
Vol.:(0123456789)

International Journal of Parallel Programming (2024) 52:147–170
https://doi.org/10.1007/s10766-024-00768-x

1 3

GraphTango: A Hybrid Representation Format for Efficient
Streaming Graph Updates and Analysis

Alif Ahmed1 · Farzana Ahmed Siddique1 · Kevin Skadron1

Received: 20 October 2023 / Accepted: 15 April 2024 / Published online: 18 May 2024
© The Author(s) 2024

Abstract
Streaming graph processing performs batched updates and analytics on a time-evolv-
ing graph. The underlying representation format of the graph largely determines the
throughputs of these updates and analytics phases. Existing representation formats
usually employ variations of hash tables or adjacency lists. However, a recent study
showed that the adjacency-list-based approaches perform poorly on heavy-tailed
graphs, and the hash table-based approaches suffer on short-tailed graphs. We pro-
pose GraphTango, a hybrid representation format that provides excellent update
and analytics throughput regardless of the graph’s degree distribution. GraphTango
dynamically switches among three different formats based on a vertex’s degree: (i)
Low-degree vertices store the edges directly with the neighborhood metadata, con-
fining accesses to a single cache line, (2) Medium-degree vertices use adjacency
lists, and (3) High-degree vertices use hash tables as well as adjacency lists. In this
case, the adjacency list provides fast traversal during the analytics phase, while the
hash table provides constant-time lookups during the update phase. We further opti-
mized the performance by designing an open-addressing-based hash table that fully
utilizes every fetched cache line. In addition, we developed a thread-local lock-free
memory pool that allows fast growing/shrinking of the adjacency lists and hash
tables in a multi-threaded environment. We evaluated GraphTango with the help
of the SAGA-Bench framework and compared it with four other representation for-
mats: Stinger, Degree-aware Robin Hood Hashing, and two adjacency list-based for-
mats with different workload balancing scheme. On average, GraphTango provides
4.5x higher insertion throughput, 3.2x higher deletion throughput, and 1.1x higher
analytics throughput over the next best format. Furthermore, we integrated Graph-
Tango with the state-of-the-art graph processing frameworks DZiG and RisGraph.
Compared to the vanilla DZiG and vanilla RisGraph, [GraphTango + DZiG] and
[GraphTango + RisGraph] reduces the average batch processing time by 2.3x and
1.5x, respectively.

Alif Ahmed and Farzana Ahmed Siddique have contributed equally to this work.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-024-00768-x&domain=pdf

148	 International Journal of Parallel Programming (2024) 52:147–170

1 3

Keywords  Streaming graph · Graph processing · Dynamic graph · Hashing

1  Introduction

Streaming graph processing involves performing batched updates and analytics on
a time-evolving graph. The update phase handles modifications to the graph topol-
ogy (e.g., insertion/deletion of edges and nodes), while the analytics phase runs the
necessary algorithms on the graph. This is a common scenario in many real-world
graph applications such as social network analysis [1, 2], bioinformatics [3, 4], rec-
ommendation systems [5, 6], routing and navigation [7], knowledge discovery [8],
sensor networks [9], etc. The focus of streaming graph processing is fundamentally
different from static graph processing. Static graphs are constructed only once, and
the construction cost gets amortized over time. Therefore, the overall performance
of a static graph processing framework is primarily determined by the analytics
throughput. In the case of streaming graphs, the graph topology can change very
frequently. Hence, both update and analytics throughput is critical for streaming
graphs [10].

The most common operation during the update phase is edge lookup. The lookup
is performed before insertion to avoid duplicate edges1 and before deletion to find
the location of the target edge. On the other hand, the most common operation dur-
ing the analytics phase is the neighborhood traversal of a given vertex. The perfor-
mance of a streaming graph processing framework is critically dependent on how
efficiently the graph storage format can support these lookup and traversal opera-
tions. Existing storage formats for streaming graphs usually employ variations of
adjacency lists or hash tables [10–14]. Approaches based on adjacency lists [10,
11] provide high update throughput on short-tailed graphs2 but suffer in heavy-
tailed graphs as it requires linear lookup through the edge array [10]. On the other
hand, hash-based approaches [12, 13] offer constant-time lookup, providing better
update throughput on heavy-tailed graphs. However, they perform poorly on short-
tailed graphs because the overhead of hash calculation and several random accesses
becomes more expensive than conducting a simple linear search. Furthermore,
edges are stored in hash tables relatively sparsely to mitigate collisions. As a result,
edge traversal becomes inefficient and negatively impacts their analytics phase’s
throughput. None of the existing approaches can efficiently handle both short-tailed
and heavy-tailed graphs.

This paper proposes GraphTango, a streaming graph representation format that
provides excellent performance regardless of the graph’s degree distribution. Our
key idea is to adaptively switch the underlying data structure based on the vertex
degree: (i) Type1 vertex: Low-degree vertices where the edges are stored within

1  In accordance with the prior works [10–13], edges are inserted only after a lookup to avoid duplicate
edges.
2  Following prior work [10], we define heavy/short-tailed graph with respect to an update batch: heavy-
tailed graphs have high maximum degree within a batch. Short-tail is the opposite.

149

1 3

International Journal of Parallel Programming (2024) 52:147–170	

the same cache line as the neighborhood metadata. Update and edge traversal
thus requires only one cache line access, unlike other approaches. (ii) Type2 ver-
tex: Medium-degree vertices that store edges as adjacency lists. The degree is too
high for this type to fit all edges in a cache line, but small enough so that linear
search performs better than hashing. (iii) Type3 vertex: High-degree vertices that
store edges as adjacency lists, along with hash tables storing indexes to the adja-
cency lists. In this case, the adjacency list provides optimal edge traversal during
the analytics phase, while the hash table provides constant-time lookup during the
update phase. The hash tables are not accessed during the analytics phase, avoiding
any potential cache pollution. To improve the cache access pattern of the hash table,
we designed an open-addressing-based hash table with double hashing that fully uti-
lizes every fetched cache line. Our proposed hashing scheme minimizes cache line
fetches and is especially beneficial if the hash tables do not fit into the last level
cache (LLC), which is often the case for real-world graph workloads.3 With this
hashing scheme, updates for Type3 vertices are performed with only three cache line
accesses for more than 99.2% of the cases. In addition, we developed a thread-local
lock-free memory pool that allows fast growing and shrinking of the adjacency lists
and hash tables in a multi-threaded environment.

We evaluated GraphTango by integrating it with the SAGA-Bench [10] bench-
marking framework. SAGA-Bench integration ensures that all approaches use the
same algorithm implementations via a common API. Therefore, any performance
improvement comes purely from the data structure standpoint. SAGA-Bench comes
with four representation formats: AdListShared, AdListChunked, Stinger [11], and
DegAwareRHH [13], each of which is shown to excel in different algorithm and
dataset combinations [10]. Details of these formats can be found in Section II. For
update operations, GraphTango consistently performed best across all datasets.
On average (maximum), GraphTango demonstrates 4.5x (6.6x) higher insertion
throughput and 3.2x (5.0x) higher deletion throughput over the next best approach.
As for analytics, GraphTango offers 1.1x (1.6x) higher throughput than the next best
approach. Unlike prior approaches, GraphTango provides excellent update and ana-
lytics throughput for both short-tailed and heavy-tailed graphs.

Being a storage format, GraphTango is orthogonal to most full-fledged graph pro-
cessing frameworks and can easily replace the underlying storage formats of those
frameworks. To demonstrate, we integrated GraphTango with the state-of-the-art
graph processing frameworks DZiG [15] and RisGraph [16]. DZiG + GraphTango
reduced the overall batch processing runtime by 2.3x (5.2x) on average (maximum)
compared to the original DZiG. RisGraph + GraphTango reduced the overall batch
processing runtime by 1.5x (1.9x) on average (maximum) compared to the original
RisGraph.

GraphTango will be made available on GitHub, both as a standalone framework
and as an integration with SAGA-Bench, DZiG, and RisGraph.

3  Even with our smallest dataset of 5 M edges, the LLC miss rate during the update phase is over 49%,
indicating that the working set size is larger than the LLC.

150	 International Journal of Parallel Programming (2024) 52:147–170

1 3

2 � Existing Representation Formats

Figure 1 illustrates how various graph representation formats store vertices and
edges. While these examples store only the outgoing edges, the concept is also
applicable if storing incoming edges.

2.1 � Compressed Sparse Row (CSR)

is one of the most commonly used formats for static graphs [17–20]. As shown in
Fig. 1b, CSR organizes data in an edge array and an index array. Edges are stored
in the edge array in ascending order - all edges of vertex vi appear before any
edge of vi+1 . The index array stores the position of the first edge of every vertex.
CSR is widely used for static graphs because it provides a compact representa-
tion, increasing spatial locality while traversing the graph. However, inserting or
deleting an edge requires reconstructing both the edge array and the index array,
making CSR unsuitable for dynamic graphs.

Fig. 1   Example of different graph representation formats. Here, each edge e is an {dst, prop} tuple

151

1 3

International Journal of Parallel Programming (2024) 52:147–170	

2.2 � Adjacency List

stores the edges of every vertex in separate arrays (Fig. 1c). A vertex array
stores the pointers to these edge arrays. These edge arrays are assumed to be
memory-contiguous (like std::vector), rather than a linked list of edges. This
important distinction is used throughout the paper. As each edge array can grow/
shrink independently, insertion and deletion operations only modifies the edge
array of the corresponding vertex. This property makes adjacency lists a common
choice for dynamic graph frameworks [10, 14]. Another advantage of adjacency
lists is that the edge traversal during the analytics phase has a sequential access
pattern, leading to excellent analytics throughput for vertex-centric algorithms.
The downside of adjacency lists is that the edges are not stored in any particular
order within an edge array. Therefore, finding an edge requires a linear search
through the corresponding edge array, leading to poor update throughput on high-
degree vertices.

In adjacency-list-based approaches, parallel updates on multiple vertices are real-
ized in two ways. The first scheme is the shared style multithreading (referred as
AdListShared), where the vertex array additionally contains a lock for every vertex.
Any thread can process updates on any vertex by acquiring the corresponding lock
first. This approach provides fine-grained parallelism. However, if most updates are
targeted towards the same vertex, it can cause lock contention and is often the case
for heavy-tailed graphs. The alternative scheme groups source vertices into chunks
and assign each chunk to a fixed thread (referred as AdListChunked). Chunked
style multithreading is lock-free. However, it is prone to workload imbalance if the
chunks have a high disparity in the number of edges they contain.

2.3 � Stinger

Ediger et al. [11] is an adjacency-list-based representation format. As illustrated
in Fig. 1d, Stinger stores the edges as linked lists of edge blocks. Each edge block
can accommodate a fixed number of edges (default is 16). Parallelism in Stinger
is achieved by acquiring locks on the edge blocks. The capacity of the edge blocks
presents a trade-off between performance and storage requirements. Using smaller
capacity edge blocks increase parallelism but makes graph traversal inefficient by
increasing the amount of pointer-chasing accesses. On the other hand, larger blocks
lead to many unused slots for low-degree vertices. Besides, like adjacency lists,
Stinger also suffers from linear lookups on high-degree vertices, stagnating the
update throughput.

2.4 � Degree‑Aware Robin Hood Hashing (DegAwareRHH)

Iwabuchi et al. [13] is a hash-based format. As shown in Fig. 1e, DegAwareRHH
maintains two types of hash tables based on the vertex degree. Edges corresponding
to low-degree vertices are stored in a combined hash table to improve data locality.

152	 International Journal of Parallel Programming (2024) 52:147–170

1 3

On the other hand, each high-degree vertex maintains its own hash table. Both of
these hash tables use Robin Hood hashing [21], which minimizes probing distance.
For parallelism, DegAwareRHH leverages chunked-style multithreading similar to
AdListChunked. The constant time lookup enabled by the hash tables makes DegA-
wareRHH suitable for the update phases on heavy-tailed graphs. However, the sparse
storage of edges in the hash table makes DegAwareRHH’s edge traversal inefficient,
negatively impacting the analytics throughput.

3 � GraphTango Data Structure

Figure 2 gives an overview of the GraphTango data structure.4 GraphTango organ-
izes the vertex data in two arrays: one for storing the vertex properties (vProp)
and the other for storing neighborhood metadata of the vertex (edgeMeta). These
arrays are indexed using vertex id. Neighbors of each vertex are stored as an
ex = {dst, [prop]} tuple, where ex.dst is the destination vertex id, and ex.prop is an
optional edge property (e.g., the weight of the edge).

The edgeMeta array is aligned to a page boundary,5 and each element of the array
is of cache line size. Therefore, accessing any field of edgeMeta[i] will bring the rest
of the fields into the cache. The deg field holds the current degree of the correspond-
ing vertex. Depending on the degree, a vertex will fall into one of the following
three categories:

3.1 � Type1 Vertex

These are low-degree vertices with deg ≤ TH0 . As illustrated in Fig. 2b, we store the
edges directly with the metadata for Type1 vertices. The threshold TH0 denotes the
number of edges that can fit inside the metadata and is defined as:

Fig. 2   Proposed hybrid representation format of GraphTango

4  The description assumes storing only outgoing edges for clarity. In our implementation, we stored both
incoming and outgoing edges for directed graphs.
5  To clarify, only the edgeMeta array itself is page boundary aligned, not the edge arrays or hash tables
it may point to.

153

1 3

International Journal of Parallel Programming (2024) 52:147–170	

For example, TH0 = 7 for a typical cache line size of 64 bytes and edges of 8 bytes.
The advantage of storing edges with metadata is that all edges are brought into the
cache as soon as we access the vertex during the update or analytics phase. When
searching for a specific edge, we need to do a linear search. However, the search is
extremely fast, as all accesses will be cache hits.

3.2 � Type2 Vertex

These are medium-degree vertices with TH0 < deg ≤ TH1 , where TH1 is a user-con-
figurable threshold. Edges for this type of vertices are stored in adjacency lists, as
shown in Fig. 2c. To support adjacency lists, edgeMeta additionally maintains the
current capacity (cap) and a pointer to its edge array (edgePtr).

Like Type1 vertices, Type2 also requires a linear search when looking for a spe-
cific edge. As the linear search on the edge array is prefetcher-friendly and has good
spatial locality, it offers better performance than hash-based search up to a certain
point (i.e., tuned using the TH1 threshold). However, the linear nature of the search
becomes a performance bottleneck for higher-degree vertices. Hash-based search is
preferable in such cases, as explained below.

3.3 � Type3 Vertex

These are high-degree vertices with deg > TH1 . Figure 2d illustrates this scenario.
Here, we maintain both an adjacency list and a hash table for each Type3 vertex.
The hash table maps an edge’s destination vertex id ( ex.dst ) with its location in the
corresponding adjacency list. Maintaining both hash table and adjacency list comes
with the following benefits: (i) The hash table enables constant-time lookups during
the update phase. (ii) The adjacency list provides fast and efficient traversal during
the analytics phase. Prior hash-based approaches suffer from low analytics through-
put due to inefficient edge traversal [10]. GraphTango is free of this issue because
it uses only the adjacency lists for edge traversal and does not require accessing the
hash tables during the entirety of the analytics phase.

4 � GraphTango Basic Operations

4.1 � Edge Insertion

The edge insertion procedure is as follows: (i) Retrieve the edge metadata -
edgeMeta[srcId]. (ii) If the current deg reaches the current capacity, we double the
capacity. The exact steps for capacity doubling will depend upon the current and new
type, as demonstrated in Table 1a. In general, capacity doubling involves allocating

TH0 =

⌊
CACHE_LINE_SIZE − sizeof (deg)

sizeof (e)

⌋

154	 International Journal of Parallel Programming (2024) 52:147–170

1 3

memory for the larger edge array, copying current edges to the new edge array, and
freeing the old array. For Type3, the hash table is also rehashed. The amortized cost
of capacity doubling is O(1) [22]. (iii) Search for a duplicate edge using dst. As
mentioned earlier, for Type1 and Type2, it will involve doing a linear search, and for
Type3, the search will be performed using the hash table. (iv-A) If the edge is found,
update the property and return. (iv-B) If the edge is not found, add the edge at the
end of the edge array and increment deg. For Type3, we also create an entry in the
hash table pointing to the location.

4.2 � Edge Deletion

The edge deletion procedure is as follows: (1) Retrieve the edge metadata -
edgeMeta[srcId]. (ii) Search for existing edge using dst. (iii-A) If the edge is not
found, return. (iii-B) If the edge is found, delete the entry from the edge array and
hash table (for Type3) and decrement deg. We do a compaction step here to fill the
gap. It involves moving the last entry of the edge array to the deleted entry’s position
and updating the corresponding hash table record. The compaction step is simple
and is of constant time complexity. (4) If the deg becomes 1/4th of the capacity, we
halve the capacity. The steps for capacity halving is given in Table 1b. Similar to the
capacity doubling during insertion, the amortized cost of capacity halving is also
O(1) [22].

Table 1   Vertex type switching steps for insertion/deletions

(a) Insertions triggering type switch or capacity doubling

Direction New capacity Alloc new
edge array

Edge copy size Dealloc old
edge array

Rehash

Type1 → Type2 nextPow2(TH0) ✓ deg (=TH0) X X
Type2 → Type2 cap * 2 ✓ deg ✓ X
Type2 → Type3 cap * 2 ✓ deg (=TH1) ✓ ✓

Type3 → Type3 cap * 2 ✓ deg ✓ ✓

(b) Deletions triggering type switch or capacity halving

Direction New capacity Alloc new
edge array

Edge copy size Dealloc old
edge array

Rehash

Type3 → Type3 cap / 2 ✓ deg ✓ ✓

Type3 → Type2 cap / 2 ✓ deg (=TH1) ✓ X
Type2 → Type2 cap / 2 ✓ deg ✓ X
Type2 → Type1 TH0 X deg (=TH0) ✓ X

155

1 3

International Journal of Parallel Programming (2024) 52:147–170	

4.3 � Edge Traversal

As we store the edges in consecutive memory for all three vertex types,6 the edge
traversal API simply returns a cursor (i.e., position of the iterator) for indexing to
the: (i) edgeMeta[vid] for Type1 vertices, or (ii) edgeMeta[vid].edgePtr for Type2/
Type3 vertices. GraphTango’s traversal mechanism is essentially the same as an
adjacency list for Type2/Type3 vertices. As for Type1, GraphTango has a better
access pattern as it requires one less indirection.

5 � Optimizing GraphTango

5.1 � Cache‑Friendly Hashing Scheme

The hash table used by the Type3 vertices can be realized in several ways. The most
convenient approach is to use std::unordered_map. Unfortunately, this approach
is not ideal for our purpose because the C++ standard [23] effectively limits the
collision resolution of std::unordered_map to separate chaining,7. With separate
chaining, the hash table is constructed as an array of buckets. Each bucket points
to a linked list of colliding elements (i.e., keys that hashed to the same bucket). The
issue with separate chaining is that it involves multiple random accesses - one to
access the bucket and one or more for traversing the linked list. Each of these ran-
dom accesses is a potential cache miss if the hash table does not fit into the cache.
An alternative to separate chaining is open addressing, where all elements are stored
in the hash table itself, eliminating the need for linked lists traversals. Prior hash-
based graph representation formats [12, 13] leveraged open-addressing-based Robin
Hood hashing [21] that minimizes probing distance. For GraphTango, we designed
a more cache-friendly open-addressing-based hash table that minimizes the number
of cache line accesses, making it especially suitable for real-world graph workloads
where the hash table is unlikely to fit into the cache.

The key idea of our hashing scheme is to limit the probes within a single cache
line until it is fully searched, before moving onto a different cache line. Figure 3
illustrates this hashing scheme. The hash table itself is composed of an array of
{key, value} pairs. The index of the i-th probe to the hash table is given by the fol-
lowing hash function:

Here, N is the number of {key, value} pairs that can fit within a single cache line.
The purpose of h1

(
key,

⌊
i

N

⌋)
 is to select a cache line for probing and returns the

h(key, i) = N ⋅ h1

(
key,

⌊
i

N

⌋)
+ h2(key, i mod N)

6  Even after deletions, our compaction step ensures that all valid edges of a vertex are stored in consecu-
tive memory.
7  This constraint is a side effect of mandating pointer stability which means that an iterator must remain
valid upon inserting or deleting elements.

156	 International Journal of Parallel Programming (2024) 52:147–170

1 3

base index of that selected cache line. Note that the
⌊

i

N

⌋
 parameter remains the same

for every N consecutive probes, thereby selecting the same cache line. As h1() should
eventually explore all cache lines in the hash table, it must be a permutation of
{0, 1, ...,M − 1} , where M is the number of cache lines in the hash table. On the
other hand, h2(key, i mod N) determines the offset within the cache line and must be
a permutation of {0, 1, ...,N − 1} . Any hash function conforming to this permutation
requirement can be used to implement h1() and h2() . In GraphTango, we used double
hashing for h1() to avoid primary/secondary clustering. h2() uses linear probing to
make hash computation simpler. Our hash function is very cheap to compute, with
the reference implementation having two multiplications and eight other simple
arithmetic/logical instructions. This is because we ensure that both N and M are
powers-of-two, converting expensive modulus and division operations to simple
shifts. Further optimization is possible by leveraging SIMD instructions to do a par-
allel comparison on all entries mapped to the same cache line. However, as dis-
cussed later, GraphTango demonstrates short probing distance, making iterative
comparison just as performant. Interested readers can find the implementation
details of these hash functions in the Appendix A.

Insertions and deletions to the proposed hash table are similar to other open-
addressing-based hash tables. Each location of the hash table can contain either: (i)
a valid {key, value} pair, or (ii) an empty marker, or (iii) a deleted marker (i.e., tomb-
stone). We used two reserved values as the empty and deleted marker instead of

Fig. 3   Proposed hashing scheme. a Hash function to determine the index to the hash table. b An example
probing sequence for M = 5 and N = 4

157

1 3

International Journal of Parallel Programming (2024) 52:147–170	

using dedicated tag storage. During both insertion and deletion, the table is probed
(using the hash function) until the key or an empty marker is found. If the key is
found: (i) For insertion, the corresponding value is updated. (i) For deletion, the
entry is marked as deleted. Instead of key, if an empty marker is found: (i) No action
is required for deletion. (ii) For insertion, the {key, value} pair is inserted to the loca-
tion of the first encountered delete marker, or to the current location if no delete
marker was encountered.

When using with GraphTango, the hash tables’ initial capacity is set to twice the
capacity of the corresponding adjacency lists. Upon inserting/deleting edges, both
the hash tables and the adjacency lists can grow/shrink in size (see Sect. 4), but the
capacity ratio always remains 2. This property sets the maximum load factor ( � ) of
the hash table to 0.5. Assuming uniform hashing,8 the theoretical average probing
distance is: (i) 1

1−�
= 2 for an unsuccessful search. This is often the case for edge

insertions in the absence of duplicates. (ii) 1
�
ln

1

1−�
= 1.39 for a successful search

(e.g., deleting existing edges). In GraphTango, we can fit eight {key, value} pairs
within a single cache line (i.e., N = 8 ). As a result, the hash table needs to access
only one cache line as long as the probing distance remains ≤ 8 , which provides a
large slack over the theoretical average probing distances. We empirically observed
the same trend with our graph datasets, where over 99.2% of the insertions had a
probing distance ≤ 8 . Therefore, almost all edge insertion operations for Type3 ver-
tices require only three cache line accesses: (i) one for retrieving edgeMeta[srcId]
metadata that contains hash table and adjacency list pointers, (ii) one for searching
the hash table, and (iii) one for indexing to the adjacency list.

5.2 � Memory Allocation Scheme

As discussed in Sect. 4, GraphTango requires frequent growing/shrinking of adja-
cency lists and hash tables. Calling malloc()/free() in every such instance can cause
high runtime overhead and memory fragmentation. We avoid this issue by design-
ing a fast thread-local lock-free memory pool that supports O(1) allocation and
deallocation.

Figure 4 illustrates the data structure of the memory pool. This memory pool
allocates chunks in power-of-two sizes. Individual linked lists of available chunks
are maintained for each valid size. The heads of the linked lists are stored in the
freePtrs array. The first 8 bytes of each chunk (highlighted green) hold the pointer to
the next free chunk of the same size. This way, no extra storage beside the freePtrs
array is required to hold the pointers. However, it limits the minimum chunk size to
8 bytes in a 64-bit machine.

Allocation steps are shown in Fig. 4a. For an allocation request of sz bytes, the
pool will return a chunk of size newSz = 2k , where k = ⌈log2(sz)⌉ (i.e., nearest power
of two that is ≥ sz ). The allocation proceeds as follows: (i) Find the first available
free chunk of newSz. This is simply given by ret = freePtrs[k] . (ii) If ret is not a null

8  Double hashing can demonstrate performance very close to the ideal scenario of uniform hashing [22,
24].

158	 International Journal of Parallel Programming (2024) 52:147–170

1 3

pointer, then it points to a free chunk. In this case, we update freePtrs[k] to point to
the next free chunk, and return ret. (iii) If ret is a null pointer, this indicates no chunk
of the requested size is available. In this case, a large memory block is allocated (of
size max(4MB, newSz) and aligned to the page boundary) and then split into a linked
list of newSz byte chunks. freePtrs[k] is set to point to the first chunk. At this point,
we have free chunks of newSz. Therefore, repeating step (ii) will complete the allo-
cation. Note that, once allocated, the full chunk can be used to store data, including
the space initially used to hold the pointer to the next chunk.

Deallocation steps are shown in Fig. 4b. Unlike the standard free(ptr), we provide
the size of the allocated chunk as an additional parameter— free(ptr, sz). Using the
sz parameter, we can directly index to the freePtrs array and add ptr as a free chunk,
as shown in Fig. 4b.

An advantage of the proposed memory pool is that the most recently deallo-
cated chunk will be allocated first, thereby being more likely to reside in the cache.

Fig. 4   Allocation and deallocation on the memory pool. Deleted pointers are shown by dashed lines and
the modified pointers by red lines

159

1 3

International Journal of Parallel Programming (2024) 52:147–170	

Furthermore, each thread maintains its own freePtrs array. As a result, no lock is
required when multiple threads are trying to allocate/deallocate simultaneously. A
minor downside is that one thread cannot allocate free chunks from another thread’s
pool. We found it to be of little consequence in practice because the maximum amount
of unused space per thread is O(blockSize). Also, note that the ⌈log2(sz)⌉ calculation
used to index freePtrs is very cheap to perform. It only requires count leading zero
(clz) and shift instructions.

5.3 � Parallelization

For GraphTango, we experimented with both shared and chunked style multi-
threading. We decided to settle for chunked style multithreading as it demonstrated
slightly better throughput on our datasets. As we are using chunked style multi-
threading, operations concerning any vertices within a partition is mapped to a
fixed worker thread. As discussed before, this method eliminates the need of per-
forming atomic operations and requires minimum synchronization, but may suffer
from workload imbalance. Exploring advanced load-balancing techniques is left
as a potential future work. Another related concern is false sharing, which might
occur when multiple threads simultaneously modify a shared data structure. In the
case of GraphTango, false-sharing-prone data structures are the vertex property
array and the active frontier array. We avoid false sharing by using a partition size
multiple of the cache line size (e.g., 512). It ensures that no two partitions’ data
share the same cache line.

5.4 � Determining the TH
1
 Threshold

Unlike the TH0 threshold, which is fixed for a given cache line size and edge element
size, the TH1 threshold is flexible and has a moderate impact on performance and mem-
ory usage (Sect. 6.4). As mentioned before, TH1 should be set to a value for which
O(TH1) linear search through the edge array is likely to perform better than O(1) hash
table lookup. The following equation provides an estimate and can be used as a rule of
thumb for selecting TH1:

This equation sets TH1 to a value roughly corresponding to four cache line accesses
for Type2 vertices. This is slightly above the three cache line accesses of Type3 ver-
tices, as Type2 vertices have favorable sequential access patterns and do not incur
hash calculation overheads. As an alternative, we provide a microbenchmark pro-
gram (graph dataset agnostic) with GraphTango that empirically finds a suitable
TH1 threshold.

(1)TH1 = 2⌈log2(3×edgesPerCacheLine)⌉

160	 International Journal of Parallel Programming (2024) 52:147–170

1 3

6 � Evaluation

6.1 � Experimental Setup

6.1.1 � Platform

The experiments are conducted on an AMD Ryzen 3900x @ 3.8GHz machine with
12 physical cores, 64MB of LLC, and 32GB of DDR4 DRAM. Hyper-threading and
turbo-boost were disabled for better reproducibility. All experiments are performed
with 12 cores.

6.1.2 � Implementation

We evaluated GraphTango by integrating it with the SAGA-Bench [10] benchmark-
ing framework. SAGA-Bench comes with four representation formats - AdList-
Shared, AdListChunked, Stinger [11], and DegAwareRHH [13]. Details of these
formats can be found in Section II. SAGA-Bench integration facilitates fair com-
parison, because all approaches must use the exact same algorithm implementations
through a common API. The source code is compiled with gcc−9.3.0 and -03 flag.

Both vertex id and edge property are considered to be of 64-bits size. Therefore,
GraphTango has TH0 = 7 for unweighted graphs and TH0 = 3 for weighted graphs.
TH1 is set to 32 following the tuning carried out in Sect. 6.4. This TH1 value also
matches the value provided by Eq. 1.

6.1.3 � Profiling Methodology

Graph datasets are first randomly shuffled to break any existing ordering of edges.
This is done to reflect the realistic scenario where edge updates are unlikely to occur
in any pre-defined order. The shuffled dataset is inserted in batches of 1 M edges
until the full graph is built and then deleted9 in batches of 1 M edges until no edges
are left to delete. This batch size is similar to prior works [10, 12]. Analytics is
performed on the graph after every batch of insertions and deletions. Reported
throughputs are the geometric mean of the per-batch throughputs. GraphTango
dynamically switches between vertex types as edges are inserted/deleted. As dis-
cussed in Sect. 4, this switching may involve memory allocation/deallocation, copy-
ing, or rehashing. This switching overhead is included in the reported results.

6.1.4 � Datasets

We have used four real-world datasets in our experiments: Orkut, LiveJournal, Wiki-
topcats (referred as Wiki), and Wiki-talk (referred as Talk). Orkut and LiveJournal

9  The vanilla SAGA-Bench does not support edge deletions. We added deletion support for all represen-
tation formats by closely following the corresponding papers or from their source code if available.

161

1 3

International Journal of Parallel Programming (2024) 52:147–170	

are online social media networks, Wiki is a dataset of Wikipedia hyperlinks, and
Talk is the Wikipedia communications network. These datasets are part of the SNAP
dataset collection [25]. All these datasets are directed except for Orkut. Properties
of these datasets are given in Table 2. Orkut and LiveJournal have a much lower
per-batch maximum degree compared to Wiki and Talk. Consequently, Orkut and
LiveJournal are characterized as short-tailed graphs while Wiki and Talk are
heavy-tailed graphs.

6.1.5 � Algorithms

We used four algorithms in our experiments: (i) Breath-First Search (BFS), (ii) Page
Rank (PR), (iii) Single-Source Shortest Path (SSSP), and (iv) Connected Compo-
nents (CC). Vertex centric incremental compute model is used for these algorithms,
where the computation is constrained within the region affected by the update phase
instead of the whole graph. The implementations of these algorithms are directly
taken from SAGA-Bench without any modification.

6.2 � Analytics and Update Performance

6.2.1 � Analytics Throughput

Fig. 5 shows the analytics throughput of the representation formats. As mentioned
in Sect. 6.1(C), the analytics phase is conducted multiple times as we gradually
build the graph. Reported values are the geometric mean of per-batch throughputs.
GraphTango outperforms other approaches in every dataset and algorithm combina-
tions. Compared to the next best approach (i.e., AdListShared for BFS, SSSP, CC
and AdListChunked for PR), GraphTango provides an avg (max) speedup of 1.1x
(1.6x). As all these approaches are using the exact same algorithm implementation,
their relative performance is primarily determined by their edge traversal efficiency.
Adjacency-list-based approaches perform well in this regard, because their edge tra-
versal consists of mostly sequential accesses. GraphTango also uses adjacency lists
for medium- and high-degree vertices (Type2 and Type3). For low-degree vertices
(Type1), GraphTango has a better access pattern, as it requires one less indirection
(i.e., does not need pointer chasing to find the corresponding edge array), thereby
offering higher throughput. Stinger, despite using coarse-grained adjacency lists,

Fig. 5   Comparison of the analytics throughputs. Higher is better 

162	 International Journal of Parallel Programming (2024) 52:147–170

1 3

suffers due to additional pointer chasing between edge blocks. Overall, GraphTango
provides an avg (max) speedup of 1.8x (5.1x) over AdListShared, 1.3x (1.6x) over
AdListChunked, 2.0x (2.7x) over Stinger, and 5.2x (14.0x) over DegAwareRHH.

6.2.2 � Update Throughput

Fig. 6 shows the update (edge insertion and deletion) throughput. Note that the
updates are interleaved with analytics phases (see Sect. 6.1.C). The algorithm choice
of the analytics phase has little impact on the update throughput, and the reported
values are the average across the four algorithms. Here, GraphTango outperforms
other approaches by a large margin. Adjacency-list-based approaches perform well
on short-tailed graphs. On these graphs, GraphTango provides an avg (max) speedup
of 2.5x (2.7x) over the next best approach AdListShared. On the other hand, hash-
based DegAwareRHH performs best on the heavy-tailed graphs. Interestingly,
AdListShared performed even worse than AdListChunked for heavy-tailed graphs.
This is due to the lock contention of shared-style multithreading on AdListShared.
On heavy-tailed graphs, GraphTango provides an avg (max) speedup of 6.5x (6.6x)
over the next best approach DegAwareRHH. Notably, other approaches are suitable
for either short- or heavy-tailed graphs. GraphTango’s hybrid nature makes it con-
sistently the best-performing irrespective of the graph’s degree distribution.

6.3 � Memory Usage

Table 3 shows the average memory usage per edge. The AdListShared and
AdListChunked are most efficient in terms of memory usage. Compared to
AdListChunked - Stinger, DegAwareRHH, and GraphTango require 5.1x, 4.1x, and
3.4x more memory on average, respectively. For DegAwareRHH, the high mem-
ory usage is caused by: (i) Sparse storage of edges in hash tables (to reduce colli-
sion), and (ii) Robin Hood hashing mechanism that requires storing the probe dis-
tance for each entry. On the other hand, Stinger and GraphTango have a relatively
high initial capacity (16 for Stinger and TH0 for GraphTango) that remains mostly
unused for low-degree vertices. This scenario is especially noticeable for the Talk

Table 2   Evaluated Datasets

1 Per-batch maximum degree with batch size of 1 million edges
2 For TH0 = 7 and TH1 = 32

Dataset Vertices Edges Max degree1 Vertex mapping2

(million) (million) in out Type1 Type2 Type3

Orkut 3.0 117.2 329 329 27.2% 38.6% 34.2%
LiveJournal 4.8 69.0 237 332 63.0% 26.0% 11.0%
Wiki 1.8 28.5 8,504 154 57.8% 33.9% 8.3%
Talk 2.4 5.0 665 20,088 98.3% 1.2% 0.5%

163

1 3

International Journal of Parallel Programming (2024) 52:147–170	

dataset, where more than 96% of the vertices have a degree ≤ 3 , leading to high
memory usage. Although GraphTango has higher memory usage compared to the
simple adjacency-list-based approaches, the update throughput benefit is significant,
especially on heavy-tailed graphs (19.3x to 32.8x speedup on Wiki and Talk data-
sets). If needed, one way to reduce memory usage of GraphTango is to increase the
TH1 threshold, as discussed in Sect. 6.4. Compared to Stinger and DegAwareRHH,
GraphTango requires less memory as well as provides much higher performance.

Fig. 6   Comparison of update throughputs. Higher is better 

Table 3   Average memory usage
(Bytes Per Edge)

Dataset AdList- AdList- Stinger DegAware GraphTango
Shared Chunked RHH

Orkut 13.3 12.0 32.7 43.8 33.6
LiveJournal 16.3 12.9 48.9 57.0 34.6
Wiki 15.7 12.7 44.1 62.9 34.4
Talk 44.8 21.9 230.2 74.6 116.9

164	 International Journal of Parallel Programming (2024) 52:147–170

1 3

6.4 � Impact of TH
1
 Threshold

Figure 7 shows the impact of the TH1 threshold on update throughput and memory
usage. Analytics throughput is not shown because the choice of TH1 does not impact

Fig. 7   Impact of TH1 threshold on update throughput and memory usage

Table 4   Impact of
Optimizations on the Update
Throughput (Baseline is the
proposed hybrid format without
any optimizations applied)

Bold vlaues corresponds to our proposed approach
1 AdListShared for STail and DegAwareRHH for HTail
2 glibc version 2.31
3 std::unordered_map with libstdc++ version 6.0.28
4 tsl::robin_map from [26], version 1.0.1
5 Robin Hood hashing implementation from [27], version 3.11.5
6 Google’s Abseil flat_hash_map version LTS 20211102 [28]

Configuration Format Allocation Hashing Speedup

Scheme Scheme STail HTail

baseline Hybrid malloc2 std_map3 1.00 1.00

next best1 – – – 0.76 0.29
opt pool Hybrid proposed std_map3 1.12 1.14
opt hash Hybrid malloc2 proposed 1.71 1.70
GT_Tessil Hybrid proposed Tessil4 1.40 1.60
GT_RHH Hybrid proposed RHH5 1.35 1.45
GT_Abseil Hybrid proposed Abseil6 1.34 1.43
GraphTango Hybrid Proposed Proposed 1.89 1.79
DegAwareRHH DegAware malloc2 RHH 0.29 0.29
DegAwareCFH DegAware malloc2 proposed 0.40 0.38

165

1 3

International Journal of Parallel Programming (2024) 52:147–170	

the analytics performance. TH1 of 16 and 32 provides the best throughput on three
out of the four datasets. We used TH1 of 32 in all other experiments, as it has lower
memory usage.

The TH1 threshold controls the ratio between Type2 and Type3 vertices. Increas-
ing TH1 maps more higher-degree vertices to Type2 instead of Type3. As Type2 ver-
tices requires linear search during updates, it eventually becomes a performance bot-
tleneck for TH1 > 32 . On the other hand, Type2 vertices do not require maintaining
a hash table and thus require less memory than Type3. As a result, increasing TH1
reduces the memory usage. On average, increasing TH1 from 8 to 512 reduces the
memory usage by 1.9x.

The Talk dataset is an outlier showing negligible variation with TH1 . This is
because, for the Talk dataset, 98.3% of the vertices are mapped to Type1 (refer to
Table 2), leaving only 1.7% of the vertices that can be affected by changing TH1.

6.5 � Impact of Optimizations

The purpose of this section is to isolate the contribution of the proposed hybrid for-
mat as well as the memory allocation and hashing scheme optimizations. Table 4
shows our findings. In this table, the STail and HTail columns show the normalized
update throughput over the baseline configuration for short-tailed and heavy-tailed
graphs, respectively. We show only the update throughput because the memory pool
and hashing optimizations have a negligible impact on the analytics throughput.

The baseline configuration implements our proposed hybrid format (i.e., Type1,
Type2, and Type3 mapping of vertices) but uses sub-optimal malloc for memory
allocation and std::unordered_map for hashing. We can observe that using only
the hybrid format is sufficient to provide a better performance than the next best
approach (AdListShared for STail and DegAwareRHH for HTail). Compared to the
next best approach, the baseline offers 1.3x (3.4x) higher speedup for STail (HTail)
graphs. The opt pool configuration shows the benefit of the proposed memory allo-
cation scheme. On average, the proposed pool provides 1.13x better performance
over the baseline. On the other hand, the opt hash configuration shows the ben-
efit of the proposed cache-friendly hashing scheme, offering 1.71x speedup over
std::unordered_map. With both optimizations enabled, GraphTango provides an
average speedup of 1.84x over the baseline.

A valid concern at this point is whether we can combine other hashing schemes
with our hybrid format to get even better performance. To answer this question, we
tried three other open-addressing-based hash-table implementations: (i) GT_Tessil:
The Robin Hood hashing variation of Tessil (tsl::robin_map) [26]. This is the fast-
est hash table implementation according to the benchmark results published in [29].
(ii) GT_RHH: Another fast implementation of Robin Hood hashing from [27, 29].
Although it is slightly slower than Tessil, it consumes significantly less memory.
(iii) GT_Abseil: Google’s Abseil flat_hash_map [28, 30]. The max load factors
of these approaches are set equal to ours (= 0.5) for a fair comparison. On STail
(HTail) graphs, the proposed hashing scheme provides 1.35x (1.12x) speedup over

166	 International Journal of Parallel Programming (2024) 52:147–170

1 3

GT_Tessil, 1.4x (1.23x) speedup over GT_RHH and 1.41x (1.25x) speedup over
GT_Abseil. Because our hashing scheme tries to minimize cache line access, it is
especially suitable for graph workloads where the hash table is unlikely to reside in
the cache.

Finally, we evaluate whether DegAwareRHH can leverage our hashing scheme to
outperform GraphTango. DegAwareCFH denotes this configuration. DegAwareCFH
provides 1.37x (1.31x) better throughput over the vanilla DegAwareRHH. However,
GraphTango still outperforms it by 4.7x for both STail and HTail graphs.

6.6 � Integration with DZiG and RisGraph

This section demonstrates that full-fledged graph processing frameworks can lever-
age the GraphTango format to improve their performance further. We selected two
state-of-the-art graph processing frameworks DZiG [15] and RisGraph [16] for this
purpose. We modified their publicly available source code [31, 32] and replaced
their storage format with GraphTango. We run the datasets on BFS, PR, and SSSP
for DZiG. CC is omitted because its implementation is unavailable in the frame-
work’s repository. For the same reason, PR is omitted in case of RisGraph.

Figure 8a shows the comparison results between DZiG and DZiG+GraphTango.
DZiG internally uses adjacency list as graph storage. For this reason, analytics time
for DZiG and DZiG+GraphTango is similar in most cases. Interestingly, the insertion
time is also comparable in some cases. For example, LiveJournal and Wiki datasets
for BFS. This is because the original DZiG’s edge insertion does not check for dupli-
cate edges. Therefore, the edge insertion becomes as simple as adding an element to
the end position of an array.10 On average, GraphTango provides a 1.9x reduction in
insertion time even though it also checks for duplicate edges. For deletion, unmodified

Fig. 8   Batch processing time breakdown of DZiG and RisGraph integration. Lower is better 

10  There is a flag to enable duplicate edge insertion checking. But that checking is done by sorting the
batch as a pre-processing step, thereby incurring heavy overhead.

167

1 3

International Journal of Parallel Programming (2024) 52:147–170	

DZiG performs 6x worse on average. We identified two reasons: (i) Unlike insertions in
DZiG that do not search for duplicates, delete operations require a linear search through
the neighbor list, incurring higher runtime cost, and (ii) DZiG performs a quicksort on
the batch based on the source and destination vertex ids to distribute them among the
threads. As we use fixed mapping of vertices in GraphTango, sorting costs are avoided.
Overall, DZiG+GraphTango provides an average of 2.3x reduction in total batch pro-
cessing time compared to the original DZiG.

Figure 8b shows the comparison between RisGraph and RisGraph+GraphTango.
RisGraph uses a hybrid graph storage format that uses adjacency list for low/medium
degree vertices and adjacency list along with hash table for high degree vertices. Unlike
GraphTango, RisGraph does not differentiate between low and medium degree vertices
and uses the same data structure for both. Furthermore, RisGraph uses Google’s dense
hash map and does not attempt to minimize the number of cache accesses as Graph-
Tango does with its proposed cache-friendly hashing scheme. Due to these differences,
RisGraph+GraphTango provides on average 1.5x reduction in total batch processing
time compared to the vanilla RisGraph.

7 � Conclusions

Existing streaming graph representation formats can only support either short-tailed
or heavy-tailed workloads efficiently. This paper proposes GraphTango, which aims to
solve this issue by adaptively switching formats based on the current degree of a vertex.
We also propose a cache-efficient hashing scheme and a fast memory pool. These opti-
mizations work in synergy with GraphTango to provide excellent update and analytics
throughput regardless of the graph’s degree distribution. Our evaluation on the SAGA-
Bench showed that on average (maximum), GraphTango provides 4.5x (6.6x) higher
insertion throughput, 3.2x (5.0x) higher deletion throughput, and 1.1x (1.6x) higher
analytics throughput over the next best approach.

Appendix A Hash Function Implementation

Given these parameters,
M = Number of cache lines in the hash table
N = Number of {key, value} pairs within a cache line
Our proposed hash function is of the following form:

Here, h1() selects a cache line inside the hash table array, and h2() selects an offset
within the cache line. Therefore, h1() must be a permutation of {0, 1, ...,M − 1} to
ensure that all cache lines are eventually selected. Similarly, h2() must be a permuta-
tion of {0, 1, ...,N − 1} to explore all {key, value} pairs within a cache line. Any h1()

h(key, i) = N ⋅ h1

(
key,

⌊
i

N

⌋)
+ h2(key, i mod N)

168	 International Journal of Parallel Programming (2024) 52:147–170

1 3

and h2() that meet the permutation requirement can be used. For GraphTango, we
used the following:

Here, w is the key width in bits, A is a large constant, and m = log2(M) . We use dou-
ble hashing for h1() to negate primary/secondary clustering. It is computed with the
help of two pairwise independent hashing functions, h3() and h4() . h3() and h4() are
computed with multiplicative hashing. As for h2() , we used simple linear probing.
Although seemingly complex, the hash can be computed cheaply as we ensure both
N and M are powers of two. The following code snippet shows how to calculate the
hash value for a 32-bit key:

Note that the code does not need any expensive division/modulus operation.
When compiled on an x86_64 machine with gcc 9.3.0 and -O3 flag, it resulted in 2
multiplications and 8 other simple arithmetic/logical instructions.

Acknowledgements  This work was funded in part by grant 19-1979 from Booz Allen Hamilton and by
CRISP, one of six centers in JUMP, a Semiconductor Research Corporation (SRC) program sponsored by
DARPA.

Author Contributions  A. Ahmed proposed the initial ideas presented in the manuscript. F. A. Siddique
and K. Skadron proposed fundamental improvements over the initial idea. The manuscript text is written
by A. Ahmed and F. A. Siddique. All authors reviewed the manuscript.

Declarations 

Conflict of interest  All (U. Virginia)—plus, Abraham, Jacob (U. Texas), Akel, Ameen (Micron Tech-
nologies), Angstadt, Kevin (St. Lawrence U.), Aly, Mohamed El-Hadedy (California Polytechnic),
Ceze, Luis (University of Washington), Cheng, Eric (Laboratory for Physical Sciences), Cher, Chen-
Yong (Graphen), Cho, Hyungmin (Sungkyunkwan U.), Chung, Sung Woo (Korea University), Clark,
Doug (Princeton, retired), Cong, Jason (University of California, Los Angeles), Dickerson, Samuel
(University of Pittsburgh), Eilert, Sean (independent), Eliceiri, Kevin (University of Wisconsin), Fa-
zeli, Mahdi (Halmsted University), Gai, Yan (St. Louis University),Gao, Wei (University of Pittsburgh),
Gaur, Jayesh (Intel), Gavrilovska, Ada (Georgia Tech), Guo, Xinfei (Shanghai Jiao Tong U.), Hoe, James
(CMU), Huang, Hang (University of Maryland), Hwu, Wen-Mei (UIUC), Imani, Mohsen (UC Irvine), Jun,
Sang-Woo (UC Irvine), Knight, Rob (University of California, San Diego), Kozyrakis, Christos (Stan-
ford University), Li, Jing (UPenn), Lila, Klas (Robust Chip), Marino, Mario (Leeds Beckett University),
Martinez, Jose (Cornell University), Martonosi, Margaret (Princeton), McDaniel, Patrick (Penn State U),

h1(k, x) = (h3(k) + x ⋅ h4(k)) mod M

h2(k, x) = (k + x) mod N

h3(k) = ⌊(A ⋅ k mod 2w)∕2w−m⌋
h4(k) = ⌊(A ⋅ k mod 2w)∕2w−2m⌋ or 1

169

1 3

International Journal of Parallel Programming (2024) 52:147–170	

Meyer, Brett (McGill), Mirkhani, Shahrzad (U. Texas), Moshiri, Niema (UCSD), Narayanan, Vijay (Penn
State U), Orenstein, Yaron (Bar Ilan U), Page, Brian (LPS), Parkhurst, Jeff (Intel), Patel, Jignesh (Wis-
consin University), Pop, Eric (Stanford), Qureshi, Moin (Georgia Tech), Raina, Priyanka (Stanford), Ros-
ing, Tajana (University of California, San Diego), Sadredini, Elaheh (UC Riverside), Salahuddin, Sayeef
(Berkeley), Sampson, Adrian (Cornell), Sheaffer, Jeremy (Iowa State), Sivasubramaniam, Anand (Penn
State U), Strukov, Dimitri (University of California, Santa Barbara), Subrramaniyan, Arun (Michigan),
Subramoney, Sreenivas (Intel), Sun, Yizhou (UCKA), Swift, Michael (Wisconsin), Swanson, Steven (Uni-
versity of California, San Diego), Tabajara, Lucas (Rice), Vardi, Moshe (Rice), Wadden, John “Jack”
(University of Michigan), Weimer, Westley (University of Michigan), Witchell, Emmet (U. Texas), Wong,
Philip (Stanford), Xie, Yuan (UCSB), Yu, Shimeng (Georgia Tech), Zhang, Yiying (UCSD), Zhang, Zhiru
(Cornell University), Zhao, Jishen (University of California, San Diego), Zhou, Peipei (U. Pittsburgh),
Zhou, Yuanyuan (University of California, San Diego), Zhu, Song-Chun (University of California, Los
Angeles)

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

	 1.	 Han, W., et al.: Chronos: a graph engine for temporal graph analysis. In: EUROSYS, pp. 1–14
(2014)

	 2.	 Cheng, R., et al.: Kineograph: taking the pulse of a fast-changing and connected world. In: EURO-
SYS, pp 85–98 (2012)

	 3.	 Compeau, P.E.C., et al.: How to apply de bruijn graphs to genome assembly. Nat. Biotechnol. 29,
987–991 (2011)

	 4.	 Zerbino, D.R., et al.: Velvet: algorithms for de novo short read assembly using de bruijn graphs.
Genome Res. 18, 821–829 (2008)

	 5.	 Grewal, A., et al.: Recservice: distributed real-time graph processing at twitter. In: HotCloud (2018)
	 6.	 Eksombatchai, C., et al.: Pixie: a system for recommending 3+ billion items to 200+ million users

in real-time. In: WWW, pp. 1775–1784 (2018)
	 7.	 Park, J., Nahrstedt, K.: navigation graph for tiled media streaming. In: ICME, pp. 447–455 (2019)
	 8.	 Braun, P., et al.: Knowledge discovery from social graph data. Procedia Comput. Sci. 96, 682–691

(2016)
	 9.	 Borgman, C.L., et al.: Drowning in data: digital library architecture to support scientific use of

embedded sensor networks. In: JCDL, pp. 269–277 (2007)
	10.	 Basak, A., et al.: Saga-bench: software and hardware characterization of streaming graph analytics

workloads. In: ISPASS, pp. 12–23 (2020)
	11.	 Ediger, D., et al.: Stinger: high performance data structure for streaming graphs. In: HPEC (2012)
	12.	 Jaiyeoba, W., Skadron, K.: Graphtinker: a high performance data structure for dynamic graph pro-

cessing. In: IPDPS, pp. 1030–1041 (2019)
	13.	 Iwabuchi, K., et al.: Towards a distributed large-scale dynamic graph data store. In: IPDPSW, pp.

892–901 (2016)
	14.	 McCrabb, A., Bertacco, V.: Optimizing vertex pressure dynamic graph partitioning in many-core

systems. IEEE Trans. Comput. 70, 936–949 (2021)
	15.	 Mariappan, M., et al.: Dzig: sparsity-aware incremental processing of streaming graphs. In: EURO-

SYS, pp. 83–98 (2021)
	16.	 Feng, G., et al.: Risgraph: a real-time streaming system for evolving graphs to support sub-millisec-

ond per-update analysis at millions ops/s. In: SIGMOD, pp. 513–527 (2021)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

170	 International Journal of Parallel Programming (2024) 52:147–170

1 3

	17.	 Hu, Y., et al.: Graphlily: accelerating graph linear algebra on hbm-equipped fpgas. In: ICCAD, pp.
1–9 (2021)

	18.	 Ham, T.J. et al.: Graphicionado: a high-performance and energy-efficient accelerator for graph ana-
lytics. In MICRO, pp. 1–13 (2016)

	19.	 Sundaram, N., et al.: Graphmat: high performance graph analytics made productive. arXiv:​1503.​
07241 (2015)

	20.	 Gui, C.Y., et al.: A survey on graph processing accelerators: challenges and opportunities. JCS &T
34, 339–371 (2019)

	21.	 Celis, P., et al.: Robin hood hashing. In: SFCS, pp. 281–288 (1985)
	22.	 Cormen, et al.: Introduction to algorithms. MIT press, Cambridge (2009)
	23.	 ISO/IEC JTC 1/SC 22 technical committee. C++ standard. https://​www.​iso.​org/​stand​ard/​79358.​

html (2020)
	24.	 Knuth, D.E.: The art of computer programming. Addison-Westley Publishing, Reading, MA (1973)
	25.	 Leskovec, J., Krevl, A.: Snap datasets: stanford large network dataset collection. https://snap.stan-

ford.edu/data/ (2014)
	26.	 Planchon T.: Tessil github repository. https://github.com/Tessil/robin-map (2022)
	27.	 Ankerl M.: Robin hood hashing github repository. https://github.com/martinus/robin-hood-hashing

(2022)
	28.	 Google: Abseil github repository. https://github.com/abseil/abseil-cpp (2022)
	29.	 Ankerl M.: Hashmap benchmarks. https://martin.ankerl.com/2019/04/01/hashmap-benchmarks-

01-overview/ (2019)
	30.	 Matt K.: Designing a fast, efficient, cache-friendly hash table, step by step. CPPcon. Standard C++

Foundation (2017)
	31.	 Mariappan, M., et al.: Dzig: sparsity-aware incremental processing of streaming graphs. https://

github.com/pdclab/graphbolt/tree/eurosys21-artifact (2021)
	32.	 Feng et al.: Risgraph github repository. https://github.com/thu-pacman/RisGraph (2021)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Alif Ahmed1 · Farzana Ahmed Siddique1 · Kevin Skadron1

 *	 Alif Ahmed
	 alifahmed@virginia.edu

	 Farzana Ahmed Siddique
	 farzana@virginia.edu

	 Kevin Skadron
	 skadron@virginia.edu

1	 University of Virginia, Charlottesville, USA

http://arxiv.org/abs/1503.07241
http://arxiv.org/abs/1503.07241
https://www.iso.org/standard/79358.html
https://www.iso.org/standard/79358.html

	GraphTango: A Hybrid Representation Format for Efficient Streaming Graph Updates and Analysis
	Abstract
	1 Introduction
	2 Existing Representation Formats
	2.1 Compressed Sparse Row (CSR)
	2.2 Adjacency List
	2.3 Stinger
	2.4 Degree-Aware Robin Hood Hashing (DegAwareRHH)

	3 GraphTango Data Structure
	3.1 Type1 Vertex
	3.2 Type2 Vertex
	3.3 Type3 Vertex

	4 GraphTango Basic Operations
	4.1 Edge Insertion
	4.2 Edge Deletion
	4.3 Edge Traversal

	5 Optimizing GraphTango
	5.1 Cache-Friendly Hashing Scheme
	5.2 Memory Allocation Scheme
	5.3 Parallelization
	5.4 Determining the Threshold

	6 Evaluation
	6.1 Experimental Setup
	6.1.1 Platform
	6.1.2 Implementation
	6.1.3 Profiling Methodology
	6.1.4 Datasets
	6.1.5 Algorithms

	6.2 Analytics and Update Performance
	6.2.1 Analytics Throughput
	6.2.2 Update Throughput

	6.3 Memory Usage
	6.4 Impact of Threshold
	6.5 Impact of Optimizations
	6.6 Integration with DZiG and RisGraph

	7 Conclusions
	Appendix A Hash Function Implementation
	Acknowledgements
	References

