
International Journal of Parallel Programming (2023) 51:186–207
https://doi.org/10.1007/s10766-022-00748-z

Accelerating OCaml Programs on FPGA

Loïc Sylvestre1 · Emmanuel Chailloux1 · Jocelyn Sérot2

Received: 9 September 2022 / Accepted: 21 November 2022 / Published online: 24 January 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
This paper aims to exploit themassive parallelism of Field-Programmable GateArrays
(FPGAs) by programming them in OCaml, a multiparadigm and statically typed lan-
guage. It first presents O2B, an implementation of the OCaml virtual machine using
a softcore processor to run the entire OCaml language on an FPGA. It then intro-
duces Macle, a language to express, in ML-style, hardware-accelerated user-defined
functions, implemented as gates and registers on the same FPGA. Macle allows to
implement pure computations and compose them in parallel. It also supports pro-
cessing of dynamic data structures such as arrays, matrices and trees allocated by
the OCaml runtime in the memory of the softcore processor. Macle functions can
then be called, as hardware accelerators, by OCaml programs executed by O2B. This
combination of Macle and OCaml codes in a single source program enables to easily
prototype FPGA applications mixing numeric and symbolic computations.

Keywords High-level parallel programming · FPGA · OCaml · Virtual machine ·
Hardware acceleration · Compiling

1 Introduction

Reconfigurable circuits, like Field-Programmable Gate Arrays (FPGAs), are suited to
design custom architectures exploiting the concurrent nature of hardware structures
[6]. The configuration of an FPGA is commonly produced by a synthesis toolchain

B Jocelyn Sérot
Jocelyn.Serot@uca.fr

Loïc Sylvestre
Loic.Sylvestre@lip6.fr

Emmanuel Chailloux
Emmanuel.Chailloux@lip6.fr

1 CNRS, LIP6, Sorbonne Université, 75005 Paris, France

2 Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, 63000
Clermont-Ferrand, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-022-00748-z&domain=pdf
http://orcid.org/0000-0002-1495-9605
http://orcid.org/0000-0002-2400-9523

International Journal of Parallel Programming (2023) 51:186–207 187

from a description expressed in hardware description language (HDL) such as VHDL
or Verilog. Other examples of more expressive HDLs include Chisel [4] embedded in
Scala, Clash [3] in Haskell, MyHDL [10] in Python and HardCaml1 in OCaml. Nev-
ertheless, the Register Transfer Level (RTL) programming model, on which HDLs are
based, is characterized by a very low level of abstraction. Hence, different approaches
aim to hardware-accelerate software applications using FPGAs.

– There have been some attempts to compile small applicative languages, such as
SHard [23], FLOH [27] and Basic SCI [14], directly to RTL [13]. A representative
example is SAFL (Statically Allocated Functional Language) [20], which is a
first-order ML-like language limited to tail recursion and static data structures.

– For more complex languages, custom processors or virtual machines can be imple-
mented in RTL to run high-level languages on FPGA. JAIP [28] is a Java Virtual
Machine (JVM)written in VHDL, calling a softcore processor2 to handle dynamic
class-loading. JikesRVM [19] is a JVM implemented on a CPU using an FPGA
for accelerating automatic dynamic memory management.

– High-Level Synthesis (HLS) promotes the use of imperative languages to design
hardware [21]. Most HLS tools, such as Catapult C or Handel-C, support a subset
of C annotated with pragmas to optimize the compilation to RTL. LegUp [5] runs
C programs on a softcore processor while compiling functions—those that do
not use dynamic allocation and recursion—to RTL. Pylog [15] proposes a similar
approach for running Python on FPGA platforms having a hardcore processor.

– Other HLS tools3 use OpenCL to express parallel applications and target het-
erogenous architectures involving Multicores, GPUs and FPGAs. Aparapi [24]
and GVM [12] implement the JVM in OpenCL. TAPA [7] is a framework for task
parallelism targetingOpenCL. TornadoVM [22] compiles specially annotated Java
code to OpenCL. These tools, however, do not sufficiently expose the fine-grained
parallelism available on the FPGAs nor their customization possibilities.

– FPGAs allows implementing parallel programming models [18] like task-
parallelism [7] and parallel skeletons [9]. For instance, Lime [2] is a task-based
data-flow programming language compiled to OpenCL or Verilog and interacting
with Java bytecode running on a CPU. Kiwi [25] is a subset of C� compiled to
RTL and offering events, monitors and threads. RIPL [26] is an image processing
language with a collection of parallel skeletons.

The work described in this paper builds on the results of these experiments, by propos-
ing an approach in which:

– a runtime system, implemented on a softcore processor, is used to allow high-level
programming on FPGA (like JAIP);

– hardware acceleration of user-defined functions (like SAFL) is provided by par-
titioning the application code between the host and the accelerated code (like
Pylog);

– the host language, running the softcore processor, and the embedded language
used to describe accelerated functions are similar (like Lime);

1 https://github.com/janestreet/hardcaml.
2 A softcore processor is a processor implemented in the reconfigurable part of an FPGA.
3 Such as AMD Vivado HLS and Intel OpenCL SDK.

123

https://github.com/janestreet/hardcaml

188 International Journal of Parallel Programming (2023) 51:186–207

– somepredefined parallel constructs are provided to ease exploitation of themassive
parallelism offered by FPGAs (like Kiwi).

To this end, we have:

1. ported the OCaml virtual machine (VM) and its runtime (including a garbage
collector) on a softcore processor to support the entire OCaml language.

2. combined this VM approach with hardware acceleration of user-defined functions
expressed in an ML-like language. This language is extended with parallelism
skeletons in order to process dynamic data structures allocated by the OCaml run-
time in the memory of the softcore processor.

This approach allows to take full advantage of the fine-grained parallelism of
FPGAs, while programming them in OCaml, and hence supporting quick prototyping,
static type-checking, simulation and debugging of applications mixing numeric and
symbolic computations.

Our contributions are:

– O2B4 (OCaml On Board), a port of OMicroB [29] (an implementation of the
OCaml Virtual Machine) targeting the Nios II softcore processor realized on an
FPGA. O2B enables to call custom hardware accelerators from OCaml programs.

– Macle5 (ML accelerator), a subset of OCaml designed to express hardware-
accelerated user-defined functions, called Macle circuits. These functions—
distinguished with a special keyword “circuit”—are compiled to VHDL and
synthesized on an FPGA to be used as hardware accelerators from OCaml source
programs executed by O2B. Glue code is automatically generated. It includes C
and OCaml code, VHDL descriptions and scripts to control the end-to-end syn-
thesis workflow. Macle supports OCaml data structures (such as lists, trees, arrays
and matrices) allocated in the OCaml VM heap. Macle allows general recursion
by automatically rewriting it into tail-recursion with a local stack implemented in
on-chipmemory. Finally,Macle provides parallelism skeletons over OCaml arrays
to expose fine-grained parallelism and optimize memory transfers.

The remainder of this paper is organized as follows. Sect. 2 introduces the O2B
infrastructure to run OCaml programs on an FPGA. Sect. 3 proposes an approach to
accelerate OCaml programs augmented with Macle circuits. Sect. 4 presents the com-
pilation ofMacle, using an intermediate language (HSML,Hierarchical StateMachine
Language) to abstract the VHDL target. Sect. 5 evaluates our approach on different
benchmarks to measure the speedup resulting from using hardware-acceleration in
Macle. Sect. 6 describes a mechanism using parallel skeletons to optimize memory
transfers when accessing the OCaml heap. Sect. 7 discusses the acceleration possibil-
ities and the programming style obtained and then identifies future work.

4 https://github.com/jserot/O2B.
5 https://github.com/lsylvestre/macle.

123

https://github.com/jserot/O2B
https://github.com/lsylvestre/macle

International Journal of Parallel Programming (2023) 51:186–207 189

Fig. 1 Compilation flow targeting Intel FPGAs

2 The O2B Framework

O2B (OCaml On Board) is a tool to run OCaml programs on FPGAs. It is based on
OMicroB [29], an implementation of the OCamlVMdedicated to high-level program-
ming of microcontrollers with scarce resources.

2.1 Compilation Flow for OCaml to FPGAs

Figure 1 describes the configuration process used to run OCaml programs on an Intel
FPGA6 via O2B. The bytecode generated by the OCaml compiler is transformed into a
static C array, then embedded in the C program implementing the bytecode interpreter
and the O2B runtime library, including a garbage collector (GC). The OCaml heap and
stack are C static arrays. This program is associated with the functions of the Board
Support Package (BSP) giving access to the hardware resources of the target board.
The resulting application is compiled to binary code executable by the Nios II softcore
processor.

The complete FPGA configuration includes the exact architecture of the processor
used as well as a set of external RTL descriptions F1 · · · Fn to be implemented as
customcomponentsC1 · · · Cn. Technically, this configuration step is carried out by the
QSys tool of the Intel Quartus chain. It generates a set of VHDL files which constitutes
the description of the hardware platform. This description includes the components
C1 · · · Cn and the Nios II processor to be synthesized through the Quartus chain to
reconfigure the FPGA.

The OCaml heap and stack can be stored either in the on-chip memory of the target
FPGA (for small programs) or in the external memory (SDRAM) of the board. In both
cases, access is provided by means of an interconnection bus.7 This bus also supports
data transfers between the custom components and the binary code executed by the
processor. Both the softcore and the custom components can access the physical IOs
of the FPGA.

6 This process is general and can be adapted to target other FPGA families.
7 Avalon bus for Intel platforms.

123

190 International Journal of Parallel Programming (2023) 51:186–207

(a) (b)

Fig. 2 An OCaml program using external C code on O2B

2.2 Calling Accelerators fromOCaml Programs

The OCaml language offers an OCaml/C foreign function interface (FFI) to call C
functions from OCaml programs. These C functions, running on the softcore, can in
turn invoke custom components implemented on the FPGA. It is thus possible to use
custom components from OCaml programs compiled to bytecode executed by O2B.
The communication layer between O2B and a custom component is done via a set of
dedicated registers associated to the component and mapped into the memory of the
softcore processor.

Figure 2 shows the source code of an OCaml program designed to run with O2B. It
defines three implementations of the greatest common divisor (GCD) algorithm: one
in OCaml using a tail recursion, one in C using a loop, and one in C using an hardware
accelerator that will be defined at Fig. 7 in VHDL.

The difference between two calls to Timer.get_us (before and after a com-
putation) in the OCaml function chrono gives the execution time of the argument
function call in microseconds. The C function printf, and by extension, the OCaml
functions print_int and print_string use the Board Support Package of the
FPGA target to write on a console.8 The gcd_c and gcd_rtl functions are defined
as external functions in the OCaml code using the standard FFI mechanism. Calling
a custom component from the gcd_rtl function involves sending the argument to
and retrieving the result from the dedicated registers of the custom component. The
corresponding operations are abstracted by the C macros GCD_ARG, GCD_START,

8 The FPGA board is connected to a host PC via an UART connection for printing and debugging.

123

International Journal of Parallel Programming (2023) 51:186–207 191

Fig. 3 Accelerating OCaml programs on FPGA using O2B and Macle

GCD_RDY and GCD_RESULT). The behavioral description of GCD inVHDL requires
50 lines of code, plus 100 lines of VHDL glue code for argument and result passing.
Finally, this GCD component must be mapped into the global configuration of the
system implemented on the FPGA (called the System on Programmable Chip, SoPC),
either manually (using the QSys tool) or by scripting. In practice, this limits the use of
the O2B framework to programmers familiar both with VHDL and the target toolchain
(Intel Quartus in the current distribution).

In the rest of the paper, we describe how this limitation can be overcome by provid-
ing aML-like language, similar to OCaml, to describe hardware-accelerated functions
and automatically generate both the FPGA configuration and glue code to interact with
OCaml programs running on the softcore.

3 High-Level FPGA Programming

The proposed approach relies on a dedicated ML-like language to express hardware-
accelerated functions. This language, calledMacle (MLAccelerator), can interoperate
with the OCaml runtime of O2B and therefore can be used to accelerate OCaml
host programs running on a softcore processor realized on an FPGA.

3.1 Compilation Flow

Figure 3 shows our compilation flow of OCaml to FPGA. It automatically generates
the configuration of an FPGA from an OCaml program extended with hardware-
accelerated functions defined in Macle. The OCaml code is compiled to bytecode to
be executed by O2B targeting a softcore processor implemented on the FPGAwhereas
each Macle circuit is compiled to VHDL and then synthesized as a custom hardware
component usable from the OCaml program. The glue code (including OCaml, C and
VHDL files) is automatically generated from inferred types of Macle circuits. The
compilation flow can therefore be used by a programmer without prior knowledge in
VHDL or experience with the target FPGA programming toolset.

In Fig. 3, the two double arrows denote the calls of C functions from OCaml and
the use of VHDL code from C.

123

192 International Journal of Parallel Programming (2023) 51:186–207

(a) (b)

Fig. 4 Syntax of the Macle language

3.2 TheMacle Language

Macle is an ML-like language which includes:

– a functional-parallel core language (called Macle Core) compiled to RTL;
– additional language constructs (implemented in RTL) to interact with the OCaml
runtime.

Figure 4a defines the syntax ofMacle Core. This language is independent of OCaml
and can be used to program synchronous circuits and compose them in parallel. We
denote by −→o (or o1 · · · on) a non-empty sequence of objects oi . Macle Core includes
variables (taken from a set of name X), constants, applications of built-in opera-
tors and conditionals. It also offers local mutually tail-recursive functions, function
calls and let bindings. A simple let binding let x = e in e′ first computes e, then
e′. By extension, a multiple let-binding let x1 = e1 and · · · xn = en in e′ first
computes the expressions e1 · · · en in parallel and synchronizes before computing e′.
For instance, the hardware implementation of (let x = factorial 10 and y =
factorial 11 in x + y) instantiates twice the implementation of factorial
function in order to enable their parallel execution. Function calls use an implicit
parallel let-binding to compute the arguments passed to each function. Non-recursive
functions can take functions as arguments.9

Figure 4bdefines the syntaxof theMacle subset interactingwith theOCaml runtime.
It comprises:

– raise exn for raising a built-in exception exn such as Failure (parametrized by
a literal strings) or Stack_overflow;

9 Each call of these functions is specialized and inlined at compile time.

123

International Journal of Parallel Programming (2023) 51:186–207 193

(a) (b)

Fig. 5 Examples of Macle circuits and OCaml program using a Macle circuit

– match · · · with · · · for destructuring (i.e., non-nested pattern matching) values
of an algebraic datatype;

– !e for accessing the content of the reference e;
– e := e′ for setting the content of the reference e to the value of e′;
– e.(e′) for accessing at the index e′ of the array e;
– e.(e′) ← e′′ for setting the value of e′′ at the index e′ of the array e;
– array_length e for accessing the length of the array e;
– e ; e′ which is a syntactic sugar for let x = e in e′ where x is a fresh name;
– for x = e to e′ do e′′ done which is a syntactic sugar for a tail-recursive formu-
lation using let rec.

Note that, currently, Macle circuits cannot allocate data structures; they can only
manipulate values allocated by the VM in the OCaml heap.

To preserve the semantics and the safety of the Macle code, multiple let-bindings
are sequentialized when they contain memory accesses or raise an exception.

General recursion is supported via a program transformation producing code con-
taining only tail-recursive calls and using an explicit stack. When the stack overflows,
an exception (Stack_overflow) is raised. Recursion in Macle uses an explicit call
stack, as described in Sect. 5. Tail-recursion does not require a stack.

Figure 5a shows three Macle circuits. The circuit gcd_rtl expresses the GCD
algorithm in Macle Core. The circuit collatz computes the stopping time of a
Collatz [16] sequence (also called Syracuse) starting from a given integer. The circuit
sum_array sums the elements of a given OCaml array.

Figure 5b shows an OCaml program calling a Macle circuit. It allocates an abstract
syntax tree in the OCaml heap and evaluates it using the eval_exp Macle circuit.

123

194 International Journal of Parallel Programming (2023) 51:186–207

Fig. 6 Compilation flow of Macle to VHDL

Accesses to the OCaml heap are safe since the exception Failure is (implicitly)
raised in case of an out-of-bounds index or a non-exhaustive pattern matching. This
exception can then be caught in OCaml by the try · · · with construct. In this example,
the programevaluates the expressionAdd(Int(1),Var(0)) recursively andprints
the result. Evaluating Var(0) fetches the value at the index 0 of the array.

4 CompilingMacle

The global compilation flow from Macle to VHDL is depicted Fig. 6. It involves four
passes. The first pass (1) consists in normalizing the source code:

• renaming all bindings in the source code with unique names;
• rewriting the code in so-called Administrative Normal Form [17] (introducing
let-bindings for each step of computation);

• inlining functions by recursively duplicating their body at each call site (except
recursive ones);

• transforming recursive functions which are not tail-recursive into tail-recursive
ones using an explicit stack.

The second pass (2) compiles Macle into an intermediate language, called HSML
(Hierarchical State Machine Language), allowing to express parallel composition of
hierarchical finite state machines. The third pass (3) flattens the hierarchical structure
of HSML. The fourth pass (4) translates a flat HSML description into VHDL. At
each point of the compilation flow, an OCaml backend is provided for simulation and
debugging on a PC, as indicated by the dotted arrows.
The rest of this section focuses on pass 2 and is restricted to Macle Core.

4.1 Targeting the Register Transfer Level

Synchronousfinite statemachines (FSM) are commonly used to describe computations
at the register transfer level (RTL). An FSM is classically defined by a set of states
(names) and a set of transitions. Each transition connects a source state to a destination
state and can be associated to a set of guards and a set of actions. Guards define when
the transition is enabled. They can depend on inputs and local variables.

Actions are performed when the transition is enabled and can write outputs and
local variables. Transitions are only taken at the rising edge of a global clock. At each
clock edge, if a transition starting from the current state has all its guards validated, it
is enabled, the associated actions are performed (instantaneously) and the destination
state becomes the current state.

123

International Journal of Parallel Programming (2023) 51:186–207 195

Fig. 7 FSM and VHDL implementation of the GCD algorithm (given in Macle Fig. 5)

FSMs are classically encoded in VHDL as synchronous processes with asyn-
chronous reset. Inputs, outputs and local variables are implemented as VHDL signals
with a dedicated signal representing the current state. At each rising edge of the input
clock, depending on the value of the current state and some conditions involving inputs
and local variables, the next state value is selected and the value of outputs and local
variables is updated. The FSM is re-initialized, asynchronously, whenever the reset
input signal becomes true.

Figure 7 gives a graphical representation of an FSM describing the computation
of GCD and its encoding in VHDL. The start input and rdy output are used
respectively to start and signal the termination of the computation. In the VHDL code,
modifications of the state variable STATE as well as the outputs and local variables use
signal assignments (<signal_name> <= <expression>).Assignments occur-
ring at the same clock edge are performed concurrently, i.e., the expressions denoted
by the right hand sides (RHSs) are all evaluated in parallel and then, and only then,
the signals designated by the left hand sides (LHSs) are updated simultaneously.

Note that in the code given Fig. 7, arguments and result are encoded as 31-bit signed
integers to have the same representation of OCaml values than in the O2B runtime.
This enhances the interoperability between Macle and OCaml.

By declaring separate processes—each encoding a given FSM—within the same
VHDLarchitecture, it is easy to implement synchronous parallel composition ofFSMs.
Each FSM is triggered by the same global clock and has access to the signals declared

123

196 International Journal of Parallel Programming (2023) 51:186–207

Fig. 8 Syntax of HSML

in the architecture. However, these signals can only be shared for reading as a signal
written by a process cannot be written by another process.

4.2 An FSM-Based Intermediate Language

We do not compile Macle circuits directly to VHDL. Instead, we use an intermediate
language, HSML (Hierarchical State Machine Language) for describing the behavior
of FSMs and expressing their composition, and which can be easily translated to
VHDL. HSML is inspired by well-known FSM-based formalisms and languages with
notions of hierarchy and compositionality, such as Statecharts [11], Communicating
Hierarchical State Machines [1] and Lustre-like languages with automata [8].

Figure 8 defines the syntax of HSML. A circuit is a parallel composition of FSMs
(A1 ‖ · · · An) depending on inputs, modifying outputs and using local variables. An
FSM is a set of zero or more mutually recursive transitions in the scope of a body used
to initialize it. A transition is a thunk f () = A associating a name f to an FSM A.
HSML offers a notion of hierarchy. For instance, given a transition t and an output x ,
the FSM (do x ← 0 then (let rec t in f ())) is a hierarchical formulation of the
FSM (let rec t in (do x ← 0 then f ())).

An FSM A is a mutually recursive definition of transitions (let · · · rec · · ·), a
conditional, an assignment (do · · · then · · ·), a branch f () to a transition f () = A
or a local parallel composition of FSM (A1 ‖ · · · An) in A. An assignmentdo x1 ← e1
and · · · xn ← en in A evaluates the expressions e1 · · · en , then assigns the results
to the variables x1 · · · xn and finally computes A. An expression e is a variable, a
constant or the application of a built-in operator. Logical operators ∧ and ∨ are strict.

Figure 9 shows an HSML circuit corresponding to the VHDL code given Fig. 7.
This circuit was automatically generated from the Macle circuit gcd_rtl defined
Fig. 5.

HSML exposes the semantics of the register transfer level (RTL, informally pre-
sented on the VHDL code of Fig. 7) while allowing hierarchical formulations that

123

International Journal of Parallel Programming (2023) 51:186–207 197

Fig. 9 HSML circuit implementing the GCD algorithm

makes it close to an expression language. In particular, some HSML constructs (such
as let rec and conditional) are common with Macle. Therefore, HSML constitutes a
useful intermediate language for compiling Macle to VHDL.

4.3 CompilingMacle Core to HSML

The compilation Cci�circuit f −→x = e� of a Macle Core circuit is defined as the
compilation of the body e of the circuit, from which the inputs, outputs and local
variables are inferred.

Cci�circuit f −→x = e� = circuit f −→xin returns −→xout = var −−→xlocal in

A
︷ ︸︸ ︷

C�e�start,rdy,result

where

⎧

⎪
⎨

⎪
⎩

−→xin,−→xout and −−→xlocal are inputs, outputs and local

variables declarations inferred from A

start, rdy, result are fresh names

The compilation C�e�start,rdy,result of a Macle Core expression e is a hierarchical FSM
initialized in a special state idle. It waits for the input start to be set to the value true
to start the computation. This computation assigns a value to the output result. The
output rdy notifieswhen the computation is done. The auxiliary functionCe�e�result,idleρ

is defined next. The compilation environment ρ maps functions names to the list of
their formal arguments.

C�e�start,rdy,result =

⎛

⎜

⎜

⎝

let rec idle() =
if start then (do rdy ← false then Ce�e�

result,idle
∅)

else (do rdy ← true then idle())

in (do rdy ← true then idle())

⎞

⎟

⎟

⎠

where idle is a fresh name

The compilation Ce�e�r,idleρ of a subexpression is inductively defined on the syntax of
the expressions. The compilation of a subexpression e which does not contain control
structures is defined as an affectation of e to a variable r continuing with a tail-call to
a destination.

123

198 International Journal of Parallel Programming (2023) 51:186–207

Ce�e�r,idleρ = do r ← e then idle()
if e is a variable, a constant or an application of an operator

The compilation of aMacle conditional is anHSML conditional, subexpressions being
inductively compiled.

Ce�if x then e1 else e2�r ,idleρ = if x then Ce�e1�r ,idleρ else Ce�e2�r ,idleρ

Compiling a let rec globalizes function parameters. To achieve this, each function
name introduced by a let rec is bound to the list of its formal parameters within the
compilation environment ρ. The extension of ρ with a function name f bound to its
parameters x1 · · · xn is denoted by ρ[f 	→ (x1, · · · xn)], assuming that f is not in
the domain of ρ. Alternatively, the compilation of a function call (f x1 · · · xn) is an
assignment of the values x1 · · · xn to the formal parameters y1 · · · yn given by f (ρ),
continuing with a call to f ().

Ce

�

�
let rec f1

−→x1 = e1
and · · · fn

−→xn = en
in e

�

�

r ,idle

ρ

=
⎛

⎜

⎝

let rec f1 () = Ce�e1�
r ,idle
ρ′

and · · · fn () = Ce�en�
r ,idle
ρ′

in Ce�e�
r ,idle
ρ′

⎞

⎟

⎠

where ρ′ = ρ[f1 	→ −→x1] · · · [fn 	→ −→xn]
Ce� f x1 · · · xn�r ,idleρ = do y1 ← x1 and · · · yn ← xn then f ()

if ρ(f) = (y1, · · · yn)

The compilationCe�let x = e in e′�r ,idleρ of a let with a single binding is defined as the
compilation of the subexpression e into the variable x continuing with the compilation
of the body e′.

Ce�let x = e in e′�r ,idleρ = let rec f () = Ce�e′�r ,idleρ in Ce�e�
x, f
ρ

where f is a fresh name

The compilation of a letwithmore than one binding is defined as a parallel composition
of FSMs followed by a synchronization barrier activating the execution of the compiled
body of the let.

Ce

�

�
let x1 = e1
and · · · xn = en
in e

�

�

r ,idle

ρ

(if n > 1)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

let rec f () =
do start1 ← false and · · · startn ← false
then
((C�e1�start1,rdy1,x1‖ · · · C�en�startn ,rdyn ,xn) in
if rdy1 ∧ · · · rdyn then Ce�e�r ,idleρ else f ())

in
do start1 ← true and · · · startn ← true
then f ()

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where

{

i ∈ {1, · · · n}
f , starti , rdyi are fresh names

123

International Journal of Parallel Programming (2023) 51:186–207 199

Parallel let-bindings provide the main possibilities of acceleration of OCaml pro-
grams on FPGA as shown in the next section.

5 Examples and Benchmarks

We now evaluate the speedup that can be achieved by running OCaml programs on
FPGA via O2B and Macle. These programs are assessed by taking as reference an
equivalent C code running on the same softcore processor. We first consider pro-
grams using circuits written in Macle Core (defined Fig. 4a) and then Macle circuits
interacting with the OCaml runtime (using constructs defined Fig. 4b).

5.1 Methodology

Experimental setupWe use a Max10 Intel FPGA embedded on a Terasic DE10- Lite
board. This FPGA has limited resources: 50K logic elements (LEs), and 1638 Kbit
of on-chip memory. The board itself has 64 MB of external memory (SDRAM) and
a clock frequency of 50 MHz. From a given OCaml source program, O2B creates a
C program containing the bytecode generated by the OCaml compiler, the VM, its
runtime library (including a GC) and additional C code. The bytecode as well as the
OCaml stack and heap are implemented with C static arrays, both stored in external
memory. The stack size is of 6400 words of 4 bytes while the heap size is of 4MB. The
resulting C program is compiled via the Nios II backend of gcc with optimizations
enabled (-Os). The Macle circuits (compiled to VHDL) and the softcore processor
are synthetized using Quartus 20.1. All data structures manipulated by OCaml, C and
Macle code use the OCaml heap. Bounds of OCaml arrays are dynamically checked
at each access.
Measuring elapsed time Macle circuits are called from a C block executed on the
softcore. For this, and as described in Sect. 2.2, it is necessary to write arguments
in the dedicated registers of the custom component implementing a circuit, start this
circuit and wait for the end of the computation to read the result (again in the dedicated
registers of the custom component). These reads and writes are done via the Avalon
SOPC bus. We measure the execution time of each Macle circuit from the beginning
to the end of the corresponding C block. The reported times, therefore, include the
time to transfer the arguments and results.

5.2 Macle Core

Pure Computations The throughput of the Macle circuit gcd_rtl given Fig. 5 is of
exactly one tail-call per clock tick at 50 Mhz (i.e. 50 million tail-calls per second). We
measure the execution time of gcd_rtl compared to that of the C function gcd_c
(given Fig. 2a) running on the softcore. The observed Macle vs. C speedup factor
is 28×. The hardware implementation of gcd_rtl uses approximately 360 logic
elements (LEs), i.e. 0.75% of the total number of LEs available on the FPGA. Fig-
ure 10 summarizes these results and gives similar examples of tail-recursive functions

123

200 International Journal of Parallel Programming (2023) 51:186–207

Fig. 10 Speedup factor of pure computations defined in Macle vs. C along with resource usage

(a)
(b)

Fig. 11 Parallelization of a computation and impact on the size of the generated hardware

expressed in Macle vs. C, both called from an OCaml program executed by O2B. This
benchmark comprises the greatest common divisor (GCD), the recursive sum of the
n-th first positives integers (SUM_INT), The Fibonacci sequence (FIBONACCI), a
tail-recursive version of the McCarthy 91 function (F91), and the Collatz sequence
(COLLATZ) as defined Fig. 5a in Macle. The key point is that these “pure” Macle
circuits have a throughput of one tail-call per clock tick while an iteration in the C code
results in a sequence of instructions, hence the speedup of Macle vs. C depends on
the nature of the computation. Moreover, the size (in LEs) of the hardware generated
from Macle also depends on the nature of the computation.
Parallel computations Fig. 11a gives a circuit sum_gcd2 calling twice a function
gcd and combining results. The let · · · and · · · in · · · constructs is implemented
by a synchronization barrier involving a parallel composition of two instances of the
FSM given Fig. 7. The global execution time of the barrier is the max of the execution
times of the expressions (gcd ai y), to which is added the execution time of the rest
of the computation (here instantaneous). For instance, calling the circuit sum_gcd2
with equal arguments a1 and a2 doubles the previous 28× speedup reported in Fig. 10.

Generalizing this example to circuits sum_gcdn (computing n times gcd_rtl
and summing the results) gives a speedup of 28× n in Macle vs. C (e.g., sum_gcd32
is 900 times faster in Macle than in C). This gain is only possible because the gcd
local function is inlined n times, the generated hardware using more LEs as shown
Fig. 11b.

5.3 Interacting with the OCaml Runtime

Figure 12 depicts the execution time of a Macle circuit sum_array (given Fig. 5a)
computing the sum of the elements of an OCaml array. The size n of the array is its
number of elements. The input array is filled with the n first positive integers.

In Fig. 12a, the OCaml heap is limited to 64 KB and is allocated either in on-chip
memory or in external memory (SDRAM). Access times are longer (around two times

123

International Journal of Parallel Programming (2023) 51:186–207 201

(b)(a) .

Fig. 12 Execution time of a Macle circuit summing the elements of an OCaml array

longer on this example) using external memory than on-chip memory. This is still
reasonable, considering that this allows to manipulate much larger data structures.

In Fig. 12b, theOCaml heap is allocated in SDRAM (with a heap size of 4MB). The
Macle version is 4.8 times faster than the C one. Compared to the speedup obtained on
pure computations, this example highlights a bottleneck when using memory accesses
from Macle code.

Figure 13a shows the execution time of a Macle circuit matrix_multiply
multiplying two n × n matrices filled with positive integers smaller than n, vs. a C
version. TheMacle version (using a classic formulation with three nested loops) is 7.5
times faster than the C one. The generated hardware uses 1602 LEs.

Figure 13b shows the execution time of theMacle circuit eval_exp (givenFig. 5a)
vs. a C version, recursively evaluating trees of arithmetic expressions of various sizes
(in number of constants and variables). The Macle version is 13 times faster than
the C formulation. The realization of this Macle circuit uses 2461 LEs and an explicit
stack of 3072 words implemented in on-chip memory (using RAMblocks and without
requiring bus accesses).

This preliminary evaluation shows that reformulating side-effect-free C functions
as Macle circuits can bring substantial speedups (eg., up to 28× for the gcd_rtl of
Fig. 5). Replicating the hardware corresponding to these circuits, intrinsically resulting
in their parallel execution, allows to further boost these speedups (e.g., up to 960× for
the sum_gcd32 example given Fig. 10).

It also show that for large data structures, such as arrays, the cost of accessing the
corresponding memory can quickly create a bottleneck.

6 Optimised Transfers and Parallel Skeletons

As demonstrated in the previous section, allowingMacle circuits to manipulate values
stored in the OCaml heap has a cost. Because this heap is implemented in sharedmem-

123

202 International Journal of Parallel Programming (2023) 51:186–207

(a) (b)

Fig. 13 Execution time of Macle circuits using imperative features

Fig. 14 Simple parallel skeletons available in Macle

ory, each access requires a bus transaction. When manipulating large data structures,
like arrays, the corresponding overhead can quickly become prohibitive. To overcome
this problem, Macle provides parallel skeletons aiming at minimizing this overhead
and offering higher-level parallelism. These skeletons are listed Fig. 14.

Each skeleton is parameterized by an integer literal k, which statically specifies the
size of a buffer used internally to transfer slices of the source and/or destination arrays
between the OCaml heap and the Macle circuits:

– (array_map〈k〉 f src dst) copies the k first elements of the OCaml array src into
a VHDL array buf, computes the function f in parallel on each element of buf and
writes back the k resulting values in the OCaml array dst. Processing the whole
OCaml array is carried out by iterating this transfer-execution-transfer sequence.

– (array_reduce〈k〉 f init a) sequentialy reduces the OCaml array a with the func-
tion f and an accumulator initialized to init by processing array elements k by k.
If the body of f is a combinatorial expression (i.e., a constant, a variable or an
operator applied to combinatorial expressions), each transfer-execution sequence
is pipelined thus avoiding the use of a buffer.

– (array_scan〈k〉 f init src dst) sequentialy reduces the OCaml array src with the
function f and an accumulator initialized to init by processing array elements k
by k and write back each group of k intermediate steps in the OCaml array dst.

Example 1 Figure 15a illustrates the use of a skeleton array_reduce<k> to define
an optimized version sum_array_optimized of the Macle circuit sum_array
(given Fig. 5a). Figure 15b gives the execution time of the circuit
sum_array_optimized vs. the circuit sum_array. Using array_reduce<k>,

123

International Journal of Parallel Programming (2023) 51:186–207 203

(a) (b)

Fig. 15 OCaml program with a Macle circuit using the parallel skeleton array_reduce<k>

the size of the array is calculated only once rather than at each array access. Moreover,
since the body of the reduction function f is a combinatorial expression, the execution
is piplined and the generated code does not need to use any buffer. The size of the cir-
cuit does not depend on k. The sum_array and sum_array_optimized circuits
use respectively arround 570 and 590 LEs. The optimized version is 2.8 times faster
than the unoptimized one. Figure 13a showed that the Macle circuit sum_array is
4.8 times faster than C. As a result, there is a speedup of 4.8 × 2.8 = 13 when using
sum_array_optimized vs. the C version.

Example 2 We consider an OCaml program using a Macle circuit filter_mulk
replacing all multiples of an integer y by zero in an OCaml array a of size n contain-
ing integer from 1 to n. This Macle circuit uses a parallelism skeleton array_map〈k〉
processing the array a in parallel by slice of k elements. Figure 16a gives the corre-
sponding program for k := 64.

Figure 16b shows the execution times of the Macle circuit filter_mulk for
different k vs. a C sequential version. Doubling the degree of parallelism k almost
doubles both the size of the generated hardware and the speedup (taking into account
the transfer time). For instance, when n = 96,000, filter_mul1 is 28 times faster
than the C version, while filter_mul64 is 60 times faster than filter_mul1,
resulting in a cumulated speedup of 28 × 60 = 1680. This follows a classical space-
time trade-off as shown by Fig. 16c, given the sizes (in LEs) of filter_mulk for
different k.
Comparison with sequential code running on a PC.We assess the performance of the
Macle circuit filter_mul_64 (given Fig. 16a) vs. a C sequential version running
on a PC equipped with an Intel Core i7 at 2.2 GHz and 16 GB of RAM. This C code
is compiled with gcc option -Os and called from an OCaml program compiled to
native code with the ocamlopt compiler. The frequency ratio between the PC and
the FPGA is 2.2G/50M = 44. Due to licensing limitations, the Nios II architecture
used in our experiment is a basic, unoptimized one. The sequential C version running

123

204 International Journal of Parallel Programming (2023) 51:186–207

(a) (b)

(c)

Fig. 16 OCaml program with a Macle circuit using the parallel skeleton array_map<k>

on the softcore is 44×8.7 = 380 slower than the sameC code running on the PC. Thus,
on this small benchmark, Macle code synthesized on the FPGA is 1,680/380 = 4.4
times faster than an equivalent C sequential code running on a PC.

7 Conclusion

In this paper,we have proposed an approach for programmingFPGAs using theOCaml
language. This approach consists in:

– running OCaml programs by embedding their bytecode and the OCaml VM in a
C program running on a softcore processor;

– calling hardware-accelerated functions, user-defined in the Macle language from
OCaml.

123

International Journal of Parallel Programming (2023) 51:186–207 205

Macle is a functional-imperative subset of OCaml supporting:

– parallel and sequential compositions of computations;
– mixing computations with sequential accesses to the OCaml heap (within the
dynamic memory of the softcore processor);

– use of parallelism skeletons on dynamic data structures with optimization of mem-
ory transfers.

Hardware acceleration of OCaml functions is simply obtained by replacing a “let”
keyword in the original OCaml code by “circuit”. This facilitates porting of OCaml
applications, quick prototyping and debugging. Moreover, Macle is a statically typed
language that provides much stronger guarantees on the safety of the generated hard-
ware than classical HDLs.

We have presented an implementation of the proposed approach based on the O2B
framework augmented with aMacle compiler targeting VHDL. This compilation flow
is fully automatized on an Intel FPGA. It is simple to use and includes a simulation
mode generating OCaml code from different points of the Macle compiler to test the
applications on a PC before synthesizing them on the FPGA. The use of a local stack
implemented in on-chip memory (instead of LEs) to realize non-tail recursive Macle
functions (as evoked in Sect. 5.3) is a key point to allow large and complex symbolic
computations to be implemented on moderately sized FPGAs.

Preliminary results, obtained on small benchmarks are very encouraging. They
show in particular that important speedups (up to the three orders of magnitude, com-
pared to C code running on the embedded softcore) can be obtained by combining the
ability to compile a Macle function to hardware and the possibility to replicate the
corresponding hardware in order to exploit data parallelism. Parametrizable parallel
skeletons both offer a manner to address the bottleneck occurring when exchanging
data between the OCaml host program and the accelerated Macle functions. It is also
a very practical way to explore the space-time trade-off, which constitutes a classical
issue when programming FPGAs (reducing computing time by increasing the number
of logic elements used).
The work described in this paper offers many interesting paths for future work.

First of all, scaling up for larger applications is an important point to convince
the OCaml community to use FPGAs, and the FPGA community to use high-level
languages. From a programmer’s point of view, it would be useful to allocate values
from the Macle code, support concurrent memory access, share Macle local functions
(rather than inline them), and use more parallel skeletons, possibly, domain-specific.

Concerning the tool chain itself, we plan to switch to fully open source design
and synthesis tools, with the idea that using such tools would facilitate both the static
analysis of the Macle code and prediction of the efficiency of the generated hardware
(e.g., resource usage and execution time). These informations could be used, for exam-
ple, to decide which Macle function should be inlined and also to provide guarantees
on applications interacting with the outside world. This is especially necessary for
critical applications, for which it would be appropriate to use synchronous program-
ming models with similarities to the HSML intermediate language used in the Macle
compiler.

123

206 International Journal of Parallel Programming (2023) 51:186–207

One can expect much higher speedups by using faster and/or more resourceful
FPGA boards. Moreover, although the use of softcore processors leads to some ineffi-
ciencies, it remains very suitable for multi-core programming, each core carrying an
instance of the OCaml VM.

In the longer term, we could also explore other ways to accelerate both the runtime
(memory and exception management) and the VM interpreter by partially implement-
ing them in hardware, or even using different levels of parallelism such as multiple
VMs sharing Macle code. The latter could provide an interesting approach to exploit
heterogeneous platforms including multi-cores, GPUs and FPGAs.

Acknowledgements Work on O2B and Macle is partially supported by the Center for Research and Inno-
vation on Free Software (IRILL).

Author Contributions All authors have contributed equally to this work.

Declaration

Conflict of interest The authors have no relevant financial or non-financial interests to disclose. No special
fundingwas received for conducting thiswork.All of thematerial is ownedby the authors and nopermissions
are required.

References

1. Alur, R., Kannan, S., Yannakakis, M.: Communicating hierarchical state machines. In: International
Colloquium on Automata, Languages, and Programming, pp. 169–178. Springer (1999). https://doi.
org/10.1007/3-540-48523-6_14

2. Auerbach, J., Bacon, D.F., Cheng, P., et al.: Lime: a Java-compatible and synthesizable language
for heterogeneous architectures. In: ACM International Conference on Object Oriented Programming
Systems Languages and Applications, pp. 89–108 (2010). https://doi.org/10.1145/1869459.1869469

3. Baaij, C., Kooijman, M., Kuper, J., et al.: Clash: structural descriptions of synchronous hardware using
Haskell. In: 2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and
Tools, pp. 714–721. IEEE (2010). https://doi.org/10.1109/DSD.2010.21

4. Bachrach, J., Vo, H., Richards, B., et al.: Chisel: constructing hardware in a Scala embedded language.
In: DACDesign Automation Conference, 2012, pp. 1212–1221. IEEE (2012). https://doi.org/10.1145/
2228360.2228584

5. Canis, A., Choi, J., Aldham, M., et al.: LegUp: high-level synthesis for FPGA-based proces-
sor/accelerator systems. In: Proceedings of the 19th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays (FPGA), pp. 33–36 (2011). https://doi.org/10.1145/1950413.1950423

6. Cardoso, J.M., Diniz, P.C., Weinhardt, M.: Compiling for reconfigurable computing: a survey. ACM
Comput. Surv. (CSUR) 42(4), 1–65 (2010). https://doi.org/10.1145/1749603.1749604

7. Chi, Y., Guo, L., Lau, J., et al.: Extending high-level synthesis for task-parallel programs. In: 2021
IEEE 29th Annual International Symposium on Field-Programmable Custom Computing Machines
(FCCM), pp. 204–213. IEEE (2021). https://doi.org/10.1145/3431920.3439470

8. Colaço, J.-L., Hamon, G., Pouzet, M.: Mixing signals and modes in synchronous data-flow systems.
In: Proceedings of the 6th ACM & IEEE International Conference on Embedded Software, pp. 73–82
(2006). https://doi.org/10.1145/1176887.1176899

9. Danelutto, M., Mencagli, G., Torquati, M., et al.: Algorithmic skeletons and parallel design patterns
in mainstream parallel programming. Int. J. Parallel Program. 49, 177–198 (2021). https://doi.org/10.
1007/s10766-020-00684-w

10. Decaluwe, J.: MyHDL: a Python-based hardware description language. Linux J. 2004, 84–87 (2004)
11. Drusinsky, D., Harel, D.: Using statecharts for hardware description and synthesis. IEEE Trans. Com-

put. Aided Des. Integr. Circuits Syst. 8(7), 798–807 (1989). https://doi.org/10.1109/43.31537

123

https://doi.org/10.1007/3-540-48523-6_14
https://doi.org/10.1007/3-540-48523-6_14
https://doi.org/10.1145/1869459.1869469
https://doi.org/10.1109/DSD.2010.21
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/1950413.1950423
https://doi.org/10.1145/1749603.1749604
https://doi.org/10.1145/3431920.3439470
https://doi.org/10.1145/1176887.1176899
https://doi.org/10.1007/s10766-020-00684-w
https://doi.org/10.1007/s10766-020-00684-w
https://doi.org/10.1109/43.31537

International Journal of Parallel Programming (2023) 51:186–207 207

12. Fumero, J., Stratikopoulos, A., Kotselidis, C.: Running parallel bytecode interpreters on heterogeneous
hardware. In: 4th International Conference on Art, Science, and Engineering of Programming, pp. 31–
35 (2020). https://doi.org/10.1145/3397537.3397563

13. Gammie, P.: Synchronous digital circuits as functional programs. ACM Comput. Surv. (CSUR) 46(2),
1–27 (2013). https://doi.org/10.1145/2543581.2543588

14. Ghica, D.R., Smith, A., Singh, S.: Geometry of synthesis IV: compiling affine recursion into static
hardware. In: Proceedings of the 16th ACM SIGPLAN International Conference on Functional Pro-
gramming, pp. 221–233 (2011). https://doi.org/10.1145/2034574.2034805

15. Huang, S., Wu, K., Jeong, H., et al.: Pylog: an algorithm-centric python-based FPGA programming
and synthesis flow. IEEETrans. Comput. 70(12), 2015–2028 (2021). https://doi.org/10.1109/TC.2021.
3123465

16. Ito, Y., Nakano, K.: A hardware-software cooperative approach for the exhaustive verification of the
Collatz conjecture. In: 2009 IEEE International Symposium on Parallel and Distributed Processing
with Applications, pp. 63–70. IEEE (2009). https://doi.org/10.1109/ISPA.2009.35

17. Kennedy, A.: Compiling with continuations, continued. In: 12th ACM SIGPLAN International Con-
ference on Functional Programming, pp. 177–190 (2007). https://doi.org/10.1145/1291151.1291179

18. Lai, Y.-H., Ustun, E., Xiang, S., et al.: Programming and synthesis for software-defined FPGA acceler-
ation: status and future prospects. ACM Trans. Reconfig. Technol. Syst. (TRETS) 14(4), 1–39 (2021).
https://doi.org/10.1145/3469660

19. Maas, M., Asanović, K., Kubiatowicz, J.: A hardware accelerator for tracing garbage collection. In:
2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA), pp. 138–
151. IEEE (2018). https://doi.org/10.1109/ISCA.2018.00022

20. Mycroft, A., Sharp, R.: A statically allocated parallel functional language. In: International Colloquium
on Automata, Languages, and Programming, pp. 37–48. Springer (2000). https://doi.org/10.1007/3-
540-45022-X_5

21. Nane, R., Sima, V.-M., Pilato, C., et al.: A survey and evaluation of fpga high-level synthesis tools.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35(10), 1591–1604 (2015). https://doi.org/10.
1109/TCAD.2015.2513673

22. Papadimitriou, M., Fumero, J., Stratikopoulos, A., et al.: Transparent compiler and runtime specializa-
tions for accelerating managed languages on FPGAs. Art Sci. Eng. Program. (2020). https://doi.org/
10.22152/programming-journal.org/2021/5/8

23. Saint-Mleux, X., Feeley, M., David, J.-P.: SHard: a Scheme to hardware compiler. In: Workshop on
Scheme and Functional Programming (2006)

24. Segal, O., Margala, M., Chalamalasetti, S.R., et al.: High level programming framework for FPGAs in
the data center. In: 2014 24th International Conference on Field Programmable Logic and Applications
(FPL), pp. 1–4. IEEE (2014). https://doi.org/10.1109/FPL.2014.6927442

25. Singh, S., Greaves, D. J.: Kiwi: synthesis of fpga circuits from parallel programs. In: 16th International
Symposium on Field-Programmable Custom Computing Machines, pp. 3–12. IEEE (2008). https://
doi.org/10.1109/FCCM.2008.46

26. Stewart, R., Duncan, K.,Michaelson, G., et al.: RIPL: a parallel image processing language for FPGAs.
ACM Trans. Reconfig. Technol. Syst. (TRETS) 11(1), 1–24 (2018). https://doi.org/10.1145/3180481

27. Townsend, R., Kim, M.A., Edwards, S.A.: From functional programs to pipelined dataflow circuits.
In: Proceedings of the 26th International Conference on Compiler Construction, pp. 76–86 (2017).
https://doi.org/10.1145/3033019.3033027

28. Tsai, C.-J., Kuo, H.-W., Lin, Z., et al.: A Java processor IP design for embedded SoC. ACM Trans.
Embed. Comput. Syst. 14(2), 1–25 (2015). https://doi.org/10.1145/2629649

29. Varoumas, S., Vaugon, B., Chailloux, E.: A generic virtual machine approach for programming micro-
controllers: the OMicroB project. In: 9th European Congress on Embedded Real Time Software and
Systems (ERTS 2018) (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://doi.org/10.1145/3397537.3397563
https://doi.org/10.1145/2543581.2543588
https://doi.org/10.1145/2034574.2034805
https://doi.org/10.1109/TC.2021.3123465
https://doi.org/10.1109/TC.2021.3123465
https://doi.org/10.1109/ISPA.2009.35
https://doi.org/10.1145/1291151.1291179
https://doi.org/10.1145/3469660
https://doi.org/10.1109/ISCA.2018.00022
https://doi.org/10.1007/3-540-45022-X_5
https://doi.org/10.1007/3-540-45022-X_5
https://doi.org/10.1109/TCAD.2015.2513673
https://doi.org/10.1109/TCAD.2015.2513673
https://doi.org/10.22152/programming-journal.org/2021/5/8
https://doi.org/10.22152/programming-journal.org/2021/5/8
https://doi.org/10.1109/FPL.2014.6927442
https://doi.org/10.1109/FCCM.2008.46
https://doi.org/10.1109/FCCM.2008.46
https://doi.org/10.1145/3180481
https://doi.org/10.1145/3033019.3033027
https://doi.org/10.1145/2629649

	Accelerating OCaml Programs on FPGA
	Abstract
	1 Introduction
	2 The O2B Framework
	2.1 Compilation Flow for OCaml to FPGAs
	2.2 Calling Accelerators from OCaml Programs

	3 High-Level FPGA Programming
	3.1 Compilation Flow
	3.2 The Macle Language

	4 Compiling Macle
	4.1 Targeting the Register Transfer Level
	4.2 An FSM-Based Intermediate Language
	4.3 Compiling Macle Core to HSML

	5 Examples and Benchmarks
	5.1 Methodology
	5.2 Macle Core
	5.3 Interacting with the OCaml Runtime

	6 Optimised Transfers and Parallel Skeletons
	7 Conclusion
	Acknowledgements
	References

