product patterns, respectively. Similarly, Reduce and
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Scan are specialized patterns for reductions and prefix sums. SkePU offers efficient
combinations when a reduction is used after a map-based pattern through MapReduce
and MapPairsReduce. Each skeleton is instantiated with one or more user func-
tions, which contain the program-specific code, executed in parallel according to the
respective pattern semantics.

SkePU provides so-called smart data-containers [7] that manage memory and
coherency between host and backends automatically. In the latest version of SkePU
there are four different types of smart containers for four different dimensionalities:
Vector (1D), Matrix (2D), Tensor3 and Tensor4.

Smart containers are C++ objects in main memory and can therefore not be used
directly in user functions. While this is not needed for element-wise access, some
computations require access to all elements in a container. SkePU therefore provides
proxy containers which can be used to access any element in a container inside a user
function.

3 Field-Programmable Gate Arrays (FPGAs)

FPGAs are computer chips that can be programmed to implement different digital
circuits. The term comes from the fact that FPGAs are programmable in-field even
after deployment. They consist of an array of configurable logic and I/O blocks that are
connected through a network with programmable switches. Modern FPGAs often also
have hard blocks, blocks that cannot be configured but instead implement a specific
functionality such as multipliers or Ethernet interfaces. Another common hard block
is RAM, since implementing RAM using the configurable logic is much less area
efficient [4].

Programming an FPGA is divided into three stages. First the desired hardware
circuit is described in an HDL. This is then translated to logic gates via synthesis,
which generates the physical design. Later, the place-and-route stage maps the physical
design to a device. Constraint checks ensure that the design will fit on the chosen
device and has no timing errors. Finally, a hardware configuration file, a bitstream, is
generated which can be loaded onto the FPGA. The process can take hours or days to
complete [2].

Hardware description languages (HDLs) describe hardware circuits that are pro-
grammed to FPGAs. While HDLs might look procedural, they are not. For example,
rather than a sequential control flow model, HDLs use a data flow model where state-
ments can run in parallel whenever the input is changed.

Since HDL code represents the hardware it synthesizes to, an understanding of
circuit design is required to get the best use out of an FPGA. To make FPGA pro-
gramming easier, there has been focused attention in the industry to create high-level
synthesis (HLS) tools for converting code written in a high-level language to HDL
code [2]. The generated HDL code can then be synthesized using the normal FPGA
programming flow.

Since synthesis takes multiple hours, the standard OpenCL kernel just-in-time com-
pilation cannot be used. Instead, the SDK compiles OpenCL into Verilog, which is
passed to a synthesis program. The compiler is an extension of the LLVM compiler
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C/C++ compiler &
Intel OpenCL runtime

Host code » Host binary \

Synthesis & [Execution on
AOC AOC place-and-route FPGA
Kernel code —>» LLVM IR —>» Verilog » Bitstream /

Fig. 1 Intel OpenCL SDK compilation flow. AOC is the OpenCL compiler in the SDK

which first produces a LLVM intermediate representation of the kernel, from which
Verilog code is produced, followed by the normal FPGA programming flow of syn-
thesis and place-and-route [6]. Figure 1 shows the compilation flow when using the
SDK.

Czajkowski et al. [6] state that the reason for choosing OpenCL over a high-level
language is the separation between the host and kernel. The kernel can be implemented
as a highly performant hardware circuit while the host can handle the communication
and programming of the FPGA. This means that the entire system can be implemented
as opposed to other HLS tools that only generate HDL code for synthesis.

The SDK generates hardware pipelines based on the OpenCL code in the kernel.
A pipeline’s size is measured in terms of its depth, which is how many stages there
are before the final output, and its width which is how many operations are done in
parallel in each stage.

The SDK supports two execution models: NDRange and Single Work-Item. Both
use pipelining to achieve parallelism, but differ in how they issue new data into the
pipeline.

When using the NDRange model, the kernel is executed once for each work-item.
This is the model most commonly used on GPUs, as multiple work-items can execute
in parallel. Each region between subsequent barrier calls will generate an independent
pipeline that is flushed at the barrier. The work-items are issued into the pipeline
iteratively by a run-time scheduler generated in hardware. If the kernel references any
of the indices in the NDRange or uses a barrier, the kernel is interpreted as a NDRange
kernel [26].

The SDK’s programming and best practice guides recommend two techniques for
better performance: Kernel vectorization and compute unit replication. Kernel vec-
torization is achieved by using the num_simd_work_1items attribute (as seen in
Listing 2), which instructs the compiler to translate each scalar operator to a SIMD
operation. This allows the programmer to increase the throughput of the kernel with-
out any modifications to the kernel code or NDRange used in the invocation of the
kernel [23]. The vectorization fails if the kernel contains code that the compiler deems
“SIMD-unfriendly”, such as thread-dependent branching. Vectorization can be done
manually, as in Listing 3, but then the NDRange must be manually changed to match
the number of items each kernel handles.

For compute unit replication, using attribute num_compute_units (N) instructs
the compiler to replicate the full pipeline N times. Work-groups are split across all
compute units, scheduling is handled by a hardware scheduler.
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__attribute( (num_simd_work_items (2)))
_ _kernel void sum( _ global float* a,
__global float* result) {

int gid = get_global_id(0);
result[gid] = algid] + blgid];

}

global float* b,

Listing 2: Example of kernel vectorization.

_ _kernel void sum( _ global float* a,
__global float* result) {

int gid = get_global_id(0);
result[gid * 2 + 0] = al[gid * 2 + 0] + blgid * 2 + 0];
result[gid * 2 + 1] = algid * 2 + 1] + blgid * 2 + 11;
}

global float* b,

Listing 3: Manual kernel vectorization.

Both methods increase throughput by increasing the amount of hardware generated.
Itis recommended to first use kernel vectorization, as this generates coalesced memory
accesses and less total hardware. The methods can also be combined, which can give
better throughput depending on what type of work the kernel performs [17].

In the Single Work-Item model, the kernel is executed only once as a single work-
item. High performance is achieved by pipelining loop iterations, mapping each outer
loop to a separate pipeline. This allows multiple loop iterations to be computed in
parallel, allowing a pipelined loop to finish faster than a non-pipelined loop. No run-
time scheduler is used, instead the scheduling is determined at compile-time. The
initiation interval 11 [1] is the number of clock cycles between two subsequent loop
iterations being issued into the pipeline. For a pipelined loop with an input size of L
and a depth of P, the total amount of clock cycles to complete is

Tcycles:P"l‘II*(L_l) 1

which can be converted to time in seconds by Tseconds = Teycies/ fmax> Where fiqx is
the operating frequency of the FPGA. As f,,4x is often fixed for each FPGA, P not
contributing much to the execution time and L being application dependent, /1 is the
one parameter the developer can change with the largest impact on the performance of
a single work-item kernel. The compiler always tries to pipeline loops so that the 71
is 1, but loop-carried dependencies like data dependencies or memory dependencies
can cause the /7 to increase. The run-time /7 can also differ from the /7 determined
at compile time due to stallable load and store operations or nested loops [25], so the
actual execution time can be longer than the calculated Tseconds-

Parallelism similar to vectorization can be added to single work-item kernels by
unrolling loops, increasing the width and depth of the pipeline at the cost of more
hardware being used. shows an example of how loop unrolling is applied and the
result of the unrolling.
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float reg[SIZE + 1] = {0.0};

for (int 1 = 0; i < N; ++1i) {

#pragma unroll

for (int j = 0; j < SIZE; j++)

// Shifts the content one step per iteration
reg[j]l = reglj + 11;

reg[SIZE] = reg[0] + input[i];

}

Listing 4: Creating and using a shift register in OpenCL.

If the length of the loop is known at compile time, the compiler can fully unroll
the loop, otherwise it can be unrolled by a user-specified factor. On top of increasing
parallelism, loop pipelining also allows the compiler to coalesce memory operations,
reducing the amount of global memory accesses [24]. Equation 1 can be extended with

loop unrolling:
(L — Np)

Tcycles =P +11 % (2)

p

where P’ is the new depth of the pipeline and N, is the unroll factor. Assuming
L >> P’,unrolling should result in a theoretical performance improvement of almost
N, times. This does, however, not take the run-time // into account, so in practice
the performance improvement will not be as large.

Shift registers is a technique that can be used to relax some loop-carried dependen-
cies in pipelined loops. Shift registers are implemented using the FPGA'’s registers,
which have an access latency of one clock cycle [25], meaning they can be accessed
without increasing the loop’s /1. An array in OpenCL will be implemented as a shift
register if (1) the array size is known at compile time, (2) all accesses to the array are
made with addresses known at compile time, and (3) all content in the array is shifted
by a compile-time known amount in each loop iteration (see Listing 4).

The primary way to use a shift register is to increase the dependency distance for a
variable, by writing values to one end of the shift register and operating on the other
end of the shift register. This way operations that take more than one clock cycle to
perform can be used without increasing the loop’s /1 as different loop iterations will
operate on different parts of the shift register. Shift registers can also be used for data
sharing across loop iterations by reusing values across multiple iterations, creating a
sliding window [16]. This is especially applicable to computations where a stencil is
used, which otherwise requires multiple redundant memory accesses per loop iteration
to read the input elements for the stencil. If the elements are instead stored in a shift
register, one element being read per iteration, the entire stencil is accessible in a single
clock cycle.
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4 Related Work

We review three high-level frameworks similar to SkePU that target FPGAs, of which
two use OpenCL and one is fully implemented in an HDL..

Melia [24] is aMapReduce framework for FPGAs that uses the Intel FPGA OpenCL
SDK. The framework lets the user define a map and reduce function in the OpenCL C
language which are then compiled, synthesized and used to configure an FPGA. Melia
includes memory optimizations such as coalescing and “’private memory optimization”
and applies some FPGA-specific optimizations: converting nested loops to a single
loop, loop unrolling, and pipeline replication. Loop unrolling is the only optimization
that is performed automatically on the user functions. The user is responsible for
applying memory optimizations and must pass parameters to Melia for the pipeline
replication and loop unrolling before synthesis. Since synthesis is a long process,
Wang et al. [24] developed a cost model using the resource estimation tool included
in the Intel FPGA OpenCL SDK. The cost model estimates the execution time of a
given OpenCL kernel by multiplying the estimated hardware frequency and estimated
amount of clock cycles needed to execute the kernel. Through testing they found that
their model could closely predict the hardware frequency of a kernel, and generally
capture the trend of the required clock cycles. Using the model, a user can experiment
with different parameters in a matter of minutes instead of the hours it would take to
complete a full synthesis. Applying the FPGA-specific optimizations to seven common
MapReduce applications led to speedups of 1.4 x to43.6 x. The Meliaimplementations
demonstrated high energy efficiency compared to CPU and GPU implementations and
were not much slower than the GPU implementations.

OpenACC-to-FPGA [17] is a framework for translating OpenACC C programs to
a hardware configuration file for running on FPGAs. It is an extension of the Open
Accelerator Research Compiler (OpenARC) [18], an open-source compiler for Ope-
nACC which supports CUDA and OpenCL as backend programming models using
source-to-source translation. OpenACC-to-FPGA uses the OpenCL backend to gen-
erate OpenCL code, which is passed to the Intel FPGA OpenCL SDK to generate the
hardware configuration file. To generate efficient OpenCL code for FPGAs, OpenACC-
to-FPGA adds to OpenARC boundary check elimination and directives for controlling
loop unrolling, kernel vectorization and compute unit replication (pipeline replication).

The OpenACC-to-FPGA runtime performs dynamic memory-transfer alignment of
memory that will be transferred to maximize throughput and lowering latency when
transferring data between the host and FPGA memory. Correctly aligned memory on
both the host and device allows the Intel FPGA OpenCL runtime to use direct memory
access (DMA) between host and FPGA, speeding up data transfers. By this method,
Lee et al. [17] achieved a 100-fold speed-up in data transfers between the host and
device, in both directions.

In follow-up work, Lambert et al. [16] extend OpenACC-to-FPGA by optimiza-
tions for single work-item kernels. First, they added FPGA-specific loop collapsing,
changing the existing OpenARC loop collapsing to calculate the indexes of the col-
lapsed loops without modulo and divisions operations, which are relatively expensive
on FPGAs. A reduce-specific optimization was also added. It generates OpenCL code
for reduce loops that uses shift registers to relax the data dependency that can occur in
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reduce loops when using instructions that take more than one clock cycle. It also adds
anew window directive which generates OpenCL code for creating a sliding window
for stencil operations. Based on offsets used to access the stencil, it automatically
generates a shift register large enough to store the stencil and the offsets to be used to
access the window inside the shift register. Unlike Melia, OpenACC-to-FPGA does
not provide any tools or models to alleviate the long synthesizing process.

FPMR is a MapReduce framework for FPGAs [22], though unlike Melia and
OpenACC-to-FPGA it does not use any HLS tools. Instead, the framework is
implemented in an HDL, providing data synchronization, scheduling and handling
communication between the map and reduce tasks. The user implements the map
and reduce user functions by designing a mapper and reducer processor using the
corresponding interfaces in FPMR.

During execution, a processor scheduler, which is implemented on the FPGA, is
used to dynamically utilize the mapper and reducer processors using a set of queues
for idle processors and tasks for both types of processors.

The framework uses three levels of storage: Global memory, local memory and
register files inside each processor. Global memory is implemented using SDRAM
modules, providing large capacity and high bandwidth. It is managed by a data
controller responsible for transferring data between the host and device memory, dis-
patching requested data to the mappers, and storing output data from the reducers. An
important feature of the data controller is the common data path, which allows the
controller to overlap data transfer to multiple mappers at once. This is useful for appli-
cations where some data are the same for all mappers. The local memory stores the
mappers’ intermediate results before being passed to a reducer. It is implemented with
on-chip RAM giving it low access latency, and if multiple RAMs are implemented, it
can also be accessed simultaneously by mappers and reducers.

In a case study of the RankBoost algorithm using FPMR, Shan et al. [22] obtained
31.8x speedup over their CPU reference implementation, which was comparable to
a manually designed FPGA implementation with 33.5 x speedup.

5 SkePU FPGA Backend

The first part of the implementation was to integrate the Intel FPGA OpenCL SDK
into SkePUs backend code generation. SkePU provides OpenCL files to the SDK and
accepts generated bitstream files in return. The user is responsible for ensuring that
an installation of the SDK and the relevant FPGA board packages are available.

The runtime was also extended to recognize Intel FPGAs and the Intel FPGA emu-
lator as valid OpenCL devices, see Fig.2. While this initial implementation worked,
it used the OpenCL backend designed for GPUs, which resulted in subpar perfor-
mance on FPGAs. Therefore, a new FPGA-specific backend was created, similar to the
OpenCL backend for GPUs with specialized kernel code generation for the respective
skeletons. Functionality such as device detection and memory management is shared
with the OpenCL GPU backend.

An initial design decision was whether to generate single work-item (SWI) or
NDRange kernels. Using NDRange kernels would have meant that the existing
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SkePU SkePU source-to-source compiler | [ Part of Intel SDK
program source / \
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ibraries compiler OpenCL compiler FPGA BSP
m FPGA bitstream

Fig.2 FPGA backend compilation flow

OpenCL code generation could have been reused. However, those kernels use branches
that depend on the global id of the work-items, meaning that automatic vectorization
cannot be applied. This is a key optimization for NDRange kernels, so new code
generation would have had to be done either way. Furthermore, Intel’s general recom-
mendation is to use SWI kernels, and they are faster for many types of problems [25,
26]. It was therefore decided to implement code generation of SWI kernels. The main
goal for the skeleton implementations was to reach an /7 of 1 for the main loop and
not reducing the maximum frequency, while still pipelining the main loop.

The optimization techniques used are taken from Intel’s programming documenta-
tion*> and papers that applied the techniques [12, 25, 26]. The compiler referenced
in the following sections is the Intel FPGA SDK OpenCL Offline Compiler.

The Intel documentation recommends some general optimizations that can be
applied to all kernels, mostly focusing on helping the compiler:

— Using the restrict keyword on pointer arguments which never alias to other
pointers. This can prevent the compiler from assuming memory dependencies
between read and write operations.

— Using the const keyword on any read-only buffers. This allows the compiler to
perform more optimizations on load operations.

— Applying the uses_global_work_offset (0) attribute. Applying this
attribute allows the compiler to not generate hardware for supporting kernel invo-
cations with a non-zero global_work_offset (which is never not zero in the
FPGA backend), reducing area usage.

SkePU’s memory allocation code was modified to allocate 64-byte aligned memory
for all host buffers. The dynamic memory-transfer alignment logic used in OpenACC-
To-FPGA was also implemented to handle cases when the buffer is not aligned on
the FPGA. This guarantees that both the host and device buffer will be aligned when
transferring memory between them, allowing all data transfers larger than 64 bytes to
use direct memory access.

4 https://intel.com/content/ www/us/en/docs/programmable/683521/21-4/introduction-to- pro-edition-
best-practices.html

5 https://intel.com/content/www/us/en/docs/programmable/683846/21-4
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We now present the implementations of the Map, Reduce, MapReduce, Scan and
MapOverlap skeletons in the FPGA backend.

Map The Map kernel was replaced by a for loop with a controllable unroll factor.
As the loop contains no loop-carried dependencies, it did not require the use of a shift
register or any other techniques to attain an /7 of 1.

Reduce Firstly, the generated kernel was changed to a single work-item kernel
instead of an NDRange kernel. This meant the kernel could be reduced to a single for
loop, which the compiler can pipeline. However, such reduce loops often result in a
loop-carried data dependency on the reduce variable. If the user function is complicated
or uses instructions that are expensive to execute on FPGAs, this cannot be done in a
single clock cycle. This will increase the /I of the loop to the number of clock cycles
the user function takes.

The reduce kernel tries to relax such data dependencies by increasing the number
of variables that store the intermediate result of the reduction using a shift register. In
each iteration, the head of the shift register is read, and the partial result is written to
the tail of the register. If the size of the shift register is equal to or greater than the
number of cycles that the user function takes to execute, the data dependency can be
eliminated.

Finally, parallelism is increased by adding partial loop unrolling. This could be
applied to the main loop, but doing so acts as a multiplier to the latency of the loop [16],
increasing the /1. There are two ways to solve this: increasing the size of the shift reg-
ister by the unroll count or performing manual loop unrolling as done by Zohouri [25].
Increasing the size of the shift register also increases the total area consumption, so
for large unroll factors this can become impractical. Therefore manual loop unrolling
was used in the reduce kernel. An example of a generated reduce kernel can be seen
in Listing 5, where lines 17-22 show the manual loop unroll.

MapReduce The MapReduce kernel used the same approach as the Reduce kernel,
with an added call to the Map user function in the manual loop unroll and in the ramp-
up phase. In the normal OpenCL backend, MapReduce is a two-phase kernel where
the second phase performs a final reduction. This is not needed in the FPGA version,
as the full reduction is performed in a single kernel execution, making the call to the
reduce-only kernel unnecessary.

Scan The Scan kernel uses a shift register and loop unrolling. It begins with a
prelude to populate the shift register, and after that it reads a single element from
the input each iteration and applies it to the user function together with an element
from the shift register, the result being stored in the end of the shift register. The shift
register is used to avoid the memory dependency that would otherwise be created
when immediately accessing the previously read element in the next loop iteration. To
also avoid a data dependency if the user function latency is larger than one, the shift
register is accessed using an offset OFFSET that should be equal to or larger than the
latency. This means that there will be OFFSET loop iterations between an element
being read from main memory and that element being accessed from the shift register.
This relaxes both the memory dependency and potential data dependency, assuming
the offset is large enough, and allows the outer loop to attain an /7 of 1.

The results stored in the shift register are not complete when initially written,
since the offset also needs to be taken into account. To compensate for this, a scan
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__kernel void reduce(__global float const* restrict input,
__global float* restrict output,

unsigned long size)

float shift_reg[LATENCY + 1];

#pragma unroll

for (int i = 0; 1 < LATENCY; i++) {
shift_regl[i] = inputl[il];

}

int exit = (size

(size / UNROLL)

(size / UNROLL) + 1;

for (int i = 0; 1 < exit; i++) {

float partial_result = (

LATENCY <= i * UNROLL && i * UNROLL < size
) ? input[i * UNROLL] : (float) {0};
#pragma unroll

for (int j = 1; j < UNROLL; j++) {

int index = i * UNROLL + 7J;
partial_result = (index < size) ?
user_func (partial_result, input[index])
partial_result;

}

shift_reg[LATENCY] = user_func(shift_reg[0], partial_result);
#pragma unroll

for (int j = 0; j < LATENCY; j++) {
shift_reg[j] = shift_regl[j+1]1;

}

}

float result = shift_reg[0];

#pragma unroll

for (int 1 = 1; 1 < LATENCY; i++)

result = user_func(shift_regl[i], result);
output [0] = result;

Listing 5: Example of a generated reduce kernel.

is performed on the first OFFSET elements in the shift register before writing the
result to the output. This starts after the shift register has shifted the first input enough
times, which depends on the size of the shift register, offset and if the scan is inclusive,
according to delay = size — offset 4+ inclusive. The outer loop will need extra
iterations to write all elements to the output, but assuming the input size is large, it
will not affect the performance.

As found by Lambert et al. [16], to allow the outer loop to be unrolled while not
increasing the 71, the shift register size should be newsize = size x unrollfactor.
This does lead to a high area usage since the user function will be unrolled both by the
outer loop and the final scan loop. As a result, the size of the unroll factor is limited
compared to the other skeletons when using floating-point types, since these multiple
unrolls of the user function quickly consume all hard-blocks used for floating-point
arithmetic.

MapOverlap MapOverlap was the most complicated skeleton implemented on the
FPGA backend. Therefore only the one-dimensional version was implemented for
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Table 1 Single-skeleton test programs with user functions used in the evaluation

Test program Skeleton User function

Adding squares Map fla,b) = a? +b?

Global sum Reduce fla,b)=a+D>

Dot product MapReduce fm(a,b)=axb, frla,b) =a+b
Prefix sum Scan fla,b)y=a+D>

Overlap average (1D stencil) MapOverlap f(region) = average(region)

now, supporting the Vector variant and both the row- and column-wise Matrix
variants. All edge handling modes are supported.

The implementation uses a shift register for all three variants, while loop unrolling
is only applied to the main loop in the Vector variant due to too high resource usage
in the other variants. The edge handling modes are implemented in a single kernel for
each variant, which is one of the culprits for the larger hardware usage, as each unroll
needs to include the logic needed to handle the different modes.

6 Experimental Results and Discussion

The FPGA evaluations were performed on Intel Devcloud® using a Programmable
Acceleration Card (PAC) with an Arria 10 GX FPGA, with 1150000 logical elements
and 1518 DSP blocks, connected via PCle. Version 19.4.0 of the Intel FPGA OpenCL
SDK was used to compile the FPGA kernels. The GPU benchmarks were run on
a NVIDIA Tesla V100 SXM2 32GB GPU connected via PCle. Both devices have a
similar release date and price point and were therefore deemed to be a fair comparison.

6.1 Single Skeleton Performance

The FPGA backend was first evaluated for single skeleton calls. A program was created
for each skeleton type supported by the FPGA backend, with a simple, typical user
function for that skeleton type. Each program was compiled and run with 3 different
unroll factors: 1, 8, and 16, and all used the £1oat data type. The execution time of
each variation was recorded with different input sizes from 10° to 107 elements, in
increments of 250000, and with 10 runs for each input size. Memory transfer time in
each direction was included in the execution time. Each skeleton was invoked once
before the measured invocations to remove the time to reconfigure the FPGA. Table
1 lists the skeletons and user functions that were evaluated. The skeletons were also
evaluated with the OpenCL backend on both an FPGA and on a GPU. All benchmarks
used a one-dimensional Vector as input container. The FPGA kernels were compiled
using the - fast-compi le flag, which significantly speeds up the compilation speed
by reducing the compiler’s optimization efforts.

6 https://intel.com/content/ www/us/en/developer/tools/devcloud/overview.html
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Fig.3 The median execution times for the single skeleton evaluation (lower is better)

Figure 3 shows the performance of the single skeleton calls. The No Unroll line
was the FPGA backend run with the unroll factor set to 1 for each skeleton, effectively
disabling the unrolling, while Unroll 8 and Unroll 16 set the unroll factor to 8 and 16.
The Baseline and GPU lines show the execution time of using kernels generated by
the (preexisting) OpenCL backend where Baseline is the execution time on the FPGA
and GPU is the execution time on the GPU. Scan is missing Unroll 16 because the
design generated by this unroll factor did not fit on the FPGA. It ran out of DSP blocks,
which are used for float operations. For MapOverlap, a baseline is missing due to a
bug in the SDK’s library, preventing the benchmark from running. Finally, we omitted
No Unroll for MapOverlap due to taking too long time: 420ms for the smallest size
and 4.2s for the largest. These results show that the kernels generated by the FPGA
backend are faster than the ones generated by the OpenCL backend when run on the
FPGA, even with no unrolling. With unrolling, they are close to the GPU execution
time and faster in the Reduce kernel case.

Figure 3 shows that the new kernel generation with FPGA-specific optimizations
in the FPGA backend gives a noticeable performance gain over the OpenCL backend.
The largest performance gain is observed for Scan, where the baseline implementation
performed poorly. One cause of the poor performance could be the many barriers used
in the baseline kernels, which force the pipeline to be flushed before moving to the next
section. Map is the skeleton with the least performance gain. This is likely because the
FPGA Map kernel does not use any FPGA-specific techniques besides loop unrolling,
meaning both implementations are similar and are largely memory-bound. The Map
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Fig.4 Result of FPGA-specific techniques (ULN means an unroll factor of N)
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kernel would likely gain from being implemented as an NDRange kernel instead, as
the hardware scheduler can help alleviate memory bottlenecks.

The experiments also show that increasing the unroll factor does not improve per-
formance past a certain point, as almost all benchmarks have similar execution times.
The one outlier is the MapOverlap kernel, where the execution time for the largest
input size using unroll factor 16 is 6 times faster than that with an unroll factor of 8.

Finally, we see that the fastest FPGA execution time for all but MapOverlap is
close to the GPU execution time. These results are promising, given the maturity of
the skeleton implementations used by the OpenCL backend.

6.2 FPGA-Specific Optimizations Performance

The effect of the two major FPGA-specific optimizations used in the skeleton imple-
mentations, loop unrolling, and shift registers, were evaluated by executing the same
skeleton kernel compiled with different parameters. The Reduce skeleton was used
with the same user function as in the single skeleton evaluation. Four combinations of
parameters (No unrolling / Unroll by 8, and No shift register / Shift register of size 8)
were used to compile four variants of the skeleton kernel.

The variant with both unrolling and shift register was evaluated once with the
memory alignment and dynamic DMA transfers turned off to evaluate its impact. The
total execution time was evaluated for each variant with an input size of 10”. Each
variant was run 10 times, and the median execution time was recorded. Figure 4 shows
the impact of FPGA-specific optimizations. ULN means the kernel was compiled
with an unroll factor of N and SR means it used a shift register. It shows that both
loop unrolling and using a shift register gives performance benefits. The shift-register
had a larger impact when not using unrolling, giving an 87% speedup, but when
combined with unrolling the performance boost is only 17% compared to just using
loop unrolling. Lastly, turning off the dynamic memory-transfer alignment logic had
a small impact on the execution time. (NO DMA in Fig.4 uses the UL8 SR settings
and disables DMA).

The evaluation of the FPGA-specific optimizations makes it clear that they are worth
implementing as they give a large speedup without the user needing to do anything. The
compiler reports for the four variants show that /7 is 3, and the maximum frequency is
98 MHz without the shift register compared to 1 and 240 MHz with the shift register.
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float add(float a, float b) { returnm a + b; }
float multiply (float a, float s) { return a * s; }
float combined(float a, float b, float s) { return (a + b) * s; }

Listing 6: The user functions used for evaluating multiple skeleton calls.

This is the case both with and without loop unrolling. According to Egs.1 and 2,
decreasing the 7/ from 3 to 1 and more than doubling the maximum frequency should
give close to six times better performance. Nevertheless, we see that this does not
hold in practice, as the evaluated speedup is close to half the theoretical speedup.
Similarly, an unrolling factor of 8 gives a theoretical speedup of almost eight, but the
evaluated speedup is far from that. Even so, the equations are still useful in guiding
what parameters to change to get performance benefits.

Furthermore, the finding that turning off the memory alignment and transfer logic
did not impact performance was surprising, given that Lee et al. [17] reported over 100
times faster transfer times when using this method. Profiling the kernel to get the exact
memory transfer times shows that the two variants only differ by a few nanoseconds.
This can mean three different things: DMA is not used in either variant, DMA is used
in both variants, or DMA does not affect the memory transfer time.

6.3 Multiple Skeletons Performance

To evaluate the performance of calling multiple different skeleton instances in a single
SkePU program two programs were created: One chaining two Map calls, and one
calling a single Map instance explicitly fusing the two user functions, as shown in
Listing 6. The total execution time of the program was recorded for an input size
of 10° elements. Moreover, the time to reconfigure the FPGA for each skeleton call
was measured using Intercept Layer for OpenCL Applications,’ a tool for profiling
OpenCL applications. Both benchmarks were run 10 times to reduce the effect of
timing variations, with the median execution time and time spent reconfiguring the
FPGA being recorded. The results are presented in Table 2. Total time is the median
total amount of time spent to run the benchmark, Reconfiguration time is the time spent
on reconfiguring the FPGA before each new kernel invocation, and Execution time is
the time spent to run the computations, including memory allocation and transfers.

The difference in total time between the variants is stark: Chained spends 99%
of the total time just reconfiguring the FPGA @. The reason why the Merged variant
does not need to reconfigure the FPGA during the benchmark is that this is done
when instantiating the merged skeleton, which is not part of the benchmark. This is of
course also the case for other variants, but since two skeletons are instantiated, they
“overwrite” each other, forcing the FPGA to be reconfigured for the second skeleton
call in the benchmark every time.

7 https://github.com/intel/opencl-intercept-layer
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Table 2 Running times of the two variants evaluated

Variant Total time (s) FPGA Reconfiguration time (s) Execution time (s)
Chained 7.253 7.241 0.012
Merged 0.018 0 0.018

The results of running multiple skeletons show the large overhead of reconfiguring
the FPGA between each skeleton invocation® adds. Hence, any SkePU program that
calls multiple skeleton instances will suffer large performance penalties when running
on the FPGA backend, which is needed for many computations. Therefore, as many
skeletons as possible should be fused when targeting the FPGA backend. In the current
version of SkePU, there is no automatic fusion of skeletons, even for cases such as a
chained Map and Reduce [8], so manual fusion by the user must be applied. A potential
solution to this is to generate a single large kernel that only needs to be configured
once, though this could lead to issues with resource usage on the FPGA if large loop
unrolling factors are used or the user functions are non-trivial.

6.4 Complex User Function Performance

To test more complex user functions, such as functions with loops, we used the matrix
multiplication code from SkePUs set of example programs. It uses the Map skeleton
with the user function shown in Listing 7. Two versions were evaluated: One with an
unroll factor of 1 and one with an unroll factor of 8.

For a comparison with the performance achievable on an FPGA, a handwritten
Matrix Multiplication OpenCL kernel from Boyi’s [14] collection of OpenCL FPGA
kernels® was also benchmarked. The version used was the NDRange kernel with 64 as
an unroll factor, a SIMD factor of 8 and 2 kernel replications (ul64_simd8_cu2).
All kernels were compiled with the same flags'? and executed with 2048 x 2048 matri-
ces. Like the previous evaluations, all kernels were run 10 times, and the median
execution time was recorded.

The results in Fig. 5 clearly show that both SkePU variants run on the FPGA (Unroll
1 and Unroll 8) are much slower than the handwritten variant. Furthermore, the SkePU
variant with a higher unroll factor is slower than with the lower one, in contrast to
our results in Sect.6.1. The reason appears to be a failure to pipeline the Unroll 8
variant’s main loop because of the inner loop in the user function. Without the unroll,
this failure does not occur.

While the results in Fig. 5 are expected, the difference in performance is an issue if
the FPGA backend is used with complex user functions. The main issue is loops in the

8 The FPGA will cache the kernel between program executions, so if the same kernel is run multiple times,
only the first execution will require a reconfiguration.

9 https://github.com/jjiantong/Boyi/tree/fpga20

10 The handwritten kernel used an extra compilation flag (-no-interleaving=default) to store
the two matrix buffers in different areas of the FPGA’s memory. The FPGA backend does not use this
optimization technique, so the flag was not used for those kernels.
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T mmmult (const skepu::MatRow<int> ar, const skepu::MatCol<int> bc)
{

T res = 0;

for (size t k = 0; k < ar.cols; ++k)

res += ar (k) * bc(k);

return res;

}

Listing 7: Matrix multiplication user function in SkePU.

Handwritten - 5-10—2 L
Unroll 1 52 =

Unroll 8 63
1 1 1 1 1 1
0 10 20 30 40 50 60

Run time [s]

Fig.5 Result of the complex user function evaluation

user function, as these often require modifications to not cause the outer loop’s 71 to
increase. According to Intel’s documentation [13] such nested loops should preferably
be fully unrolled or collapsed.'!

7 Future Work

Future work could include a quantitative comparison with other high-level program-
ming approaches, e.g. FPMR [22], Melia [24], OpenACC [17] or SYCL.

Our experimental setup for this work did not provide the possibility to conduct
direct energy or power measurements. However, evaluation work on similar workloads
has been performed in earlier work [15, 19, 21]. Kestur et al. [15] evaluate low-level
FPGA implementations of BLAS kernels, which are similar workloads as in the pattern
evaluations in our work. Their results show the FPGA to outperform native C, MKL,
and CUDA kernels in terms of sustained energy consumption. FBLAS [19] is a high-
level synthesis tool for streaming FPGA programs, and therefore closer to SkePU in
terms of programming abstraction level. Their evaluation demonstrates up to 30%
reduction in whole-board power consumption from using the FPGAs as compared to
CPU reference implementations. While these results cannot be guaranteed to directly
translate to our implementation, as the SkePU compilation and runtime system may
introduce additional overhead, we consider these as guidelines or at least upper bounds
on what can be expected from the FPGA backend.

11 Automatic loop unrolling and collapsing could be added by directives to the backend compiler, but is
currently not supported by the prototype.
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8 Conclusion

We presented a new backend targeting reconfigurable architectures, specifically
FPGAs, for the skeleton programming framework SkePU. The new backend imple-
ments many features also supported in other backends in SkePU and implements
FPGA-specific optimizations for better performance. We evaluated the new FPGA
backend and compared it to one of the GPU backends. Our results show that perfor-
mance is close for simpler tasks and highlight the importance of using FPGA-specific
optimizations. However, the backend falls behind for more complicated tasks. While
the speedup by the FPGA-specific optimizations varied depending on the task, all
skeletons saw performance benefits. Changing the kernels to be single work items
with shift registers gave a speedup compared to running the OpenCL code by the
existing OpenCL backend, from 1.06 x for Map to 6.10x for Scan. Adding more opti-
mizations improved speedup in all cases, ranging from 1.25x for Map to 9.23 x for
Scan.

Further details about the implementation and results can be found in the first author’s
recent master thesis [3]. A fork of SkePU with the FPGA backend implementation is
available at https://github.com/Birath/skepu/.
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