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Abstract
Streaming graph processing performs batched updates and analytics on a time-evolv-
ing graph. The underlying representation format of the graph largely determines the 
throughputs of these updates and analytics phases. Existing representation formats 
usually employ variations of hash tables or adjacency lists. However, a recent study 
showed that the adjacency-list-based approaches perform poorly on heavy-tailed 
graphs, and the hash table-based approaches suffer on short-tailed graphs. We pro-
pose GraphTango, a hybrid representation format that provides excellent update 
and analytics throughput regardless of the graph’s degree distribution. GraphTango 
dynamically switches among three different formats based on a vertex’s degree: (i) 
Low-degree vertices store the edges directly with the neighborhood metadata, con-
fining accesses to a single cache line, (2) Medium-degree vertices use adjacency 
lists, and (3) High-degree vertices use hash tables as well as adjacency lists. In this 
case, the adjacency list provides fast traversal during the analytics phase, while the 
hash table provides constant-time lookups during the update phase. We further opti-
mized the performance by designing an open-addressing-based hash table that fully 
utilizes every fetched cache line. In addition, we developed a thread-local lock-free 
memory pool that allows fast growing/shrinking of the adjacency lists and hash 
tables in a multi-threaded environment. We evaluated GraphTango with the help 
of the SAGA-Bench framework and compared it with four other representation for-
mats: Stinger, Degree-aware Robin Hood Hashing, and two adjacency list-based for-
mats with different workload balancing scheme. On average, GraphTango provides 
4.5x higher insertion throughput, 3.2x higher deletion throughput, and 1.1x higher 
analytics throughput over the next best format. Furthermore, we integrated Graph-
Tango with the state-of-the-art graph processing frameworks DZiG and RisGraph. 
Compared to the vanilla DZiG and vanilla RisGraph, [GraphTango + DZiG] and 
[GraphTango + RisGraph] reduces the average batch processing time by 2.3x and 
1.5x, respectively.
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1  Introduction

Streaming graph processing involves performing batched updates and analytics on 
a time-evolving graph. The update phase handles modifications to the graph topol-
ogy (e.g., insertion/deletion of edges and nodes), while the analytics phase runs the 
necessary algorithms on the graph. This is a common scenario in many real-world 
graph applications such as social network analysis [1, 2], bioinformatics [3, 4], rec-
ommendation systems [5, 6], routing and navigation [7], knowledge discovery [8], 
sensor networks [9], etc. The focus of streaming graph processing is fundamentally 
different from static graph processing. Static graphs are constructed only once, and 
the construction cost gets amortized over time. Therefore, the overall performance 
of a static graph processing framework is primarily determined by the analytics 
throughput. In the case of streaming graphs, the graph topology can change very 
frequently. Hence, both update and analytics throughput is critical for streaming 
graphs [10].

The most common operation during the update phase is edge lookup. The lookup 
is performed before insertion to avoid duplicate edges1 and before deletion to find 
the location of the target edge. On the other hand, the most common operation dur-
ing the analytics phase is the neighborhood traversal of a given vertex. The perfor-
mance of a streaming graph processing framework is critically dependent on how 
efficiently the graph storage format can support these lookup and traversal opera-
tions. Existing storage formats for streaming graphs usually employ variations of 
adjacency lists or hash tables [10–14]. Approaches based on adjacency lists [10, 
11] provide high update throughput on short-tailed graphs2 but suffer in heavy-
tailed graphs as it requires linear lookup through the edge array [10]. On the other 
hand, hash-based approaches [12, 13] offer constant-time lookup, providing better 
update throughput on heavy-tailed graphs. However, they perform poorly on short-
tailed graphs because the overhead of hash calculation and several random accesses 
becomes more expensive than conducting a simple linear search. Furthermore, 
edges are stored in hash tables relatively sparsely to mitigate collisions. As a result, 
edge traversal becomes inefficient and negatively impacts their analytics phase’s 
throughput. None of the existing approaches can efficiently handle both short-tailed 
and heavy-tailed graphs.

This paper proposes GraphTango, a streaming graph representation format that 
provides excellent performance regardless of the graph’s degree distribution. Our 
key idea is to adaptively switch the underlying data structure based on the vertex 
degree: (i) Type1 vertex: Low-degree vertices where the edges are stored within 

1  In accordance with the prior works [10–13], edges are inserted only after a lookup to avoid duplicate 
edges.
2  Following prior work [10], we define heavy/short-tailed graph with respect to an update batch: heavy-
tailed graphs have high maximum degree within a batch. Short-tail is the opposite.
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the same cache line as the neighborhood metadata. Update and edge traversal 
thus requires only one cache line access, unlike other approaches. (ii) Type2 ver-
tex: Medium-degree vertices that store edges as adjacency lists. The degree is too 
high for this type to fit all edges in a cache line, but small enough so that linear 
search performs better than hashing. (iii) Type3 vertex: High-degree vertices that 
store edges as adjacency lists, along with hash tables storing indexes to the adja-
cency lists. In this case, the adjacency list provides optimal edge traversal during 
the analytics phase, while the hash table provides constant-time lookup during the 
update phase. The hash tables are not accessed during the analytics phase, avoiding 
any potential cache pollution. To improve the cache access pattern of the hash table, 
we designed an open-addressing-based hash table with double hashing that fully uti-
lizes every fetched cache line. Our proposed hashing scheme minimizes cache line 
fetches and is especially beneficial if the hash tables do not fit into the last level 
cache (LLC), which is often the case for real-world graph workloads.3 With this 
hashing scheme, updates for Type3 vertices are performed with only three cache line 
accesses for more than 99.2% of the cases. In addition, we developed a thread-local 
lock-free memory pool that allows fast growing and shrinking of the adjacency lists 
and hash tables in a multi-threaded environment.

We evaluated GraphTango by integrating it with the SAGA-Bench [10] bench-
marking framework. SAGA-Bench integration ensures that all approaches use the 
same algorithm implementations via a common API. Therefore, any performance 
improvement comes purely from the data structure standpoint. SAGA-Bench comes 
with four representation formats: AdListShared, AdListChunked, Stinger [11], and 
DegAwareRHH [13], each of which is shown to excel in different algorithm and 
dataset combinations [10]. Details of these formats can be found in Section II. For 
update operations, GraphTango consistently performed best across all datasets. 
On average (maximum), GraphTango demonstrates 4.5x (6.6x) higher insertion 
throughput and 3.2x (5.0x) higher deletion throughput over the next best approach. 
As for analytics, GraphTango offers 1.1x (1.6x) higher throughput than the next best 
approach. Unlike prior approaches, GraphTango provides excellent update and ana-
lytics throughput for both short-tailed and heavy-tailed graphs.

Being a storage format, GraphTango is orthogonal to most full-fledged graph pro-
cessing frameworks and can easily replace the underlying storage formats of those 
frameworks. To demonstrate, we integrated GraphTango with the state-of-the-art 
graph processing frameworks DZiG [15] and RisGraph [16]. DZiG + GraphTango 
reduced the overall batch processing runtime by 2.3x (5.2x) on average (maximum) 
compared to the original DZiG. RisGraph + GraphTango reduced the overall batch 
processing runtime by 1.5x (1.9x) on average (maximum) compared to the original 
RisGraph.

GraphTango will be made available on GitHub, both as a standalone framework 
and as an integration with SAGA-Bench, DZiG, and RisGraph.

3  Even with our smallest dataset of 5 M edges, the LLC miss rate during the update phase is over 49%, 
indicating that the working set size is larger than the LLC.
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2 � Existing Representation Formats

Figure 1 illustrates how various graph representation formats store vertices and 
edges. While these examples store only the outgoing edges, the concept is also 
applicable if storing incoming edges.

2.1 � Compressed Sparse Row (CSR)

is one of the most commonly used formats for static graphs [17–20]. As shown in 
Fig. 1b, CSR organizes data in an edge array and an index array. Edges are stored 
in the edge array in ascending order - all edges of vertex vi appear before any 
edge of vi+1 . The index array stores the position of the first edge of every vertex. 
CSR is widely used for static graphs because it provides a compact representa-
tion, increasing spatial locality while traversing the graph. However, inserting or 
deleting an edge requires reconstructing both the edge array and the index array, 
making CSR unsuitable for dynamic graphs.

Fig. 1   Example of different graph representation formats. Here, each edge e is an {dst, prop} tuple
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2.2 � Adjacency List

stores the edges of every vertex in separate arrays (Fig.  1c). A vertex array 
stores the pointers to these edge arrays. These edge arrays are assumed to be 
memory-contiguous (like std::vector), rather than a linked list of edges. This 
important distinction is used throughout the paper. As each edge array can grow/
shrink independently, insertion and deletion operations only modifies the edge 
array of the corresponding vertex. This property makes adjacency lists a common 
choice for dynamic graph frameworks [10, 14]. Another advantage of adjacency 
lists is that the edge traversal during the analytics phase has a sequential access 
pattern, leading to excellent analytics throughput for vertex-centric algorithms. 
The downside of adjacency lists is that the edges are not stored in any particular 
order within an edge array. Therefore, finding an edge requires a linear search 
through the corresponding edge array, leading to poor update throughput on high-
degree vertices.

In adjacency-list-based approaches, parallel updates on multiple vertices are real-
ized in two ways. The first scheme is the shared style multithreading (referred as 
AdListShared), where the vertex array additionally contains a lock for every vertex. 
Any thread can process updates on any vertex by acquiring the corresponding lock 
first. This approach provides fine-grained parallelism. However, if most updates are 
targeted towards the same vertex, it can cause lock contention and is often the case 
for heavy-tailed graphs. The alternative scheme groups source vertices into chunks 
and assign each chunk to a fixed thread (referred as AdListChunked). Chunked 
style multithreading is lock-free. However, it is prone to workload imbalance if the 
chunks have a high disparity in the number of edges they contain.

2.3 � Stinger

Ediger et  al. [11] is an adjacency-list-based representation format. As illustrated 
in Fig. 1d, Stinger stores the edges as linked lists of edge blocks. Each edge block 
can accommodate a fixed number of edges (default is 16). Parallelism in Stinger 
is achieved by acquiring locks on the edge blocks. The capacity of the edge blocks 
presents a trade-off between performance and storage requirements. Using smaller 
capacity edge blocks increase parallelism but makes graph traversal inefficient by 
increasing the amount of pointer-chasing accesses. On the other hand, larger blocks 
lead to many unused slots for low-degree vertices. Besides, like adjacency lists, 
Stinger also suffers from linear lookups on high-degree vertices, stagnating the 
update throughput.

2.4 � Degree‑Aware Robin Hood Hashing (DegAwareRHH)

Iwabuchi et al. [13] is a hash-based format. As shown in Fig. 1e, DegAwareRHH 
maintains two types of hash tables based on the vertex degree. Edges corresponding 
to low-degree vertices are stored in a combined hash table to improve data locality. 
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On the other hand, each high-degree vertex maintains its own hash table. Both of 
these hash tables use Robin Hood hashing [21], which minimizes probing distance. 
For parallelism, DegAwareRHH leverages chunked-style multithreading similar to 
AdListChunked. The constant time lookup enabled by the hash tables makes DegA-
wareRHH suitable for the update phases on heavy-tailed graphs. However, the sparse 
storage of edges in the hash table makes DegAwareRHH’s edge traversal inefficient, 
negatively impacting the analytics throughput.

3 � GraphTango Data Structure

Figure 2 gives an overview of the GraphTango data structure.4 GraphTango organ-
izes the vertex data in two arrays: one for storing the vertex properties (vProp) 
and the other for storing neighborhood metadata of the vertex (edgeMeta). These 
arrays are indexed using vertex id. Neighbors of each vertex are stored as an 
ex = {dst, [prop]} tuple, where ex.dst is the destination vertex id, and ex.prop is an 
optional edge property (e.g., the weight of the edge).

The edgeMeta array is aligned to a page boundary,5 and each element of the array 
is of cache line size. Therefore, accessing any field of edgeMeta[i] will bring the rest 
of the fields into the cache. The deg field holds the current degree of the correspond-
ing vertex. Depending on the degree, a vertex will fall into one of the following 
three categories:

3.1 � Type1 Vertex

These are low-degree vertices with deg ≤ TH0 . As illustrated in Fig. 2b, we store the 
edges directly with the metadata for Type1 vertices. The threshold TH0 denotes the 
number of edges that can fit inside the metadata and is defined as:

Fig. 2   Proposed hybrid representation format of GraphTango

4  The description assumes storing only outgoing edges for clarity. In our implementation, we stored both 
incoming and outgoing edges for directed graphs.
5  To clarify, only the edgeMeta array itself is page boundary aligned, not the edge arrays or hash tables 
it may point to.
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For example, TH0 = 7 for a typical cache line size of 64 bytes and edges of 8 bytes. 
The advantage of storing edges with metadata is that all edges are brought into the 
cache as soon as we access the vertex during the update or analytics phase. When 
searching for a specific edge, we need to do a linear search. However, the search is 
extremely fast, as all accesses will be cache hits.

3.2 � Type2 Vertex

These are medium-degree vertices with TH0 < deg ≤ TH1 , where TH1 is a user-con-
figurable threshold. Edges for this type of vertices are stored in adjacency lists, as 
shown in Fig. 2c. To support adjacency lists, edgeMeta additionally maintains the 
current capacity (cap) and a pointer to its edge array (edgePtr).

Like Type1 vertices, Type2 also requires a linear search when looking for a spe-
cific edge. As the linear search on the edge array is prefetcher-friendly and has good 
spatial locality, it offers better performance than hash-based search up to a certain 
point (i.e., tuned using the TH1 threshold). However, the linear nature of the search 
becomes a performance bottleneck for higher-degree vertices. Hash-based search is 
preferable in such cases, as explained below.

3.3 � Type3 Vertex

These are high-degree vertices with deg > TH1 . Figure 2d illustrates this scenario. 
Here, we maintain both an adjacency list and a hash table for each Type3 vertex. 
The hash table maps an edge’s destination vertex id ( ex.dst ) with its location in the 
corresponding adjacency list. Maintaining both hash table and adjacency list comes 
with the following benefits: (i) The hash table enables constant-time lookups during 
the update phase. (ii) The adjacency list provides fast and efficient traversal during 
the analytics phase. Prior hash-based approaches suffer from low analytics through-
put due to inefficient edge traversal [10]. GraphTango is free of this issue because 
it uses only the adjacency lists for edge traversal and does not require accessing the 
hash tables during the entirety of the analytics phase.

4 � GraphTango Basic Operations

4.1 � Edge Insertion

The edge insertion procedure is as follows: (i) Retrieve the edge metadata - 
edgeMeta[srcId]. (ii) If the current deg reaches the current capacity, we double the 
capacity. The exact steps for capacity doubling will depend upon the current and new 
type, as demonstrated in Table 1a. In general, capacity doubling involves allocating 

TH0 =

⌊
CACHE_LINE_SIZE − sizeof (deg)

sizeof (e)

⌋
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memory for the larger edge array, copying current edges to the new edge array, and 
freeing the old array. For Type3, the hash table is also rehashed. The amortized cost 
of capacity doubling is O(1) [22]. (iii) Search for a duplicate edge using dst. As 
mentioned earlier, for Type1 and Type2, it will involve doing a linear search, and for 
Type3, the search will be performed using the hash table. (iv-A) If the edge is found, 
update the property and return. (iv-B) If the edge is not found, add the edge at the 
end of the edge array and increment deg. For Type3, we also create an entry in the 
hash table pointing to the location.

4.2 � Edge Deletion

The edge deletion procedure is as follows: (1) Retrieve the edge metadata - 
edgeMeta[srcId]. (ii) Search for existing edge using dst. (iii-A) If the edge is not 
found, return. (iii-B) If the edge is found, delete the entry from the edge array and 
hash table (for Type3) and decrement deg. We do a compaction step here to fill the 
gap. It involves moving the last entry of the edge array to the deleted entry’s position 
and updating the corresponding hash table record. The compaction step is simple 
and is of constant time complexity. (4) If the deg becomes 1/4th of the capacity, we 
halve the capacity. The steps for capacity halving is given in Table 1b. Similar to the 
capacity doubling during insertion, the amortized cost of capacity halving is also 
O(1) [22].

Table 1   Vertex type switching steps for insertion/deletions

(a) Insertions triggering type switch or capacity doubling

Direction New capacity Alloc new 
edge array

Edge copy size Dealloc old 
edge array

Rehash

Type1 → Type2 nextPow2(TH0) ✓ deg (=TH0) X X
Type2 → Type2 cap * 2 ✓ deg ✓ X
Type2 → Type3 cap * 2 ✓ deg (=TH1) ✓ ✓

Type3 → Type3 cap * 2 ✓ deg ✓ ✓

(b) Deletions triggering type switch or capacity halving

Direction New capacity Alloc new 
edge array

Edge copy size Dealloc old 
edge array

Rehash

Type3 → Type3 cap / 2 ✓ deg ✓ ✓

Type3 → Type2 cap / 2 ✓ deg (=TH1) ✓ X
Type2 → Type2 cap / 2 ✓ deg ✓ X
Type2 → Type1 TH0 X deg (=TH0) ✓ X
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4.3 � Edge Traversal

As we store the edges in consecutive memory for all three vertex types,6 the edge 
traversal API simply returns a cursor (i.e., position of the iterator) for indexing to 
the: (i) edgeMeta[vid] for Type1 vertices, or (ii) edgeMeta[vid].edgePtr for Type2/
Type3 vertices. GraphTango’s traversal mechanism is essentially the same as an 
adjacency list for Type2/Type3 vertices. As for Type1, GraphTango has a better 
access pattern as it requires one less indirection.

5 � Optimizing GraphTango

5.1 � Cache‑Friendly Hashing Scheme

The hash table used by the Type3 vertices can be realized in several ways. The most 
convenient approach is to use std::unordered_map. Unfortunately, this approach 
is not ideal for our purpose because the C++ standard [23] effectively limits the 
collision resolution of std::unordered_map to separate chaining,7. With separate 
chaining, the hash table is constructed as an array of buckets. Each bucket points 
to a linked list of colliding elements (i.e., keys that hashed to the same bucket). The 
issue with separate chaining is that it involves multiple random accesses - one to 
access the bucket and one or more for traversing the linked list. Each of these ran-
dom accesses is a potential cache miss if the hash table does not fit into the cache. 
An alternative to separate chaining is open addressing, where all elements are stored 
in the hash table itself, eliminating the need for linked lists traversals. Prior hash-
based graph representation formats [12, 13] leveraged open-addressing-based Robin 
Hood hashing [21] that minimizes probing distance. For GraphTango, we designed 
a more cache-friendly open-addressing-based hash table that minimizes the number 
of cache line accesses, making it especially suitable for real-world graph workloads 
where the hash table is unlikely to fit into the cache.

The key idea of our hashing scheme is to limit the probes within a single cache 
line until it is fully searched, before moving onto a different cache line. Figure  3 
illustrates this hashing scheme. The hash table itself is composed of an array of 
{key, value} pairs. The index of the i-th probe to the hash table is given by the fol-
lowing hash function:

Here, N is the number of {key, value} pairs that can fit within a single cache line. 
The purpose of h1

(
key,

⌊
i

N

⌋)
 is to select a cache line for probing and returns the 

h(key, i) = N ⋅ h1

(
key,

⌊
i

N

⌋)
+ h2(key, i mod N)

6  Even after deletions, our compaction step ensures that all valid edges of a vertex are stored in consecu-
tive memory.
7  This constraint is a side effect of mandating pointer stability which means that an iterator must remain 
valid upon inserting or deleting elements.
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base index of that selected cache line. Note that the 
⌊

i

N

⌋
 parameter remains the same 

for every N consecutive probes, thereby selecting the same cache line. As h1() should 
eventually explore all cache lines in the hash table, it must be a permutation of 
{0, 1, ...,M − 1} , where M is the number of cache lines in the hash table. On the 
other hand, h2(key, i mod N) determines the offset within the cache line and must be 
a permutation of {0, 1, ...,N − 1} . Any hash function conforming to this permutation 
requirement can be used to implement h1() and h2() . In GraphTango, we used double 
hashing for h1() to avoid primary/secondary clustering. h2() uses linear probing to 
make hash computation simpler. Our hash function is very cheap to compute, with 
the reference implementation having two multiplications and eight other simple 
arithmetic/logical instructions. This is because we ensure that both N and M are 
powers-of-two, converting expensive modulus and division operations to simple 
shifts. Further optimization is possible by leveraging SIMD instructions to do a par-
allel comparison on all entries mapped to the same cache line. However, as dis-
cussed later, GraphTango demonstrates short probing distance, making iterative 
comparison just as performant. Interested readers can find the implementation 
details of these hash functions in the Appendix A.

Insertions and deletions to the proposed hash table are similar to other open-
addressing-based hash tables. Each location of the hash table can contain either: (i) 
a valid {key, value} pair, or (ii) an empty marker, or (iii) a deleted marker (i.e., tomb-
stone). We used two reserved values as the empty and deleted marker instead of 

Fig. 3   Proposed hashing scheme. a Hash function to determine the index to the hash table. b An example 
probing sequence for M = 5 and N = 4
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using dedicated tag storage. During both insertion and deletion, the table is probed 
(using the hash function) until the key or an empty marker is found. If the key is 
found: (i) For insertion, the corresponding value is updated. (i) For deletion, the 
entry is marked as deleted. Instead of key, if an empty marker is found: (i) No action 
is required for deletion. (ii) For insertion, the {key, value} pair is inserted to the loca-
tion of the first encountered delete marker, or to the current location if no delete 
marker was encountered.

When using with GraphTango, the hash tables’ initial capacity is set to twice the 
capacity of the corresponding adjacency lists. Upon inserting/deleting edges, both 
the hash tables and the adjacency lists can grow/shrink in size (see Sect. 4), but the 
capacity ratio always remains 2. This property sets the maximum load factor ( � ) of 
the hash table to 0.5. Assuming uniform hashing,8 the theoretical average probing 
distance is: (i) 1

1−�
= 2 for an unsuccessful search. This is often the case for edge 

insertions in the absence of duplicates. (ii) 1
�
ln

1

1−�
= 1.39 for a successful search 

(e.g., deleting existing edges). In GraphTango, we can fit eight {key, value} pairs 
within a single cache line (i.e., N = 8 ). As a result, the hash table needs to access 
only one cache line as long as the probing distance remains ≤ 8 , which provides a 
large slack over the theoretical average probing distances. We empirically observed 
the same trend with our graph datasets, where over 99.2% of the insertions had a 
probing distance ≤ 8 . Therefore, almost all edge insertion operations for Type3 ver-
tices require only three cache line accesses: (i) one for retrieving edgeMeta[srcId] 
metadata that contains hash table and adjacency list pointers, (ii) one for searching 
the hash table, and (iii) one for indexing to the adjacency list.

5.2 � Memory Allocation Scheme

As discussed in Sect. 4, GraphTango requires frequent growing/shrinking of adja-
cency lists and hash tables. Calling malloc()/free() in every such instance can cause 
high runtime overhead and memory fragmentation. We avoid this issue by design-
ing a fast thread-local lock-free memory pool that supports O(1) allocation and 
deallocation.

Figure  4 illustrates the data structure of the memory pool. This memory pool 
allocates chunks in power-of-two sizes. Individual linked lists of available chunks 
are maintained for each valid size. The heads of the linked lists are stored in the 
freePtrs array. The first 8 bytes of each chunk (highlighted green) hold the pointer to 
the next free chunk of the same size. This way, no extra storage beside the freePtrs 
array is required to hold the pointers. However, it limits the minimum chunk size to 
8 bytes in a 64-bit machine.

Allocation steps are shown in Fig. 4a. For an allocation request of sz bytes, the 
pool will return a chunk of size newSz = 2k , where k = ⌈log2(sz)⌉ (i.e., nearest power 
of two that is ≥ sz ). The allocation proceeds as follows: (i) Find the first available 
free chunk of newSz. This is simply given by ret = freePtrs[k] . (ii) If ret is not a null 

8  Double hashing can demonstrate performance very close to the ideal scenario of uniform hashing [22, 
24].
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pointer, then it points to a free chunk. In this case, we update freePtrs[k] to point to 
the next free chunk, and return ret. (iii) If ret is a null pointer, this indicates no chunk 
of the requested size is available. In this case, a large memory block is allocated (of 
size max(4MB, newSz) and aligned to the page boundary) and then split into a linked 
list of newSz byte chunks. freePtrs[k] is set to point to the first chunk. At this point, 
we have free chunks of newSz. Therefore, repeating step (ii) will complete the allo-
cation. Note that, once allocated, the full chunk can be used to store data, including 
the space initially used to hold the pointer to the next chunk.

Deallocation steps are shown in Fig. 4b. Unlike the standard free(ptr), we provide 
the size of the allocated chunk as an additional parameter— free(ptr, sz). Using the 
sz parameter, we can directly index to the freePtrs array and add ptr as a free chunk, 
as shown in Fig. 4b.

An advantage of the proposed memory pool is that the most recently deallo-
cated chunk will be allocated first, thereby being more likely to reside in the cache. 

Fig. 4   Allocation and deallocation on the memory pool. Deleted pointers are shown by dashed lines and 
the modified pointers by red lines
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Furthermore, each thread maintains its own freePtrs array. As a result, no lock is 
required when multiple threads are trying to allocate/deallocate simultaneously. A 
minor downside is that one thread cannot allocate free chunks from another thread’s 
pool. We found it to be of little consequence in practice because the maximum amount 
of unused space per thread is O(blockSize). Also, note that the ⌈log2(sz)⌉ calculation 
used to index freePtrs is very cheap to perform. It only requires count leading zero 
(clz) and shift instructions.

5.3 � Parallelization

For GraphTango, we experimented with both shared and chunked style multi-
threading. We decided to settle for chunked style multithreading as it demonstrated 
slightly better throughput on our datasets. As we are using chunked style multi-
threading, operations concerning any vertices within a partition is mapped to a 
fixed worker thread. As discussed before, this method eliminates the need of per-
forming atomic operations and requires minimum synchronization, but may suffer 
from workload imbalance. Exploring advanced load-balancing techniques is left 
as a potential future work. Another related concern is false sharing, which might 
occur when multiple threads simultaneously modify a shared data structure. In the 
case of GraphTango, false-sharing-prone data structures are the vertex property 
array and the active frontier array. We avoid false sharing by using a partition size 
multiple of the cache line size (e.g., 512). It ensures that no two partitions’ data 
share the same cache line.

5.4 � Determining the TH
1
 Threshold

Unlike the TH0 threshold, which is fixed for a given cache line size and edge element 
size, the TH1 threshold is flexible and has a moderate impact on performance and mem-
ory usage (Sect.  6.4). As mentioned before, TH1 should be set to a value for which 
O(TH1) linear search through the edge array is likely to perform better than O(1) hash 
table lookup. The following equation provides an estimate and can be used as a rule of 
thumb for selecting TH1:

This equation sets TH1 to a value roughly corresponding to four cache line accesses 
for Type2 vertices. This is slightly above the three cache line accesses of Type3 ver-
tices, as Type2 vertices have favorable sequential access patterns and do not incur 
hash calculation overheads. As an alternative, we provide a microbenchmark pro-
gram (graph dataset agnostic) with GraphTango that empirically finds a suitable 
TH1 threshold.

(1)TH1 = 2⌈log2(3×edgesPerCacheLine)⌉
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6 � Evaluation

6.1 � Experimental Setup

6.1.1 � Platform

The experiments are conducted on an AMD Ryzen 3900x @ 3.8GHz machine with 
12 physical cores, 64MB of LLC, and 32GB of DDR4 DRAM. Hyper-threading and 
turbo-boost were disabled for better reproducibility. All experiments are performed 
with 12 cores.

6.1.2 � Implementation

We evaluated GraphTango by integrating it with the SAGA-Bench [10] benchmark-
ing framework. SAGA-Bench comes with four representation formats - AdList-
Shared, AdListChunked, Stinger [11], and DegAwareRHH [13]. Details of these 
formats can be found in Section II. SAGA-Bench integration facilitates fair com-
parison, because all approaches must use the exact same algorithm implementations 
through a common API. The source code is compiled with gcc−9.3.0 and -03 flag.

Both vertex id and edge property are considered to be of 64-bits size. Therefore, 
GraphTango has TH0 = 7 for unweighted graphs and TH0 = 3 for weighted graphs. 
TH1 is set to 32 following the tuning carried out in Sect. 6.4. This TH1 value also 
matches the value provided by Eq. 1.

6.1.3 � Profiling Methodology

Graph datasets are first randomly shuffled to break any existing ordering of edges. 
This is done to reflect the realistic scenario where edge updates are unlikely to occur 
in any pre-defined order. The shuffled dataset is inserted in batches of 1 M edges 
until the full graph is built and then deleted9 in batches of 1 M edges until no edges 
are left to delete. This batch size is similar to prior works [10, 12]. Analytics is 
performed on the graph after every batch of insertions and deletions. Reported 
throughputs are the geometric mean of the per-batch throughputs. GraphTango 
dynamically switches between vertex types as edges are inserted/deleted. As dis-
cussed in Sect. 4, this switching may involve memory allocation/deallocation, copy-
ing, or rehashing. This switching overhead is included in the reported results.

6.1.4 � Datasets

We have used four real-world datasets in our experiments: Orkut, LiveJournal, Wiki-
topcats (referred as Wiki), and Wiki-talk (referred as Talk). Orkut and LiveJournal 

9  The vanilla SAGA-Bench does not support edge deletions. We added deletion support for all represen-
tation formats by closely following the corresponding papers or from their source code if available.
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are online social media networks, Wiki is a dataset of Wikipedia hyperlinks, and 
Talk is the Wikipedia communications network. These datasets are part of the SNAP 
dataset collection [25]. All these datasets are directed except for Orkut. Properties 
of these datasets are given in Table 2. Orkut and LiveJournal have a much lower 
per-batch maximum degree compared to Wiki and Talk. Consequently, Orkut and 
LiveJournal are characterized as short-tailed graphs while Wiki and Talk are 
heavy-tailed graphs. 

6.1.5 � Algorithms

We used four algorithms in our experiments: (i) Breath-First Search (BFS), (ii) Page 
Rank (PR), (iii) Single-Source Shortest Path (SSSP), and (iv) Connected Compo-
nents (CC). Vertex centric incremental compute model is used for these algorithms, 
where the computation is constrained within the region affected by the update phase 
instead of the whole graph. The implementations of these algorithms are directly 
taken from SAGA-Bench without any modification.

6.2 � Analytics and Update Performance

6.2.1 � Analytics Throughput

Fig. 5 shows the analytics throughput of the representation formats. As mentioned 
in Sect.  6.1(C), the analytics phase is conducted multiple times as we gradually 
build the graph. Reported values are the geometric mean of per-batch throughputs. 
GraphTango outperforms other approaches in every dataset and algorithm combina-
tions. Compared to the next best approach (i.e., AdListShared for BFS, SSSP, CC 
and AdListChunked for PR), GraphTango provides an avg (max) speedup of 1.1x 
(1.6x). As all these approaches are using the exact same algorithm implementation, 
their relative performance is primarily determined by their edge traversal efficiency. 
Adjacency-list-based approaches perform well in this regard, because their edge tra-
versal consists of mostly sequential accesses. GraphTango also uses adjacency lists 
for medium- and high-degree vertices (Type2 and Type3). For low-degree vertices 
(Type1), GraphTango has a better access pattern, as it requires one less indirection 
(i.e., does not need pointer chasing to find the corresponding edge array), thereby 
offering higher throughput. Stinger, despite using coarse-grained adjacency lists, 

Fig. 5   Comparison of the analytics throughputs. Higher is better 
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suffers due to additional pointer chasing between edge blocks. Overall, GraphTango 
provides an avg (max) speedup of 1.8x (5.1x) over AdListShared, 1.3x (1.6x) over 
AdListChunked, 2.0x (2.7x) over Stinger, and 5.2x (14.0x) over DegAwareRHH.

6.2.2 � Update Throughput

Fig.  6 shows the update (edge insertion and deletion) throughput. Note that the 
updates are interleaved with analytics phases (see Sect. 6.1.C). The algorithm choice 
of the analytics phase has little impact on the update throughput, and the reported 
values are the average across the four algorithms. Here, GraphTango outperforms 
other approaches by a large margin. Adjacency-list-based approaches perform well 
on short-tailed graphs. On these graphs, GraphTango provides an avg (max) speedup 
of 2.5x (2.7x) over the next best approach AdListShared. On the other hand, hash-
based DegAwareRHH performs best on the heavy-tailed graphs. Interestingly, 
AdListShared performed even worse than AdListChunked for heavy-tailed graphs. 
This is due to the lock contention of shared-style multithreading on AdListShared. 
On heavy-tailed graphs, GraphTango provides an avg (max) speedup of 6.5x (6.6x) 
over the next best approach DegAwareRHH. Notably, other approaches are suitable 
for either short- or heavy-tailed graphs. GraphTango’s hybrid nature makes it con-
sistently the best-performing irrespective of the graph’s degree distribution.

6.3 � Memory Usage

Table  3 shows the average memory usage per edge. The AdListShared and 
AdListChunked are most efficient in terms of memory usage. Compared to 
AdListChunked - Stinger, DegAwareRHH, and GraphTango require 5.1x, 4.1x, and 
3.4x more memory on average, respectively. For DegAwareRHH, the high mem-
ory usage is caused by: (i) Sparse storage of edges in hash tables (to reduce colli-
sion), and (ii) Robin Hood hashing mechanism that requires storing the probe dis-
tance for each entry. On the other hand, Stinger and GraphTango have a relatively 
high initial capacity (16 for Stinger and TH0 for GraphTango) that remains mostly 
unused for low-degree vertices. This scenario is especially noticeable for the Talk 

Table 2   Evaluated Datasets

1 Per-batch maximum degree with batch size of 1 million edges
2 For TH0 = 7 and TH1 = 32

Dataset Vertices Edges Max degree1 Vertex mapping2

(million) (million) in out Type1 Type2 Type3

Orkut 3.0 117.2 329 329 27.2% 38.6% 34.2%
LiveJournal 4.8 69.0 237 332 63.0% 26.0% 11.0%
Wiki 1.8 28.5 8,504 154 57.8% 33.9% 8.3%
Talk 2.4 5.0 665 20,088 98.3% 1.2% 0.5%
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dataset, where more than 96% of the vertices have a degree ≤ 3 , leading to high 
memory usage. Although GraphTango has higher memory usage compared to the 
simple adjacency-list-based approaches, the update throughput benefit is significant, 
especially on heavy-tailed graphs (19.3x to 32.8x speedup on Wiki and Talk data-
sets). If needed, one way to reduce memory usage of GraphTango is to increase the 
TH1 threshold, as discussed in Sect. 6.4. Compared to Stinger and DegAwareRHH, 
GraphTango requires less memory as well as provides much higher performance.

Fig. 6   Comparison of update throughputs. Higher is better 

Table 3   Average memory usage 
(Bytes Per Edge)

Dataset AdList- AdList- Stinger DegAware GraphTango
Shared Chunked RHH

Orkut 13.3 12.0 32.7 43.8 33.6
LiveJournal 16.3 12.9 48.9 57.0 34.6
Wiki 15.7 12.7 44.1 62.9 34.4
Talk 44.8 21.9 230.2 74.6 116.9



164	 International Journal of Parallel Programming (2024) 52:147–170

1 3

6.4 � Impact of TH
1
 Threshold

Figure 7 shows the impact of the TH1 threshold on update throughput and memory 
usage. Analytics throughput is not shown because the choice of TH1 does not impact 

Fig. 7   Impact of TH1 threshold on update throughput and memory usage

Table 4   Impact of 
Optimizations on the Update 
Throughput (Baseline is the 
proposed hybrid format without 
any optimizations applied)

Bold vlaues corresponds to our proposed approach
1 AdListShared for STail and DegAwareRHH for HTail
2 glibc version 2.31
3 std::unordered_map with libstdc++ version 6.0.28
4 tsl::robin_map from [26], version 1.0.1
5 Robin Hood hashing implementation from [27], version 3.11.5
6 Google’s Abseil flat_hash_map version LTS 20211102 [28]

Configuration Format Allocation Hashing Speedup

Scheme Scheme STail HTail

baseline Hybrid malloc2 std_map3 1.00 1.00

next best1 – – – 0.76 0.29
opt pool Hybrid proposed std_map3 1.12 1.14
opt hash Hybrid malloc2 proposed 1.71 1.70
GT_Tessil Hybrid proposed Tessil4 1.40 1.60
GT_RHH Hybrid proposed RHH5 1.35 1.45
GT_Abseil Hybrid proposed Abseil6 1.34 1.43
GraphTango Hybrid Proposed Proposed 1.89 1.79
DegAwareRHH DegAware malloc2 RHH 0.29 0.29
DegAwareCFH DegAware malloc2 proposed 0.40 0.38



165

1 3

International Journal of Parallel Programming (2024) 52:147–170	

the analytics performance. TH1 of 16 and 32 provides the best throughput on three 
out of the four datasets. We used TH1 of 32 in all other experiments, as it has lower 
memory usage.

The TH1 threshold controls the ratio between Type2 and Type3 vertices. Increas-
ing TH1 maps more higher-degree vertices to Type2 instead of Type3. As Type2 ver-
tices requires linear search during updates, it eventually becomes a performance bot-
tleneck for TH1 > 32 . On the other hand, Type2 vertices do not require maintaining 
a hash table and thus require less memory than Type3. As a result, increasing TH1 
reduces the memory usage. On average, increasing TH1 from 8 to 512 reduces the 
memory usage by 1.9x.

The Talk dataset is an outlier showing negligible variation with TH1 . This is 
because, for the Talk dataset, 98.3% of the vertices are mapped to Type1 (refer to 
Table 2), leaving only 1.7% of the vertices that can be affected by changing TH1.

6.5 � Impact of Optimizations

The purpose of this section is to isolate the contribution of the proposed hybrid for-
mat as well as the memory allocation and hashing scheme optimizations. Table 4 
shows our findings. In this table, the STail and HTail columns show the normalized 
update throughput over the baseline configuration for short-tailed and heavy-tailed 
graphs, respectively. We show only the update throughput because the memory pool 
and hashing optimizations have a negligible impact on the analytics throughput.

The baseline configuration implements our proposed hybrid format (i.e., Type1, 
Type2, and Type3 mapping of vertices) but uses sub-optimal malloc for memory 
allocation and std::unordered_map for hashing. We can observe that using only 
the hybrid format is sufficient to provide a better performance than the next best 
approach (AdListShared for STail and DegAwareRHH for HTail). Compared to the 
next best approach, the baseline offers 1.3x (3.4x) higher speedup for STail (HTail) 
graphs. The opt pool configuration shows the benefit of the proposed memory allo-
cation scheme. On average, the proposed pool provides 1.13x better performance 
over the baseline. On the other hand, the opt hash configuration shows the ben-
efit of the proposed cache-friendly hashing scheme, offering 1.71x speedup over 
std::unordered_map. With both optimizations enabled, GraphTango provides an 
average speedup of 1.84x over the baseline.

A valid concern at this point is whether we can combine other hashing schemes 
with our hybrid format to get even better performance. To answer this question, we 
tried three other open-addressing-based hash-table implementations: (i) GT_Tessil: 
The Robin Hood hashing variation of Tessil (tsl::robin_map) [26]. This is the fast-
est hash table implementation according to the benchmark results published in [29]. 
(ii) GT_RHH: Another fast implementation of Robin Hood hashing from [27, 29]. 
Although it is slightly slower than Tessil, it consumes significantly less memory. 
(iii) GT_Abseil: Google’s Abseil flat_hash_map [28, 30]. The max load factors 
of these approaches are set equal to ours (= 0.5) for a fair comparison. On STail 
(HTail) graphs, the proposed hashing scheme provides 1.35x (1.12x) speedup over 
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GT_Tessil, 1.4x (1.23x) speedup over GT_RHH and 1.41x (1.25x) speedup over 
GT_Abseil. Because our hashing scheme tries to minimize cache line access, it is 
especially suitable for graph workloads where the hash table is unlikely to reside in 
the cache.

Finally, we evaluate whether DegAwareRHH can leverage our hashing scheme to 
outperform GraphTango. DegAwareCFH denotes this configuration. DegAwareCFH 
provides 1.37x (1.31x) better throughput over the vanilla DegAwareRHH. However, 
GraphTango still outperforms it by 4.7x for both STail and HTail graphs.

6.6 � Integration with DZiG and RisGraph

This section demonstrates that full-fledged graph processing frameworks can lever-
age the GraphTango format to improve their performance further. We selected two 
state-of-the-art graph processing frameworks DZiG [15] and RisGraph [16] for this 
purpose. We modified their publicly available source code [31, 32] and replaced 
their storage format with GraphTango. We run the datasets on BFS, PR, and SSSP 
for DZiG. CC is omitted because its implementation is unavailable in the frame-
work’s repository. For the same reason, PR is omitted in case of RisGraph.

Figure  8a shows the comparison results between DZiG and DZiG+GraphTango. 
DZiG internally uses adjacency list as graph storage. For this reason, analytics time 
for DZiG and DZiG+GraphTango is similar in most cases. Interestingly, the insertion 
time is also comparable in some cases. For example, LiveJournal and Wiki datasets 
for BFS. This is because the original DZiG’s edge insertion does not check for dupli-
cate edges. Therefore, the edge insertion becomes as simple as adding an element to 
the end position of an array.10 On average, GraphTango provides a 1.9x reduction in 
insertion time even though it also checks for duplicate edges. For deletion, unmodified 

Fig. 8   Batch processing time breakdown of DZiG and RisGraph integration. Lower is better 

10  There is a flag to enable duplicate edge insertion checking. But that checking is done by sorting the 
batch as a pre-processing step, thereby incurring heavy overhead.
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DZiG performs 6x worse on average. We identified two reasons: (i) Unlike insertions in 
DZiG that do not search for duplicates, delete operations require a linear search through 
the neighbor list, incurring higher runtime cost, and (ii) DZiG performs a quicksort on 
the batch based on the source and destination vertex ids to distribute them among the 
threads. As we use fixed mapping of vertices in GraphTango, sorting costs are avoided. 
Overall, DZiG+GraphTango provides an average of 2.3x reduction in total batch pro-
cessing time compared to the original DZiG.

Figure  8b shows the comparison between RisGraph and RisGraph+GraphTango. 
RisGraph uses a hybrid graph storage format that uses adjacency list for low/medium 
degree vertices and adjacency list along with hash table for high degree vertices. Unlike 
GraphTango, RisGraph does not differentiate between low and medium degree vertices 
and uses the same data structure for both. Furthermore, RisGraph uses Google’s dense 
hash map and does not attempt to minimize the number of cache accesses as Graph-
Tango does with its proposed cache-friendly hashing scheme. Due to these differences, 
RisGraph+GraphTango provides on average 1.5x reduction in total batch processing 
time compared to the vanilla RisGraph.

7 � Conclusions

Existing streaming graph representation formats can only support either short-tailed 
or heavy-tailed workloads efficiently. This paper proposes GraphTango, which aims to 
solve this issue by adaptively switching formats based on the current degree of a vertex. 
We also propose a cache-efficient hashing scheme and a fast memory pool. These opti-
mizations work in synergy with GraphTango to provide excellent update and analytics 
throughput regardless of the graph’s degree distribution. Our evaluation on the SAGA-
Bench showed that on average (maximum), GraphTango provides 4.5x (6.6x) higher 
insertion throughput, 3.2x (5.0x) higher deletion throughput, and 1.1x (1.6x) higher 
analytics throughput over the next best approach.

Appendix A Hash Function Implementation

Given these parameters,
M = Number of cache lines in the hash table
N = Number of {key, value} pairs within a cache line
Our proposed hash function is of the following form:

Here, h1() selects a cache line inside the hash table array, and h2() selects an offset 
within the cache line. Therefore, h1() must be a permutation of {0, 1, ...,M − 1} to 
ensure that all cache lines are eventually selected. Similarly, h2() must be a permuta-
tion of {0, 1, ...,N − 1} to explore all {key, value} pairs within a cache line. Any h1() 

h(key, i) = N ⋅ h1

(
key,

⌊
i

N

⌋)
+ h2(key, i mod N)
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and h2() that meet the permutation requirement can be used. For GraphTango, we 
used the following:

Here, w is the key width in bits, A is a large constant, and m = log2(M) . We use dou-
ble hashing for h1() to negate primary/secondary clustering. It is computed with the 
help of two pairwise independent hashing functions, h3() and h4() . h3() and h4() are 
computed with multiplicative hashing. As for h2() , we used simple linear probing. 
Although seemingly complex, the hash can be computed cheaply as we ensure both 
N and M are powers of two. The following code snippet shows how to calculate the 
hash value for a 32-bit key:

Note that the code does not need any expensive division/modulus operation. 
When compiled on an x86_64 machine with gcc 9.3.0 and -O3 flag, it resulted in 2 
multiplications and 8 other simple arithmetic/logical instructions.
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