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Abstract
Maximum flow is one of the fundamental problems in graph theory with several 
applications such as bipartite matchings, image segmentation, disjoint paths, net-
work connectivity, etc. Goldberg-Tarjan’s well-known Push Relabel (PR) Algorithm 
calculates the maximum s–t (source–target) flow on a directed weighted graph. PR 
algorithm has been effectively parallelized on GPUs. However, computing the maxi-
mum flow even using the GPU parallel PR algorithm continues to be time-consum-
ing for large graphs. For the maximum flow algorithm’s error-tolerant applications, 
it is sufficient to compute the approximate maximum flow value. In this work, we 
propose multiple techniques for improving the push-relabel algorithm’s performance 
on the GPUs keeping its error-tolerant applications in mind. Our proposed tech-
niques improve performance by carefully reducing the impact of the particular prop-
erty that hampers the performance of the GPU parallel PR algorithm. These tech-
niques provide tunable knobs to control the amount of approximation added and the 
respective performance achieved. In the end, we propose the Pull Relabel algorithm, 
which is the natural symmetric counterpart of the Push Relabel algorithm. Further, 
we combine both algorithms to construct a Pull-Push Relabel maxflow algorithm 
and analyze its effect on the dynamically changing graphs. We illustrate the effec-
tiveness of our proposed algorithm and techniques using several real-world and syn-
thetic graphs from the DIMACS Challenge, SNAP, Konect, and Network Reposi-
tory, along with three maximum flow applications (Maximum Bipartite Matching, 
Team Elimination Problem, and Supply–Demand Problem). The proposals achieve 
1.05× to 94.83× speedup over the exact GPU parallel push-relabel algorithm, and 
14.29× , 40.40× and 32.41× speed-up on the three applications.
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1  Introduction

Flow network in graph theory refers to a directed graph where each edge has a 
capacity. Each edge receives a flow where the total flow passing through an edge 
cannot exceed its capacity. Such flow networks are useful for modeling many real-
world systems such as road networks, electrical circuits, computer networks, and 
many similar systems. The maximum flow is an important metric that denotes the 
maximum amount of feasible flow from one end to another in such flow networks. 
Over years, several sequential and parallel Algorithms [1–7] have been developed 
for computing the maximum flow for the given flow network.

Push-Relabel algorithm is one of the well-known algorithms for computing 
the maximum flow for a given flow network. The state-of-the-art Goldberg-Tarjan 
Algorithm [8] computes the maximum flow values in time O(V2E) . Due to its 
high time-complexity, computation of maximum flow is quite time-consuming 
even on moderately-sized graphs. For example, a single-threaded execution of the 
Goldberg-Tarjan algorithm takes several hours to terminate on a Genrmf graph 
with a million vertices and 3 million edges.

The graphics processing unit (GPU) has become an essential part of high-per-
formance computing systems. Its large number of processor cores helps in the 
performance improvement of many scientific applications with several independ-
ent computation tasks. Due to this, the parallel implementations of the Goldberg-
Tarjan Algorithm [5] have been proposed for many-core GPUs to make it more 
scalable. This has reduced the execution time of maximum flow computation sig-
nificantly. Despite this, however, computing the maximum flow on huge graphs 
continues to be time-consuming. For instance, computing maximum flow on the 
Soc-Orkut graph having 3 M nodes and 106 M edges using a parallel imple-
mentation of Goldberg-Tarjan’s algorithm on a GPU consumes several minutes 
to finish. In addition to this, there exist applications of the maximum flow [9, 10] 
which are resilient to some amount of error in the final maximum flow results. 
Hence, allowing a small percentage of error in the flow value can be tolerable 
from the application semantics perspective.

As part of this work, we propose a set of techniques to optimize and approxi-
mate the hybrid CPU-GPU implementation of the Goldberg-Tarjan’s Algorithm 
(GT) [5]. We observe various properties entailed by the algorithm, and the practi-
cal aspects of the graph processing to uncover efficient computation of the push 
and relabel operations. In particular, we make the following contributions:

–	 We present the GPU acceleration of maximum flow computation exploiting 
various properties of the flow computation, as well as approximate comput-
ing. In particular, we propose (i) vertex removal techniques to speed up the 
computation, (ii) an edge removal, and a graph renumbering scheme to reduce 
thread divergence in the GPU implementation of the Goldberg-Tarjan’s algo-
rithm, (iii) an excess kernel cycle pruning technique, (iv) re-using and reduc-
ing the min-height computations in the algorithm, (v) ways to skip GPU’s 
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global memory accesses, and (vi) parallel breadth-first-search for the global 
relabelling operation (compared to traditional sequential BFS)

–	 While existing systemic works deal primarily with static graphs, we address 
the problem of maintaining the maximum flow across structural graph changes. 
Towards this, we propose a hybrid pull-push relabel algorithm for computing the 
maximum flow on dynamically changing graphs.

–	 We apply our optimized maximum flow computation to three simple applica-
tions: Maximum Bipartite Matching, Team Elimination Problem and Supply–
Demand Problem, and illustrate its effectiveness.

–	 We qualitatively as well as quantitatively assess the effectiveness of the proposed 
algorithm and the techniques using several real-world and synthetic large flow 
networks. We observe that our proposal accelerates the maximum flow computa-
tion by 1.05× to 94.83× and achieves a 14.29× , 40.40× and 32.41× speedup on 
the three applications when compared to the state-of-the-art GPU-based Push-
Relabel algorithm’s implementation provided in Gunrock [11]. We list several 
takeaways from this evaluation which can be helpful to the community.1

The rest of the paper is organized as follows. Section 2 provides a brief background 
on the push-relabel algorithm and formally defines the problem. In Sect.  3, we 
develop and demonstrate novel techniques to improve the push-relabel algorithm’s 
performance on the GPUs, along with their implementation details. We demonstrate 
the hybrid pull-push relabel algorithm within the same section. Section 4 shows how 
to compute the maximum flow on the dynamically changing graphs. Section 5 pre-
sents the experimental evaluation of the proposed algorithm and techniques. Sec-
tion 6 demonstrates a real-world applications of the maximum flow algorithm and 
evaluates it by applying the proposed techniques. Section 7 summarizes the related 
work on the maximum flow algorithms. Section 8 concludes the paper with a discus-
sion on future research directions. In “Appendix A”, we study the effectiveness of 
our techniques on the remaining two real-world applications of the maximum flow 
algorithm.

2 � Problem Statement and Background

A flow network is a directed graph G(V, E, c) where V and E denote the sets of 
vertices and edges in the graph, and each edge (u, v) ∈ E has a capacity c(u,v). In 
addition to this, the graph has a source vertex s ∈ V and a sink vertex t ∈ V. The flow 
function, or merely the flow, defined on each edge of the flow network, is denoted by 
f: V × V → ℝ . The flow must satisfy the following constraints: 

1.	 Capacity constraint: The flow along an edge can not exceed the edge capacity, 
i.e., 0 ≤ f(u, v) ≤ c(u, v), ∀ (u, v) ∈ E

1  Our code is publicly available at https://​github.​com/​Jash-​Khatri/​IJPP.

https://github.com/Jash-Khatri/IJPP
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2.	 Anti-symmetry constraint: The net-flow across any edge (u,v) is zero, i.e.,f(u, v) 
= − fb(v, u), ∀ (u, v) ∈ E, where fb denotes the flow function on backward edges.

3.	 Conservation constraint: The flow entering into a vertex v is the same as the 
flow leaving out of v, except at the source s and the sink t, i.e., 

∑
(v,w)∈E f(v, w) − ∑

(u,v)∈E f(u, v) = 0, ∀ v ∈ V − {s, t}.

The val(f) denotes the value of a flow f and is defined as, val(f) =
∑

j ∈ V 
f(s, j) =

∑
j ∈ V f(j, t). The flow f′ is said to be the maximum flow for the given flow 

network G if there does not exist any flow f′′ in the same flow network G such that 
val(f′′ ) > val(f′).

2.1 � Goldberg‑Tarjan’s Algorithm

The Golderg-Tarjan’s (GT) Algorithm [8] is one of the well-known algorithms for 
computing the maximum flow in the given flow network. Its time complexity is 
O(n2m) , where n denotes the number of vertices and m denotes the number of edges 
in the input flow network. It is presented in Algorithm 1.

A crucial property of the GT algorithm is that it relaxes the conservation con-
straints (discussed above) by allowing the difference between the incoming and the 
out-going flows to be non-negative during the execution of the algorithm instead of 
being strictly zero. This difference between the incoming and the out-going flows 
associated with each vertex is termed as excess flow and is denoted as e(v) in Algo-
rithm 1. The GT algorithm also associates the height with each vertex, denoted as 
h[v]. A vertex with a higher height can push its excess flow to its neighbor vertices 
with lower height in the GT algorithm. The height for sources vertex is initialized to 
the number of nodes in the input flow network, while the rest of the vertices’ height 
is initialized to zero. The pre-flow is computed using the above concept by saturat-
ing all the out-going edges from the source vertex during the initialization step, as 
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shown by Lines 1–4 in Algorithm 1. Hence, pre-flow contains the vertices in the 
flow network, which will have the positive excess values. When the conservation 
constraint is again satisfied for all the vertices, pre-flow becomes the maximum flow 
of the flow network, and the algorithm terminates. At this stage, the excess flow 
accumulated at the sink vertex, i.e., e(t), denotes the maximum flow value.

2.2 � GPU Parallel Push‑Relabel Algorithm

We briefly explain the parallel push-relabel algorithm for GPUs [5], as presented 
in Algorithm  2. The value cf (u, v) denotes the residual capacity of each edge 
of the flow network G(V, E, c), where u, v ∈ V  . For the given flow f and the flow 
network G(V, E, c), it is calculated as c(u,v) - f(u,v), where u, v ∈ V  . The resid-
ual network of a given input flow network is denoted as Gf (V, Ef  , cf  ), where Ef  = 
{(u, v)|u ∈ V , v ∈ V , cf (u, v) > 0}.

The initialization step in Algorithm  2 is similar to that in Algorithm  1 where 
we set the initial values for heights(h), excess flow(e) for each vertex and calculate 
the residual capacity(cf  ) for each edge in the input flow network and generate the 
residual network. Additionally, the ExcessTotal variable is used to keep track of the 
total amount of the excess flow present at all the vertices of the residual flow net-
work. Since the pre-flow is computed by saturating all the out-going edges from the 
source vertex during the initialization step, the ExcessTotal variable is initialized to 
the total amount of the excess flow that each vertex connected to source vertex has 
during the pre-flow. The main while loop (Line 6) transfers all the necessary data 
to the GPU memory and then performs the concurrent push and relabel operations 
on each vertex of the residual network (except the source and the sink) by launch-
ing push_relabel kernel. The variable KERNEL_CYCLES indicates the 
number of times we repeat executing the push_relabel kernel code for a 
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particular thread. We use the term KERNEL_CYCLES and cycles interchangeably 
in the rest of the writing. Hence, inside the push_relabel kernel each thread 
operates on some particular vertex, and it performs the push or relabel operation on 
that vertex for the KERNEL_CYCLES number of times. After every thread finishes 
KERNEL_CYCLES push or relabel operations on its assigned vertex, the push_
relabel kernel terminates, and then the algorithm transfers the e, h, cf  back to 
the CPU memory from the GPU. The CPU then performs the global relabeling oper-
ation by calling the global_relabel_cpu function, which adjusts the heights 
of the vertices with their shortest distance to the sink. This is done by performing 
the backward breadth-first search (BFS) from the sink on the residual network. The 
algorithm then removes positive excess flow associated with the inactive vertices 
from the ExcessTotal variable. The vertex ’u’ is said to be inactive if either e(u) = 0 
or h(u) > |V| . Hence the vertex with positive excess flow can be inactive if e(u) > 0 
and h(u) > |V| . After that, the algorithm checks for its termination condition, which 
is stated as follows: If the summation of excess flow value on the source (e(s)) and 
the excess flow value on the sink (e(t)) is equal to the ExcessTotal, then it implies 
that there are no active vertices in the residual network (except the source and the 
sink) and hence the main while loop terminates. The final excess flow value on the 
sink vertex (e(t)) provides the maximum flow.

Example Figure 1 shows working of Algorithm 2 on a sample flow network. Step 
(i) shows the initial flow network G, with each edge augmented with its capacity. 

Fig. 1   Execution steps of GPU Parallel Push-Relabel algorithm on an instance flow network(G)
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The vertex s denotes the source vertex, and vertex t represents the sink vertex. Step 
(ii) shows G after the initialization step shown in Lines 1–4 of Algorithm 1. In this 
step, the algorithm initializes the height h and excess flow e for each vertex to zero, 
except for the source vertex. vertex s, the height is set to 4, equal to the number of 
vertices in G. After this, the algorithm saturates all the outgoing edges from the 
source vertex. Hence, after the initialization step, we have e(u) = 1 and e(w) = 100, 
along with residual edges u → s and w → s. The ExcessTotal variable is updated to 
value 101 in this step. The algorithm now executes the while loop to execute the 
push_relabel kernel on GPU. For this example, we took the KERNEL_CYCLES as 
10. Hence, inside the push_relabel kernel, one GPU thread each for vertex u, w will 
either perform push or relabel operation on that vertex for ten times and will modify 
the value of height h and excess flow e for that vertex accordingly. The flow network 
after execution of push_relabel kernel is shown in Fig. 1 as Step (iii).

Next, the algorithm transfers the required data back to CPU and executes Step 
(iv): global_relabel_cpu function (Line 10). This function performs a breadth-first 
search (BFS) from the sink vertex t along the residual edge and sets the vertex’s 
height as the level of the vertex in the BFS tree. Hence, after executing the global_
relabel_cpu function, the heights of vertices s, u, w, t become 2, 1, 1, 0, respectively. 
The flow network G after execution of global_relabel_cpu is shown in Fig. 1 as Step 
(iv). After this step, the algorithm prunes the inactive vertices by executing Lines 
11–15. However, as there are no inactive vertices after Step (iv), the flow network 
remains the same.

This completes one iteration of the while loop. Before starting the next 
iteration, the algorithm checks if e(s) + e(t) < ExcessTotal . However, 
e(s) + e(t) = 98 + 3 = 101 . Hence, the algorithm halts by returning e(t) = 3 . 	�  ◻

Algorithm 2 efficiently utilizes the large number of cores available on the GPU to 
perform the push and relabel operations concurrently on all the active vertices of the 
flow network, and computes maximum flow value faster than the sequential Algo-
rithm 1. In this work, we work with this algorithm as the baseline but compute the 
max-flow faster by allowing a small error in the maximum flow value.

3 � Our Techniques for Faster MaxFlow

This section describes in detail our techniques for the faster maximum flow compu-
tation. We summarize these in Table 1. Third column mentions if the technique is an 
approximation (A) or an optimization (O).

3.1 � T1: Parallel BFS with Frequent Relabeling

The global relabeling heuristic periodically performs backward breadth-first search 
from the sink in the residual network Gf  to compute the exact labels of the nodes. 
This BFS helps in reaching the excess flow in the vertices to the sink faster. It starts 
with the sink in the queue and every time we pop a vertex, say v from the queue, we 
check its neighbours. If a neighbour vertex u has not been visited and there is an 
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edge from u to v in the residual graph, which simply means some flow can go from 
u to v, we assign u as a child of v, assign h[u] = h[v] + 1 and add u to the queue. 
Then the algorithm performs a second reverse BFS from the source so that vertices 
which are not visited yet have to send their excess flow back to the sink. In effect, 
a considerable fraction of over-relabelling involves BFS. The global relabelling is 
done within each iteration, as shown in Algorithm 2. During experimentation, we 
observe that global relabelling takes 26.95 s on average on the graphs of our dataset. 
Thus, considering that large graphs can consume a large number of iterations (over 
30 iterations for many of our graphs), a significant amount of time is spent doing the 
relabelling itself.

Parallelizing BFS on GPU can considerably help. We use a method adapted from 
Luo et  al. [12] which uses hierarchical queues and works efficiently with shared 
memory.

Algorithm 3 shows the parallel BFS function that we have designed for perform-
ing the global relabel operation. Algorithm 3 has four significant steps: 

1.	 We have a current queue, d_currentQueue , of vertices which consists of all the 
vertices at some level. Initially, d_currentQueue consists of only the source. We 
launch a kernel in which each thread operates on one vertex of the queue. Each 
thread iterates through the neighbors of its vertex v. If the neighbour is not visited 
yet and there is an edge from the neighbour to v in the residual graph, we assign 
v as the parent of the neighbour. This is done in Line 5 of Algorithm 3. Note that 
no synchronization is required here as the processing simply assigns a parent if 
the conditions are valid. If the same vertex is a neighbour of two vertices being 
operated on by two threads simultaneously its parent will be one of the two ver-
tices at random.

2.	 After going through all the vertices in the current queue, we need to count the 
number of children assigned to every vertex. This helps in parallel filling of the 
vertex queue for the next level. This is done in function countDegrees in Line 
6 of Algorithm 3.

Table 1   Summary of techniques in this manuscript

Tech Name Opt./Approx Expl. Sect. Eval. Sect.

T1 Parallel BFS with Frequent Relabeling O 3.1 5.2
T2 Reusing min-height computations O 3.2 5.3
T3 Excess cycle removal O 3.3 5.4
T4 Vertex Removal O 3.4 5.5
T5 Edge Removal and Vertex Renumbering A 3.5 5.6
T6 Memory access skipping A 3.6 5.7
T7 Push-Pull Relabel Algorithm O 3.7 5.8
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3.	 For a vertex v, we have degree[v] number of children assigned to it. In 
the queue for the next level, the first child of v would be present at index 
degree[0] + degree[1] +⋯ + degree[v − 1] . This can be done by computing the 
prefix sum of the degree array, shown in function scanDegrees in Line 7.

4.	 Based on the prefix sum values, we fill the queue d_nextQueue for the next level. 
Finally we exchange the two queues for the next iteration.

The parallel BFS described above help in reducing the execution time of global 
relabelling operation. This improvement in the time for one global relabelling 
allows us also to perform labeling more frequently. Originally, in one iteration 
first, the BFS labeling is performed. Then there are some set number of cycles 
for which push-relabel operation performed on the whole graph. In one cycle, a 
kernel is launched where one thread operates on a few vertices and performs a 
push or relabel operation, whichever is applicable if the vertex is active. Thus the 
global relabelling followed by some cycles of push-relabel operations constitute 
one iteration.

For example for a graph with 100k vertices, 100k cycles of push-relabel opera-
tions on the graph were being performed. Now we can reduce that to a lesser 
quantity, say just 100. This frequent relabelling though will increase the total 
number of iterations for convergence will also help keep the number of unhelp-
ful relabel operations which are a bottleneck of the algorithm to a minimum, and 
hence improve the running time.
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We assess the performance benefits obtained using parallel BFS with fre-
quent relabeling in Sect.  5.2. Since parallelizing the BFS does not affect the 
performance of the original algorithm, this technique serves as an optimiza-
tion over the original parallel maximum algorithm. We observe the geomean 
speedup of 94.83× using parallel BFS with frequent relabeling over the sequen-
tial BFS.

3.2 � T2: Reusing Min‑height Computations

This technique relies on the following property.2

Property 1  If a cycle in the algorithm consists of only the push operations, then the 
height of each vertex in the residual network does not change in that cycle.

Proof  This is evident from the fact that push operations do not manipulate the verti-
ces’ heights. 	�  ◻

When the computation follows the scenario in Property 1, we re-use the min-
height computed by each vertex from the previous cycles for the next cycle. Oth-
erwise, we find the min-height neighbors for every vertex and perform the push or 
relabel operation accordingly. We also store the current min-height neighbor for 
each vertex during this step. When we re-use the min-height computed by each 
vertex in the previous cycles, two cases arise. In the first one, if the vertex has 
the valid min-height neighbor in its previous iteration, it can re-use its min-height 
computation for the current cycle. Hence, we can save recomputing the min-height 
for that particular vertex in the current cycle. In the second case, if the vertex has 
the invalid min-height neighbor in its previous iteration, then the thread will not 
push the flow from the vertex assigned to it to its min-height neighbor. In such a 
case, the given vertex needs to recompute its min-height neighbor and store it as 
its valid min-height neighbor. Since we re-use the min-height when we have all the 
pushes in the current cycle, this optimization technique’s effectiveness can be given 
by Eq. 1.

E = Total performance gain,
S = Number of cycles consisting of only the push operation, and
T = Average number of vertices storing the valid min-height neighbors.

(1)E ∝ S ∗ T

2  We note that the observations made in the following properties are well-known, and not ours. However, 
most of the earlier works on parallel max-flow computation have not exploited these properties, to the 
best of our knowledge, towards approximation and optimization.
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Algorithm 4 shows the parallel push_relabel kernel, which reuses the min-height 
computations. Following changes to the original push_relabel kernel are warranted: 
Lines 3–5 reset the numofrelabels value of the next stage. This means initially, 
we assume that there are no vertices performing the relabel operation in the cur-
rent cycle. Line 9 checks if the numofrelabels value for the current stage is set, 
which means there were relabel operations in the previous stage or the lowest_
neighbor array holds invalid value for the vertex u. This indicates that the lowest 
neighbor information for vertex u is not updated in the array. If either of them is or 
both are true, then we continue with the min-height computation as per Lines 10–17. 
We also update the lowest_neighbor array during this operation to reflect the 
latest min-height neighbor for vertex u, shown in Line 15. If the situation mentioned 
above does not hold, then we know that there was no relabel operation in the previ-
ous cycle, as well as lowest_neighbor[u] carries a valid value. Hence, we 
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can reuse this value for the current cycle since the height has not changed since the 
previous cycle. This is shown in Lines 18–23. Line 28 sets the numofrelabels 
if the relabel operation is performed by any vertex in the current cycle. All the ele-
ments in numofrelabels and lowest_neighbor array are initialized to True 
and INVALID, respectively.

We observed 1.052× performance improvement using this technique on the entire 
data-set (discussed in Sect.  5.3). During experimentation, we also observed that 
there could be a large number of cycles (e.g., up to 463,000 for Genrmf graphs) dur-
ing which we can reuse the min-heights. This technique is an optimization and not 
an approximation. This is because when we are reusing the min-height neighbors of 
a vertex, we will end up pushing either some positive flow value if the edge connect-
ing the given vertex and its min-height neighbor is not saturated, or zero flow value 
if the edge connecting the given vertex and its min-height neighbor is saturated. In 
either case, we do not add any error in the maximum flow computation.

3.3 � T3: Excess Cycle Removal

Our technique of removing excess cycles results in early termination, and is based 
on the following simple observation.

Property 2  If the excess flow value associated with each vertex except the source 
and the sink vertices in the flow network is zero during the execution of an iteration 
of the push-relabel kernel, then the next kernel cycles are redundant.

Proof  If the excess flow value associated with each vertex except the source and the 
sink vertices in the flow network is zero, then each thread associated with any par-
ticular vertex will not be able to push any further excess flow to the sink. 	�  ◻

Based on Property 2, if we detect the excess flow value associated with all the 
vertices except the source and the sink to be zero in the flow network, then we elide 
the rest of the kernel cycles in that iteration. This can be easily done by setting the 
KERNEL_CYCLES variable to zero in the push-relabel kernel. By detecting and 
pruning the unnecessary cycles during the push-relabel kernel’s execution, we adapt 
the early-termination property for the kernel.

A crucial point here is that the excess cycles removed (if any) will always be from 
the last iteration of the algorithm’s execution. This is because if the algorithm needs 
further iteration for finishing its execution, there will be at least one vertex with a 
positive excess flow value in the flow network. Hence, the excess cycle removal 
technique will not prune the cycles from such an iteration. However, for the last iter-
ation, there may be no active vertices (with positive excess flow value), and still, the 
algorithm keeps executing some cycles to complete the KERNEL_CYCLES number 
of cycles. Such cycles are detected and pruned by this technique.

During experimentation, we observe that the value of KERNEL_CYCLES is set 
based on the number of vertices in the input flow network. Since the number of 
kernel cycles needed to converge on a flow network varies and can not be predicted 
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easily, early termination detection helps avoid unnecessary computation resulting in 
improved performance.

We quantitatively assess T2’s effectiveness in Sect.  5.4 resulting in a 2.07× 
speedup on the entire data-set. We observe that this technique works well on large 
real-world and RMAT graphs. However, we did not observe any significant per-
formance improvement by applying this technique on the small graphs (with a 
few thousand vertices) and on the Genrmf graphs. Since we are pruning only the 
unnecessary cycles from the push-relabel kernel code, this technique also acts as an 
optimization.

3.4 � T4: Vertex Removal

Our technique of removing vertices is based on the following three observations.

Property 3  A vertex with zero out-degree does not contribute to the final maximum 
flow value unless it is the source vertex.

Proof  If a vertex has zero out-degree, then during the execution of the push-rela-
bel algorithm, it may accumulate the excess flow with it, but it has no way to push 
that excess flow anywhere. Hence, such a vertex will not drive any flow to the sink. 
Hence, vertex with the out-degree zero does not contribute to the final maximum 
flow value. 	�  ◻

Property 4  A vertex with zero in-degree does not contribute to the final maximum 
flow value unless it is the sink vertex.

Proof  If a vertex has zero in-degree, then during the execution of the push-relabel 
algorithm, it cannot accumulate the excess flow inside it from anywhere. Hence, it 
can not drive any flow to the sink vertex. Hence, we say zero in-degree does not con-
tribute to the final maximum flow value.

Property 5  A vertex with zero in-degree and zero out-degree does not contribute to 
the final maximum flow value.

Proof  Suppose a vertex has zero in-degree and zero out-degree, then, during the 
execution of the push-relabel algorithm, it can neither accumulate the excess flow 
nor push the flow within it anywhere. Hence, the vertices with zero in-degree and 
zero out-degree do not contribute to the final maximum flow value. 	�  ◻

Using Properties 3, 4, and 5, we prune all the vertices with zero in-degree, zero 
out-degree, and both from the input flow network as a preprocessing step. We know 
that one of the primary bottlenecks in CPU–GPU systems are the inter-device data 
transfer over a relatively slow PCIe interconnect, which manifests itself in GT algo-
rithm implementation as well. Vertex pruning improves CPU-GPU bandwidth by 
avoiding unnecessary data transfer.
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We assess the effectiveness of T3 in Sect. 5.5. As evident, T3 does not result in 
approximation in the max-flow value.

3.5 � T5: Edge Removal

In typical vertex-based processing of the PR kernel on GPU, a thread is assigned 
to a vertex or a set of vertices. A crucial step executed by each thread is to find the 
lowest height neighbor by traversing all the neighbors of the assigned vertex. Based 
on the number of neighbors each vertex has, the time taken for this operation varies 
from one thread to another. This leads to thread divergence for the warp threads on 
GPU when the degree distribution is skewed, leading to reduced performance.

To reduce this adverse effect, we use edge removal as the approximation tech-
nique on the input flow network. In this technique, we remove the edges connected 
to the vertices with probability proportional to their degrees. Algorithm  5 shows 
the routine used for performing the edge removal. Line 1 initializes the variable 
weighted_avg_degree based on the average vertex degree where wt is a user-defined 
constant. Lines 2–7 in the above routine checks for each edge (u, v) if the minimum 
degree of either of the two vertices attached to it is non-zero. If so, it computes its 
edge-stay value based on Eq. 2.

If the computed edge-stay value is above the user-defined threshold th, then we 
retain that edge; otherwise, we remove it. Note that there are two parameters, wt 
and th, that the users can tune to control the effect of edge removal on the flow 
network. Since this technique normalizes the degree distribution by removing edges 
from the high-degree vertices, it reduces thread divergence. This technique may per-
turb the maximum flow results as we are not preserving the maximum flow property 
by removing the edges from high-degree vertices.

Vertex Renumbering To further mitigate the effect of thread divergence, we 
apply vertex renumbering as the optimization technique on the input flow network. 
This technique renumbers the vertices in the input flow network such that vertices 

(2)edge_stay = min(1.0,weighted_avg_degree∕min(deg(u), deg(v))))
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with a similar degree are assigned the nearby ids. This way, we group the vertices 
with similar degrees together. Due to such a grouping, warp threads access the verti-
ces with almost similar degrees, reducing divergence.

Figure 2 shows an example. If we assume the warp size equal to 4, then the nodes 
2–5 are assigned to threads belonging to the same warp (ignoring the source). Node 
2 has an out-degree of 3, while nodes 3–5 have an out-degree of 1 each. Due to 
this (small) uneven degree distribution, the thread operating on node 2 would con-
sume more time, causing thread divergence. To avoid this, T4 renumbers the nodes 
as shown in Fig. 2. In the renumbered flow network, nodes 2–5 have the same out-
degree, i.e., 1. Hence, the warp threads operating on them will have almost the same 
amount of work.

We assess the effectiveness of both the above techniques in Sect.  5.6. We 
observed a speedup of 1.09× by applying edge removal and vertex renumbering on 
the entire dataset. incurring 0.00% error (minimal).

3.6 � T6: Memory Access Skipping

Our profiling reveals that accessing arrays e (excess flow), h (height), cf  (residual 
capacity) is the most time-consuming among all the memory accesses. This is evi-
dent as these are stored in the GPU global memory, and push and relabel operations 
access these arrays very frequently. Second heuristic observation is that the mag-
nitude of excess flow has a bearing on the usefulness of pushing it. Thus, a small 
excess flow often does not result in substantial change in the maxflow value. We 
combine these two observations to improve the overall memory accesses. Under our 
technique, called memory access skipping, a thread skips processing a particular 
vertex assigned to it if the excess flow value associated to that vertex is below a 
threshold. Processing a vertex involves performing either a push or a relabel on that 
vertex which, in turn, needs access to several parameters such as excess flow, resid-
ual capacities, the height of the vertices, etc., which are present in the GPU global 
memory. By not processing a vertex if its excess flow value is below the threshold, 
we save some costly accesses to GPU’s global memory (note that caching is not 

Fig. 2   Original graph and the modified graph with renumbered vertices
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useful here due to irregular nature of the underlying computation). To contain the 
inaccuracy, tuning the threshold is critical in this case. Section 5.2 shows the effect 
of varying the threshold value on the speed-up and inaccuracy of parallel push-
relabel algorithm. We observed a speedup of 1.09× by applying the memory access 
skipping technique on the entire dataset with the 4.4% error in the maximum flow 
value.

3.7 � T7: Push‑Pull Relabel Algorithm

We now discuss combining push-based and pull-based procedures.

3.7.1 � Pull Relabel Algorithm

A pull relabel algorithm would be the natural symmetric counterpart of the push-
relabel algorithm. Vertices pull flows from their neighbours to satisfy their flow def-
icit, similar to the original algorithm in which we push the excess flow from a vertex 
to its neighbour. Initially, the sink will perform saturating pulls from all its neigh-
bours and then the pull or relabel operations will continue. This is similar to the 
push relabel algorithm, where we initially perform saturating pushes from source 
to all its neighbouring vertices. The negative excess travels to the source where the 
vertices can pull the required amount of flow.

If there is no path from the source to the current vertex to pull flow from, we need 
to pull the flow from the sink itself, much like how flow which cannot reach the sink 
is sent back to the source in the push-relabel algorithm.

Similar to how we enforce the condition that when we push a flow from u to 
v, h(u) >= h(v) + 1 , when vertex u pulls flow from vertex v, the condition to be 
enforced is h(u) <= h(v) − 1 . This is shown by Line 1 in Algorithm 6. The relabel 
operation in the original algorithm is to find the neighboring vertex to which flow 
can be pushed, that neighbour which has the minimum height, and assign to the ver-
tex a height one more than the minimum height. Similarly, in this modification, we 
try to find among all neighbours from which flow can be pulled, that neighbour has 
the maximum height and assign one less than the maximum as the new label for the 
vertex. This is shown by Lines 1 and 2 in Algorithm 7.
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Combining the Two Algorithms If we can do both these push-pull operations 
simultaneously, we would achieve a bidirectional flow, since vertices close to the 
source would push their excess flow to the farther vertices (from the source) whereas 
vertices closer to the sink would pull flow from vertices far away from the sink to 
nullify their deficit. This is likely to speedup the computation.

3.7.2 � Two Types of Global Relabelling

Unfortunately, the BFS relabelling with a push-relabel algorithm and that with a 
pull-relabel algorithm conflict. In the push-relabel algorithm, we want the excess 
to reach the sink, demanding a reverse BFS from the sink. After that, if a vertex has 
an excess and is not visited yet, we would like to return it to the source. Hence we 
ought to run a second reverse BFS from the source. We assign the child height as 
h[child] = h[parent] + 1 in the push-relabel algorithm.

On the other hand, in the pull-relabel algorithm, we would like the deficit verti-
ces to pull flow from the source. This demands a forward BFS from the source. We 
ought to run a second BFS from the sink to assign the height for the unvisited ver-
tices since they have to pull flow from the sink itself. We assign the child height as 
h[child] = h[parent] − 1 in the pull-relabel algorithm.

Individually, the two algorithms work perfectly. But combining them in naïve 
way results in an incorrect maxflow computation. We combine the two procedures 
(push and pull) by performing the labellings in alternate iterations. Despite separat-
ing them in odd / even iterations, a challenge is the simultaneous presence of both 
types of excesses: positive and negative.

We explain the difficulty in more detail now. Consider the push-styled BFS when 
we are performing a backward BFS from the sink. For a vertex v and its neighbour 
u, the default way is to check if in the residual graph there is an edge from u to v. But 
if v has pulled flow from u, causing u to have a negative excess, there may not be an 
edge from u to v in the residual graph. Hence we should also check if v has pulled 
flow from u. This will be the case if e(u) is negative and there is some flow going 
from u to v. Similarly, during the forward BFS in the pull-styled BFS, we can assign 
a neighbour u as a child of v, if there is an edge from v to u in the residual graph or if 
v has pushed flow to u, u has a positive excess and there is flow from v to u.

This logic is presented in Algorithm  8. The value of type variable is 1 for a 
push-styled BFS and −1 for a pull-styled BFS. In push-type BFS, we will not 
consider the neighbour as a child if there is no flow possible from neighbour to u 
( cf (reverse(w)) < 𝜖 ) and the neighbour does not have any negative excess with some 
flow going towards u.
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Thus, at a high level, the algorithm is to run a push-styled global relabelling, then 
perform a few cycles of push operations on those vertices with positive excess as shown 
by Lines 2 and 3 in Algorithm 9, and alternate with a pull-styled global relabelling fol-
lowed by pull operations on the vertices with negative excess which is depicted using 
Lines 6 and 7 in Algorithm 9.

We show the performance analysis of the Push-Pull relabel algorithm in Sect. 5.8. 
This algorithm correctly computes the maximum flow values, and hence it acts as an 
optimization for the original push-relabel algorithm. We observe the geomean speedup 
of 1.5× using the Push-Pull relabel algorithm over the baseline Push-Relabel algorithm.

3.8 � GPU‑Specific Processing of the Push‑Relabel Algorithm

There are two main components in Algorithm 2 that are most suitable for GPU 
computing. The first is the push_relabel kernel shown as part of Line 8, whose 
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implementation is discussed as part of this section. This component can be 
offloaded to the GPU because it is highly parallel, as each thread can perform 
either push or relabel operations on its assigned active vertices independently. 
Hence we can exploit GPU’s massive multithreading here to make it efficient. 
The second part is the global_relabel_CPU function shown as part of Line 10, 
which Gunrock performs on the CPU. However, as discussed in S.ection 2.2, the 
global_relabel_CPU function internally executes a BFS, and is hence amenable 
for efficient GPU parallelization [12]. We have discussed this optimization earlier 
in this section (Sect. 3.1).

The primary kernel is launched from the host as follows.

The definition of the For_Kernel is shown using algorithm 10. For the GPU push-
relabel algorithm discussed in Sect.  2.2, the kernel is launched with 512 blocks, 
where each block has 256 threads within it. So there are a total of 131072 threads 
that work on all the vertices of the input graph during a single cycle. If the number 
of vertices is more than 131072, then each GPU thread processes multiple vertices. 
We have found this kernel launch configuration to be empirically efficient in our 
setup. The number of cycles discussed in Sect. 2.2 is set to the number of vertices 
(V) in the input graph. Hence, For_Kernel shown is called V number of times. The 
kernel is passed with two arguments: loop_size, which is the number of vertices 
in the input graph, and op, which is the __device__ function.

The launched threads work on a chunk of vertices in a strided manner if there are 
more vertices than the total number of threads launched. Each thread calls the op(i) 
device function which performs the primary operation (either push or relabel) on the 
given vertex i (Line 4). The op() function uses the input graph G, the excess array, 
the height array, the residual array, the source vertex, and the sink vertex to perform 
the appropriate operation on its assigned vertex. The op() function gets executed 
on the GPU, and the thread that calls the op() function performs either the push or 
the relabel operation on that vertex if it is an active vertex. The above details also 
present the implementation of push_relabel kernel demonstrated as part of Line 8 in 
Algorithm 2.

Our current implementation can be enhanced to exploit shared memory, whose 
investigation is left as a future work.

(3)For_Kernel <<< 512, 256, 0, stream >>> (loop_size, op);
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4 � Maximum Flow in Dynamic Graphs

In this section, we discuss how to model dynamic maxflow efficiently without rec-
omputing it on the modified network. We consider two dynamic updates: reducing 
and increasing edge capacities. Note that edge additions and removals can be easily 
simulated by updating edge capacities.

4.1 � Decremental Update

Consider in a flow network, we reduce the capacity of an edge (u, v) from w to w′ . 
Now if the original flow from u to v is less than or equal to w′ , we do not need to 
change anything and the maxflow in the modified network continues to be as it was 
before. On the other hand, if the flow is greater than the new capacity w′ . In such 
a case, we need to reduce the flow in this edge. This can be done by changing the 
excess values of the vertices. Formally, we set

The vertex u has a positive excess since it is not sending all of its flow in the edge 
now and vertex v now has a deficit since it is not receiving all the flow it used to get 
before. Earlier, vertex u was sending f(u, v) units of flow; post-update, it is sending 
only w′ units to v. Now we run the push-pull relabel algorithm till all the excesses 
become zero.

Figures  3 and 4 illustrate the two cases of the decremental updates discussed 
above. Red edges undergo the decremental updates.

Figure 3 demonstrates the first case for the decremental update. The initial capac-
ity of the edge (u, v) is 100, and the flow through the same edge is 2. Hence, its cur-
rent capacity is 98, and the back edge (v, u) has capacity 2, which shows the amount 
of flow f(u, v). Now, if we reduce the capacity of the edge (u, v) from 100 to 50, the 
current capacity reduces from 98 to 48, but the flow passing through the edge (u, v) 
still remains the same, that is 2. Hence the final maxflow value for the graph remains 
unaffected.

Figure 4 demonstrates the second case for the decremental update. Here also, the 
current capacity of the edge (u, v) is 98, and the back edge from (v, u) has capacity 2. 
However, this time we reduce the capacity of the edge (u, v) from 100 (w) to 1 (w’). 
Now, as w’ is less than f(u, v) = 2, we set the flow along the edge, i.e., f(u,v) to w’, i.e., 
1 based on the Eq. 6. This is shown by setting the weight of the back edge (v, u) to 1 
and of edge (u, v) to 0. We then increment the excess flow value for the vertex u by f(u, 
v) - w’ = 2 - 1 = 1 using Eq. 4 and then reduce the excess flow value for the vertex v by 
w’ - f(u, v) = 1 - 2 = -1 using Eq. 5. The final graph in Fig. 4 (on the right) is labeled 

(4)e(u)+ = f (u, v) − w�

(5)e(v)+ = w�
− f (u, v)

(6)f (u, v) = w�
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with each vertex’s corresponding excess flow value. Now, if we run the push-pull rela-
bel algorithm on this graph, the excess flow present on the vertex u will eventually be 
sent back to the source vertex (s), and the excess flow present over the target vertex (v) 
will be the final maxflow value, which is 2. Note that the final maxflow value obtained 
is correct after updating the weight of the edge (u, v) from 100 to 1.

4.2 � Incremental Update

When we increase the edge capacity from w to w′ , we check if the original flow was 
smaller than the initial capacity w. If it was, then increasing the capacity further does 
not affect the optimal solution. On the other hand, if it was equal to the initial capac-
ity w, we would like to check if we can send more flow through this edge. Hence we 
increase the flow to the new capacity w′.

(7)e(u)+ = w − w�

Fig. 3   Decremental Update Case-1 (The original flow from u to v is less than or equal to the reduced 
edge capacity)

Fig. 4   Decremental Update Case-2 (The original flow from u to v is greater than the reduced edge capac-
ity)
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Vertex u has a deficit since it receives a smaller flow than what it sends to v, and 
vertex v now has an excess since it receives more flow than the one it used to receive 
before. Earlier, vertex u sent f (u, v) = w units of flow; post-update it sends w′ units 
to v. Now we run the push-pull relabel algorithm till all the excesses become zero.

Figures  5 and 6 illustrate the two cases of the incremental updates discussed 
above. Red edges undergo the incremental update.

Figure 5 demonstrates the first case for the incremental update. The initial capac-
ity of the edge (u, v) is 100, and the flow through it is 2. Hence the current capacity 
of the edge (u, v) is 98, and the back edge (v, u) has the capacity of 2, which indi-
cates the flow f(u,v). Now, if we increase the capacity of the edge (u, v) from 100 
to 150, its current capacity increases from 98 to 148, but the flow passing through 
it still remains the same, which is 2. Hence the final maxflow value for the graph 
shown on the right in Fig. 5 remains unaffected.

Figure 6 demonstrates the second case for the incremental update. Here, the cur-
rent capacity of the edge (u, v) is 0, and the back edge (v, u) has capacity 1, indicat-
ing the flow f(u, v). Now, we increase the capacity of the edge from 1 (w) to 10 (w’). 
Since the initial capacity w of (u, v) is same as the initial flow f(u, v), we set the flow 
along the edge (u, v), i.e., f(u,v) to w’, i.e., 10 based on Eq. 9. This is shown by set-
ting the weight of the back edge (v, u) to 10 and edge (u, v) to 0. We then decrement 
the excess flow value for the vertex u by (w - w’) = (1 - 10) = -9 using Eq. 7 and 
then increment the excess flow value for v by (w’ - w) = (10 - 1) = 9 using Eq. 8. 
The graph on the right in Fig. 6 is labeled with each vertex’s corresponding excess 
flow value. Now, if we run the push-pull relabel algorithm on the graph shown in 
this modified graph, the excess flow present on v will be pushed to the sink vertex 
(t) along the edge (v, t), making the excess flow value of t as (3 + 9) = 12. Note that 
this is the final maxflow value considering u as the source and t as the sink, and this 
value is correct after incrementing the weight of the edge (u, v) from 1 to 10.

(8)e(v)+ = w�
− w

(9)f (u, v) = w�

Fig. 5   Incremental Update Case-1 (The original flow from u to v is smaller than the initial capacity of the 
edge (u,v))
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5 � Experimental Evaluation

In this section we evaluate the performance of our optimizations and approximation 
techniques vis-a-vis exact versions of the GPU parallel push-relabel algorithm.

Input Networks We evaluate the performance of our techniques on various types 
of networks such as the R-MAT network generated using GTgraph [13]. We also 
assess the performance of our techniques on the Genrmf networks generated using 
1st DIMACS Implementation Challenge [14]. In addition, we evaluate the perfor-
mance of our techniques on many real work networks such as social networks, road 
networks, web graphs, etc. For unweighted graphs, we add an edge-weight as 1. 
Table 2 lists the various graphs used along with their sizes. Note that the complexity 
of Push-Relabel is high O(V2E ) which resists exploring very large graphs.

Baseline Gunrock [11] is a state-of-the-art framework for implementing efficient 
graph algorithms on GPUs. We compare our optimization and approximate tech-
niques with the exact implementation of GPU parallel maxflow from Gunrock.

Machine Configuration We perform experiments on a machine with an Intel 
Xeon E5-2640 v4 @ 2.4 GHz CPU having 64 GB RAM and Nvidia GeForce RTX 
2080 Ti GPU having 4,352 cores spread across 68 SMXs with 11 GB memory. The 
machine runs CentOS 7 (64-bit).

5.1 � Overall Results

Table 3 shows the overall speedup obtained by applying the techniques discussed in 
Sect. 3 on the dataset shown in Table 2. We observe that edge removal and vertex 
renumbering techniques work well on the flow networks (due to their skewed degree 
distribution). The vertex removal technique shows the performance improvement 
on the flow networks with a large number of zero in-degree and zero out-degree 
vertices. The excess cycle removal technique achieves performance benefits espe-
cially on large real-world flow networks. Reusing of min-height computation and 
memory access skipping work well on the synthetically generated Genrmf graphs. 

Fig. 6   Incremental Update Case-2 (The original flow from u to v is equal to the initial capacity of the 
edge (u,v))
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Parallelizing BFS for global relabeling along with the push-pull relabel algorithm 
helps the maxflow computation converge quickly on the massive Genrmf graphs.

We delve deeper into the fine-grained effect of each technique, as well as their 
combined effect in the following subsections.

5.2 � Effect of Parallel BFS with Frequent Relabeling (T1)

Figure  7 shows the performance comparison between three implementations: (i) 
baseline parallel with sequential BFS [11], (ii) with parallel BFS, and (iii) with par-
allel BFS performing frequent labeling. With the parallel BFS alone, we can observe 
a 3.93× speedup over the baseline. However, with parallel BFS and frequent labe-
ling, we observe a significant improvement in the running time (94.83× speedup) of 
PR. This significant improvement is a combined effect of a considerable reduction 

Table 2   Network Dataset (d_avg and d_max are the average and the maximum degrees, while maxWt is 
the maximum edge-weight in the graph.)

t# Network #nodes (million) #edges (million) d_avg d_max maxWt

t1 road-belgium-osm 1.4 1.5 10 2 1
t2 roadNet-CA 2 2.8 12 2 1
t3 socfb-Harvard1 0.015 0.825 1K 109 1
t4 soc-lastfm 1.2 4.5 5K 7 1
t5 soc-livejournal 4 28 3K 13 1
t6 soc-orkut 3 106 27K 70 1
t7 soc-pokec 2 22 15K 27 1
t8 soc-youtube-snap 1.1 3 29K 5 1
t9 web-stanford 0.282 12 39K 16 1
t10 web-uk-2005 0.130 12 850 181 1
t11 web-wikipedia2009 2 5 3K 4 1
(t12–t24) Genrmf 0.05-−0.5 0.2-−2.33 9 10 14.8 ∗ 105

(t25–t28) R-MAT 0.5-−2.0 30–80 60–100 5301–7057 99

Table 3   Overall Results (NA: Not Applicable)

Tech Name Speedup w.r.t. 
baseline

Inaccuracy Evalu-
tion 
Section

T1 Parallel BFS with frequent labelling 94.83 NA  5.2
T2 Reusing the Minimum height computations 1.05 NA  5.3
T3 Excess cycle removal 2.07 NA  5.4
T4 Vertex Removal 1.52 NA  5.5
T5 Edge Removal & Vertex Renumbering 1.09 ∼0.0%  5.6
T6 Memory accessskipping 1.09 4.4%  5.7
T7 Push-Pull Relabel Algorithm 1.50 NA  5.8
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in the number of push+relabel operations, the total number of cycles taken for con-
vergence in the push-relabel kernel, and the decrease in execution time of BFS in 
the global relabeling function. Figure 8 shows the total number of push and relabel 
operations performed by the algorithm with and without frequent relabelling. We 
observe that for the Genrmf graphs and a few real-world graphs (such as t3, t5, and 
t9), there is a significant reduction (20 times in many cases) in the total number of 
push+relabel operations, which directly translates to a reduction in execution time of 
the overall maxflow computation. However, for other real-world and RMAT graphs, 
the total number of push+relabel operations is smaller (smaller than 10). For these 
graphs, the primary reason for performance improvement due to Frequent Relabe-
ling (FR) is the reduction in the number of cycles taken for execution of push-rela-
bel kernel (10 to 500 times fewer), as shown in Fig. 9. Since executing fewer cycles 
necessitates more frequent relabeling in an iteration and performing more iterations 
in the push-relabel kernel function, we indirectly avoid running unnecessary cycles 
in the kernel. The secondary reason for performance improvement is the time saving 
done by parallelizing the BFS in the global_relabel_op function, which is shown in 
Fig. 10.

5.3 � Effect of Reusing the Minimum Height Computations (T2)

Figure 11 shows the time taken by a parallel push-relabel algorithm with and with-
out re-using the minimum height computations. Note that this technique does not 
have any preprocessing cost associated with it.

The frequency of cycles that consist of only the push operations (S) along with 
valid min-heights (T) are presented in Fig. 12. For Genrmf flow networks, this value 
ranges between 1K and 463K. Hence, we observe that the GPU parallel version’s 
performance, which reuses the min-height computations, is consistently better than 
Gunrock’s on Genrmf. In contrast, this value for most of the real-world networks 
and RMAT graphs is close to 0. Hence, we did not observe any noticeable perfor-
mance improvement (1.05×).

Fig. 7   Performance comparison of GPU-based maximum flow algorithm with (i) sequential BFS, (ii) 
parallel BFS, and (iii) parallel BFS with frequent relabeling
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Takeaway 1 If the frequency of push cycles is high, then reusing the minimum 
height computations achieves good performance improvement on the corresponding 
flow networks.

5.4 � Effect of Removing Excess Cycles (T3)

Figure 13 shows the time taken by a parallel push-relabel algorithm with and with-
out excess cycle removal. Note again that this technique is applied to the algorithm 
itself, and hence it does not have any associated preprocessing cost.

As discussed in Sect. 3.3, excess cycle removal (if any) will always be from the 
last iteration of the algorithm’s execution. During the experimentation, we observed 

Fig. 8   Total number of push and relabel operations performed with Sequential BFS and with parallel 
BFS and Frequent Relabeling(FR)

Fig. 9   Total number of cycles taken for convergence with Sequential BFS and with parallel BFS and 
Frequent Relabeling(FR)
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that the baseline algorithm converges quickly within a single iteration for most real-
world and RMAT flow networks. Also, during that single iteration, this technique 
can prune between 1 × 108 to 4 × 109 cycles. This is presented in Figs. 14 and 15. 
Due to such a high number of cycles being pruned for real-world and RMAT flow 
networks, we observe that our version consistently outperforms Gunrock on these 
graphs.

In contrast, we observe limited benefits due to T3 on Genrmf networks. We 
observe that for a few Genrmf flow networks (2–5), the number of excess cycles 
pruned in the last iteration is less than 106 (Fig.  14). Hence, there is a little 
benefit due to this technique on these graphs. For the rest of the Genrmf flow 
networks (1 and 6–13), excess cycles detected in the last iteration are between 
1 ∗ 107 and 0.5 ∗ 109 (Fig. 14). However, most of these graphs take more than 30 

Fig. 10   Performance comparison between sequential and parallel BFS

Fig. 11   Effect of reusing the minimum height computations



542	 International Journal of Parallel Programming (2022) 50:515–561

1 3

iterations to converge (Fig. 15). Due to this, the total number of cycles executed 
in the first n-1 iteration for the convergence is much greater than the cycles 
pruned in the last iteration using this technique. Thus, this technique offers lim-
ited performance benefits to them too. Overall, across all graphs, we observe a 
geomean speedup of 2.07× on the entire data-set by using this technique.

Takeaway 2 Excess Cycle Removal provides notable performance improvements for 
the flow networks converging quickly in a few iterations.

Fig. 12   Frequency of cycles where min-heights can be reused

Fig. 13   Effect of removing the excess cycles
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5.5 � Effect of Vertex Removal (T4)

Figure  16 summarizes the experimental results obtained by applying the vertex 
removal on our dataset. As discussed in Sect.  3.4, this technique does not affect 
the maxflow since it removes the vertices with zero in-degree or zero out-degree 
or both. Note that the vertex renumbering time is not included in the speedup cal-
culation, as it is not implemented as a part of the algorithmic processing but done 
as a one-time preprocessing step. However, the preprocessing time taken for vertex 
removal for each graph is shown in the same Fig. 16 for reference. We observe that 
the preprocessing time for the vertex removal is between 1% to 900% of the total 
execution time for various graphs in our dataset. However, the average preprocess-
ing time of vertex removal is lesser than the average execution time of the baseline 
algorithm (both with and without vertex removal).

Fig. 14   The number of excess cycles pruned in the last iteration (note the logscale)

Fig. 15   Number of iterations taken by a parallel algorithm to converge
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As shown in Fig. 17, we observe that many real-world and RMAT flow networks 
have a large amount(between 50K to 900K) of zero in-degree and zero out-degree 
vertices, whereas the number of zero in-degree and zero out-degree vertices for 
Genrmf graphs is zero. By pruning such vertices, we can reduce the size of the e 
and h arrays specified in Algorithm  2. By doing so, we also save time for inter-
device data transfer. By removing such vertices, we observe that the push-relabel 
algorithm works 52% faster on average than running it on the original flow networks 
of the dataset.

Takeaway 3 Vertex removal helps reduce the execution time for the graphs with a 
high number of zero in-degree and out-degree vertices.

5.6 � Effect of Edge Removal and Vertex Renumbering (T5)

We analyze the effect of removing the edge attached between the vertices with a 
high degree on several real-world as well as synthetic flow networks. As explained 
in Sect. 3.5 the edge removal technique has two tunable parameters. Figures 18 and 
19 show the effect of changing the values of wt and th on the various flow net-
works. Note that the wt is the weight with which the average degree is multiplied, 
and th is the threshold on the edge stay value of a particular edge. Figure 18 depicts 
how a variation in wt affects performance. For smaller values of wt, the value of 
weighted_avg_degree computed as per Algorithm 5 is lower, and hence the edge_
stay value will be close to 0 for most of the edges even if they are connected to the 
vertices with the slightly skewed degree. Hence if wt values are low, more edges 
will be removed from the flow network. This results in a higher speedup. However, 
it comes at the cost of accuracy. On the other hand, when we set wt to a high value, 

Fig. 16   Effect of vertex removal
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the reverse happens. Similarly, when the value of th is high (close to 1.0), most 
of the edges have their edge_stay values smaller than th; hence more edges get 
removed from the flow network. This also improves performance trading off accu-
racy. The reverse happens when the th value is close to 0.0.

Figure 20 shows the effect of applying the edge removal and vertex renumbering 
on the flow networks of the dataset. We observe that both the techniques together 
provide a geomean speedup of 1.09× on the data set with a 0% loss in the accu-
racy of the maxflow value. As explained in Sect. 3.5, edge removal normalizes the 
skewed degree distribution by removing the edges from the high degree vertices. 
Similarly, vertex renumbering techniques renumber the vertices such that verti-
ces with a similar degree are assigned the nearby ids. Hence, both techniques also 
help in reducing thread divergence along with compressing the flow network. Edge 
removal, if done aggressively, bears the potential to add higher inaccuracy to the 
maxflow results. However, vertex renumbering does not impact the maxflow results 
as it preserves the flow network’s structure. We observe that the combined preproc-
essing time taken for both edge removal and the vertex renumbering for most of the 

Fig. 17   Number of vertices removed (zero for all the Genrmf graphs)

Fig. 18   Flow-network-wise effect of parameter wt for th=0.7 during edge removal
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flow networks of the dataset is less than one second, and the maximum preprocess-
ing time taken is 4  s. The preprocessing time taken for each of the graphs of the 
dataset is shown in the same Fig.  20. Hence, both techniques provide end-to-end 
speedup as the preprocessing overhead incurred is minimal.

Takeaway 4 Both edge removal and vertex renumbering helps in reducing thread 
divergence in the push-relabel GPU computation.

5.7 � Effect of Memory Access Skipping (T6)

Figures 21 and 22 respe ctively present the performance and the inaccuracy anal-
ysis of memory access skipping on our dataset. We observe a geomean speedup 
of 1.088× over the baseline with an average inaccuracy of 4.4%. From Fig. 21 we 
observe that the approximate PR algorithm with controlled memory skips consist-
ently outperforms the exact PR. Figures 23 and 24 show the effect of varying the 

Fig. 19   Flow-network-wise effect of parameter th for wt=0.8 during edge removal

Fig. 20   Effect of Edge removal and Vertex renumbering
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threshold t on the inaccuracy and speed respectively, on the differently-sized Gen-
rmf graphs. Note that t is the threshold on the excess flow value. Thread skips pro-
cessing a particular vertex assigned to it if the excess flow value associated with that 
vertex is below a threshold t. For higher values of t, the speedup is higher, as the 
algorithm processes a smaller excess value at the vertices, leading to fewer accesses 
to GPU’s global memory. As evident, this performance improvement comes at the 
cost of some accuracy. The reverse holds for smaller values of the threshold.

Takeaway 5 Memory access skipping helps in reducing the costly accesses to 
GPU’s global memory in exchange for a small inaccuracy.

5.8 � Effect of Push‑Pull Relabel Algorithm (T7)

We summarize our results for the push-pull relabel (PPR) algorithm using Fig. 25. 
We did not observe any performance improvements on the real-world networks 
using PPR. However, it showed a noticeable performance improvement on the syn-
thetically generated Genrmf and RMAT graphs (1.5× ) with no inaccuracy in the 
maxflow values.

5.9 � Maximum Flow in Dynamic Graphs

Dynamic graph algorithms involve edge addition and removal. In the case of max-
flow, dynamism can be simulated by updating the edge-capacities (including value 
0). In this work, we deal with capacity updates. We used the same synthetically gen-
erated genrmf graphs and changed the capacities of the edges present in the graph 
with values selected from a uniform distribution. For timing the algorithm process-
ing, we generated 10 batch files where each file has 1000 edge updates. We assigned 
a new capacity by selecting a random number from the range 0..200. Once the 

Fig. 21   Effect of memory access skipping on performance
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(static) algorithm converges on the original graph, the dynamic updates are applied 
in parallel for one batch file. Different batches are handled in sequence. For the ith 
batch file, we measure the cumulative time from the point it converged on the origi-
nal graph to the point it converged for the ith batch file.

Figure 26 shows the effect of dynamic processing against the static one on the 
six Genrmf graphs. The horizontal lines in both the plots are the time taken for the 
static processing for the respective Genrmf graph. The two plots indicate us that for 

Fig. 22   Effect of memory access skipping on inaccuracy

Fig. 23   Flow-network-wise 
effect of varying the threshold t 
during memory access skipping 
on the inaccuracy

Fig. 24   Flow-network-wise 
effect of varying the threshold t 
during memory access skipping 
on the speedup
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several updates, the dynamic processing is attractive. However, beyond a point, the 
cost of updating maxflow becomes higher than running the static computation on 
the modified graph. This threshold point differs across graphs as it depends upon the 
graph structure, edge capacities, as well as the updates themselves. It is important to 
note that since maximum flow is a global property of the graph, and not a local one, 
changing capacities of a few edges may also lead to substantial changes in the flow 
structure.

5.10 � Putting it All Together

This section explores the effect of combining all our techniques. Figure 27 shows 
the performance improvements attained after combining all the techniques from T1 
to T7 along with proper tuning of the knobs where applicable. The combined tech-
niques exhibit a geomean speedup of 96.62× over our entire dataset with 0% inac-
curacy. We observe that the average execution time per graph for the baseline imple-
mentation is 61.172 s, while that with our proposed techniques is 1.563 s.

Fig. 25   Effect of push-pull relabel Algorithm on performance

Fig. 26   Effect of dynamic processing against the static processing on Genrmf graphs
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6 � Effect on Applications

We evaluate our proposed techniques on the three maxflow applications. The first 
application, i.e., the maximum bipartite matching, is part of the current section, 
while rest two applications are present in “Appendix A”.

6.1 � Application 1: Maximum Bipartite Matching

A bipartite graph G(V, E) refers to the graph whose vertices can be divided into two 
disjoint sets S1, S2 where S1, S2 ⊆ V and S1 ∪ S2 = V, and every edge ∈ E connects 
two vertices such that one is in set S1 and another in set S2. Figure 28 (left) presents 
an example of a bipartite graph with eight nodes. The first four nodes (1 to 4) belong 
to the set S1, and the last four nodes (5 to 8) belong to the set S2. A matching in a 
bipartite graph is a set of the edges chosen in such a way that no two edges share 
the same vertex. For example, in the bipartite graph shown in Fig. 28 (left), the set 
of edges {(4, 5), (3, 6)} forms one of the possible matchings. A maximum bipar-
tite matching maximizes the number of such edges. In the bipartite graph shown 
in Fig. 28 the set of edges {(4, 5), (3, 6), (2, 7), (1, 8)} forms a maximum bipartite 
matching, and the cardinality of this set is 4. The objective of our application is to 
find the cardinality of the set of edges forming the maximum bipartite matching for 
a given bipartite graph.

The maximum bipartite matching problem can be solved by converting it to the 
maximum flow problem. To achieve this, we add one extra node as a source (S) and 
connect it to all the nodes with the first set S1 of the given bipartite graph. Similarly, 
we generate one extra node as a sink (T) and connect it to all the nodes of the second 
set S2. The modified graph is shown in Fig. 28 (right). Once we have constructed the 
flow network as stated above, we run the push-relabel algorithm on it. The obtained 
maximum flow value corresponds to the size of the maximum bipartite matching on 
the given bipartite graph (due to the MaxFlow-MinCut theorem [15]). The execution 

Fig. 27   Effect of all the merged techniques on performance



551

1 3

International Journal of Parallel Programming (2022) 50:515–561	

of the push-relabel algorithm on the graph shown in Fig. 28 (right) with S as the 
source vertex and T as the sink vertex outputs 4 as the maximum flow value which 
corresponds to the size of the maximum bipartite matching (note that there could be 
multiple optimal solutions).

Since not all the graphs are bipartite, for this application, we use the designated 
bipartite graphs available at Konect [16] as shown in Table 4. We preprocess the 
existing bipartite graphs to add a source vertex S, a sink vertex T, and the edges 
connecting these two vertices with the two sets S1 and S2. After running the push-
relabel algorithm on this expanded network considering S and T as source and sink, 
we obtain the size of the maximum bipartite matching, using both the baseline and 
our optimized processing.

We use two criteria for evaluating our techniques: speedup and inaccuracy. We 
name the baseline maximum flow algorithm as Algorithm A. We apply all our tech-
niques discussed in Sect. 3 to the baseline, naming the modified algorithm as Algo-
rithm B. We consider the maxflow value generated by Algorithm A to be the actual 
maximum flow and observe the loss in accuracy of the maxflow values computed by 
Algorithm B. Figure 29 shows the relative error in the maximum flow computation 
by Algorithm B. From Fig. 29, we observe that the maximum flow value generated 
by Algorithm B is very close to that of Algorithm A. On an average, we observe an 
accuracy loss of 0%.

Figure 30 compares the performance of the two algorithms. We observe that the 
average execution time for Algorithm A is 163.489 s, while that for Algorithm B is 
692.888 s. On an average, we observe a geomean speedup of 14.29× due to our pro-
posed techniques, clearly indicating their benefit.

7 � Related Work

We divide the relevant related work in sequential maxflow, parallel maxflow, and 
approximate computing techniques.

Fig. 28   Example bipartite graph and its corresponding flow network
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7.1 � Sequential Maximum Flow Computation

The first maximum flow algorithm was proposed by Ford and Fulkerson [17], which 
used the concept of augmenting paths from source to destination to calculate the 
maximum flow. This algorithm was further improved by Edmonds and Karp [6] by 
using a breadth-first search to find the shortest augmenting paths from source to sink 
for sending the flows. The crucial insight was that the asymptotic time complexity 
of O(VE2

) could be achieved by sending flow across the shortest augmenting paths 
(where V is the number of vertices and E is the number of edges). Dinitz and Yefin 
[3] proposed the concept of layered networks for finding all the shortest augment-
ing paths in a single step. Their proposed algorithm consists of a phase for finding 

Table 4   Bipartite graphs dataset t# Network #nodes (million) #edges (million)

t1 Actor movies 0.51 1.47
t2 IMDB 0.87 2.71
t3 BookCrossing (implicit) 0.44 1.15
t4 TV Tropes 0.15 3.23
t5 YouTube 0.12 0.29
t6 Occupations 0.22 0.25
t7 Producers 0.18 0.20
t8 vi.sualize.us user–item 0.51 2.29
t9 vi.sualize.us tag–item 0.57 2.29
t10 Teams 0.93 1.36
t11 Genres (DBpedia) 0.26 0.46
t12 Github 0.17 0.44
t13 DBpedia locations 0.22 0.29

Fig. 29   Accuracy comparison of Algorithms A (baseline) and B (optimized with our techniques). Note 
that their maxflow values are almost the same and overlap
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a layered network followed by finding a maximum flow on the layered network and 
improving the original flow. They showed that the maximum number of phases for 
their proposed algorithm could be n − 1 , where n is the number of vertices in the 
input network. The computation of the maximum flow using the concept of layered 
networks improved its asymptotic time complexity to O(V2E) . The maximum flow 
algorithm proposed by Karzanov [4] introduced the concept of pre-flows and the 
push operation, which led to an O(V3

) algorithm. Later, the push-relabel algorithm 
was proposed by Goldberg and Tarjan [8] with the asymptotic time complexity of 
O(V2E) . The complexity bound for Goldberg and Tarjan’s algorithm was further 
improved by using various techniques [7, 8].

7.2 � Parallel Maximum Flow Computation

Several implementations of parallel maximum flow algorithms have also been pro-
posed for multi-core and many-core platforms. Anderson and Setubal proposed the 
efficient parallel implementation of push-relabel algorithm for the shared-memory 
multi-processor [2]. They introduced the method for incorporating the concurrent 
global relabeling heuristic in the parallel push-relabel algorithm. They also intro-
duced a data structure for their proposed concurrent implementation which can 
dynamically change the size of the tasks assigned to a particular thread based on the 
total amount of work available. They demonstrated that their parallel implementa-
tion gives good speedups on the machine known as Sequent Symmetry systems for 
various input graphs. Bader and Sachdeva proposed a cache-aware optimization of 
Anderson and Setubal’s approach. They also provided the design and implementa-
tion of a new shared-memory parallel algorithm for the gap relabeling heuristic [1].

Vineet and Narayanan presented the faster parallel implementation of the push-
relabel algorithm for performing the graph cuts on the GPUs. They demonstrated 
that their GPU parallel implementation performs over 60 graph cuts per sec-
ond on 1024×1024 images [18]. Bo Hong presented an atomics-based lock-free 

Fig. 30   Performance comparison of Algorithms A (baseline) and B (optimized)
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multi-threaded algorithm for the multi-core architectures [19]. They demonstrated 
that the lock-free property is enabled by the re-designed push and relabel opera-
tions. They also showed that multi-processor architecture supporting atomic read-
update-write operations could execute their proposed multi-threaded algorithm 
without using any locks. Later, Zhengyu He and Bo Hong proposed the first generic 
parallel push-relabel algorithm for CUDA devices [5]. Their proposed push-relabel 
algorithm exploits the large number of available processor cores of the GPU and 
adaptively switches between the CPU and GPU during the course of the execution to 
maximize the execution efficiency. They claimed their algorithm to be up to 2 times 
faster than the push-relabel algorithm proposed by Goldberg and Tarjan.

7.3 � Approximate Computing Techniques

The survey of approximate computing techniques is given by Mittal [20]. The survey 
discusses strategies for finding approximable program portions and monitoring the 
output quality using approximate computing in different processing units, proces-
sor components, memory technologies, as well as programming frameworks. Besta 
et  al. [21] developed the framework for lossy graph compression for approximat-
ing the graph processing. They introduced the compression kernels, which allows 
the users to express and implement several graph compression schemes. They also 
propose the accuracy metrics for accessing the quality of lossy compression. They 
evaluated different compression schemes in terms of reduction in graph size, accu-
racy, and performance, and showed that the framework could become a platform for 
designing and analyzing lossy graph compression methods facilitating approximate 
graph processing, storage, and analytics.

Singh and Nasre [22] proposed several techniques to improve performance of 
graph applications on GPUs using approximate computing. They improved memory 
coalescing and reduced thread divergence for error-tolerant graph applications on 
GPUs. Singh and Nasre [23] also discussed several device-independent and algo-
rithm-independent techniques to add controlled approximations to graph algorithms 
to improve their efficiency. They discussed four instances of their proposed model, 
which, when implemented in the graph algorithms, provide the approximation in 
the algorithm’s results based on tunable knob. They showed that proper adjustments 
of the tunable knobs could provide good performance gains at the cost of some 
inaccuracy.

8 � Conclusion and Future Work

In this work, we studied the effect of various optimization and approximation tech-
niques for improving the Push-Relabel algorithm’s efficiency on GPUs. Our tech-
niques improve the GPU parallel Push-Relabel algorithm’s performance by prun-
ing the unnecessary computations, reusing the prior computations, reordering and 
compressing the flow network, using parallel BFS with frequent relabeling over 
sequential BFS, etc. In the end, we also proposed the push-pull relabel algorithm 
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and demonstrated how it could be used to compute the maxflow on the dynamically 
changing graphs. We expect the takeaways listed in Sect. 5 to be helpful in deciding 
when to apply the particular optimization and approximation technique to improve 
the GPU parallel push-relabel algorithm’s performance. We also demonstrated that 
our proposed techniques compute the maximum flow value around 1.05× to 94.83× 
faster than the exact GPU parallel push-relabel algorithm on the several real-world 
and synthetic flow networks while preserving the maximum flow value.

We further plan to extend our research in the following directions. First, analyze 
the speedup accuracy trade-off of the techniques proposed in Sect. 3 on the other 
maximum flow algorithms apart from the push-relabel algorithm. Second, we plan 
to investigate the algorithm-specific optimization techniques for the different maxi-
mum flow algorithms like Edmond-Karp and Dinic’s algorithms to compute the 
maximum flow value faster.

Appendix A: Additional Maximum Flow Applications

A.1 Application 2: Team Elimination

Another application of maxflow is Team Elimination. In this use case, given a set 
of teams that play together in a league format, the objective is to find out if a given 
team is eliminated or not at any point in time. At any given moment, the i th team 
has w[i] wins and g[i][j] games left to play against team j. A team is eliminated if it 
cannot possibly finish the season in the first place or tied for the first place. Our goal 
is to determine which teams are eliminated. Consider an example [24] presented in 
Table 5, having four teams. The columns indicate the number of wins, losses, the 
number of remaining games, and against whom the games would be played. Team-1 
already has 83 wins (which is the highest so far) and has 8 games left (1 against 
Team-2, 6 against Team-3, and 1 against Team-4). Team-1 cannot be eliminated. 
Team-4 can finish with at most 80 wins (77 current wins + 3 games remaining). But 
Team-1 already has 83 wins. Hence, Team-4 can be eliminated. A more complex 
scenario occurs for Team-2. Team-2 can finish the season with as many as 83 wins, 
which appears to be enough to tie with Team-1. But this would require Team-1 to 
lose all of its remaining games, including the six against Team-3, in which case 
Team-3 would finish with 84 wins. Hence, Team-2 can also be eliminated.

Team Elimination can be reduced to maxflow. To check if a particular team x is 
eliminated or not, we create a flow network corresponding to that team and then run 
the maximum flow algorithm on it. In the generated flow network for a given team 
x, we have one node for each pair (i, j) denoted as i-j, of teams which are called 
game nodes, excluding team x. Similarly, we have nodes corresponding to each team 
except team x, which are called team nodes. We connect an artificial source s to 
each game node i-j and set its capacity to g[i][j] (number of games left for i to play 
against j). We then connect each game node i-j with the respective team nodes i and 
j and set the edge’s capacity to infinity (INF as shown in Fig. 31). Finally, we con-
nect each team node to an artificial sink t. We include an edge from ith team node 
to the sink with capacity w[x] + r[x] - w[i], where r[x] is the number of remaining 
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games for team x. Based on the above explanation, the flow network generated for 
Team-4 given in the Table 5 is shown in Fig. 31. Note that the flow network gener-
ated for any team will always have four layers where Layer 1 has only the source, 
Layer 4 has only the sink, and layer 2 and layer 3 have (n − 1)(n − 2)∕2 and (n − 1) 
vertices respectively, where n is the total number of teams.

To check if the team is eliminated or not, we check if the maximum flow in the gener-
ated network saturates the arcs leaving the source vertex s. If the maximum flow does not 
saturate all the arcs leaving s, then there is no scenario in which team x wins the division. 
Hence such a team can be eliminated. For the example graph shown in Fig. 31, maxflow 
from s to t is 2, and it does not saturate all the outgoing edges from s. This is because the 
sum of the edge weights of all the outgoing edges from s is 7. So Team-4 can be eliminated.

A.1.1 Push Relabel Algorithm on Team Elimination Application

We experimented with real-world leagues [25]. However, they have a maximum of 
25–30 teams, leading to small maxflow networks. Hence, computing maxflow for 
these cases was extremely fast. Therefore, it was statistically not useful to compare 

Table 5   An example for the Team Elimination application [24]

Team-No Wins Losses Left Against

Team-1 Team-2 Team-3 Team-4

Team-1 83 71 8 – 1 6 1
Team-2 80 79 3 1 – 0 2
Team-3 78 78 6 6 0 – 0
Team-4 77 82 3 1 2 0 –

Fig. 31   Constructed flow network for Team-4 ( x = 4)
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the non-optimized and the optimized versions. Therefore, we resorted to generating 
larger datasets. We synthesized data for a league that has 1500 teams with a random 
distribution. This led to the creation of 1500 graphs, each of size approximately 1 
million vertices and 3 million edges. Out of these 1500 graphs, we ran the algorithm 
on a random set of 25 graphs and collected the results. For the purpose of evalua-
tion, we call the baseline Push Relabel algorithm as Algorithm A (exact) and the 
Push Relabel Algorithm with our set of techniques applied as Algorithm B (approxi-
mate). We apply all our techniques discussed in Sect. 3 on the top of Algorithm A, 
naming the modified algorithm as Algorithm B.

We use two criteria for evaluating our techniques: inaccuracy in Fig. 32 and exe-
cution time in Fig. 33. From Fig. 32, we can observe that the maximum flow value 

Fig. 32   Accuracy comparison of Algorithms A (baseline) and B (optimized). Note that their maxflow 
values are almost the same and overlap

Fig. 33   Performance comparison of Algorithms A (baseline) and B (optimized)
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generated by Algorithm B is very close to that by Algorithm A. On an average, we 
observe an accuracy loss of 0%. Also, we observe that the average execution time 
for Algorithm A is 27.951 s, while that for Algorithm B is 0.692 s. On an average, 
Algorithm B achieves a geomean speedup of 40.4× , clearly indicating the benefits of 
our proposals.

A.2 Application 3: Supply Demand Problem

The third application is supply–demand in road networks. Given a road network, 
each vertex represents a physical location, edges between nodes represent the 
roads connecting the physical locations, and each edge has a capacity that repre-
sents the number of items that can be sent via that road. Nodes are of three types: 
(i) supply nodes which are locations generating the items with some capacity, (ii) 
demand nodes which are locations needing a certain number of these items, and 
(iii) regular nodes which are neither supply nodes nor demand nodes but act as 
transit junctions. The optimization problem is to find out the maximum amount 
of goods that can be sent from supply nodes to demand nodes through the road 
network.

Figure 34 (left) presents an example of a road network with two supply nodes and 
two demand nodes. Now, let us consider the following supply and demand values:

–	 Node 1 Supply Rate: 20
–	 Node 2 Supply Rate: 80
–	 Node 5 Demand Rate: 30
–	 Node 6 Demand Rate: 95

For converting this into an applicable maxflow network, we generate one extra node 
as a source (S) and connect it to all the supply nodes with edge capacities equal to 
the supply rate of the respective supply node. Similarly, we generate one extra node 
as a sink (T) and connect it to all the demand nodes with edge capacities equal to 
the demand rate of the respective demand node. Once we have constructed the flow 
network as stated above, we run the push-relabel algorithm on it. The flow network 
constructed for the example is shown in Fig. 34 (right).

In our implementation, we use synthetic graphs to test the application. We gen-
erate road networks with 100,000 nodes and approximately 200,000 edges. We 

Fig. 34   Example road network and its corresponding flow network
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generate a random number from the range [1, 100] to assign edge capacities of the 
original road network. For each run of the algorithm, a random and disjoint sets of 
supply and demand nodes are generated, each with a randomly generated supply and 
demand capacity.

As in the first application, we use two criteria for evaluating our techniques: 
speedup and inaccuracy. We name the baseline maximum flow algorithm as Algo-
rithm A. We apply all our techniques discussed in Sect. 3 to the baseline, naming 
the modified algorithm as Algorithm B. We consider the maxflow value generated 
by Algorithm A to be the actual maximum flow and observe the loss in accuracy of 
the maxflow values computed by Algorithm B. Figure 35 shows the relative error 

Fig. 35   Accuracy comparison of Algorithms A (baseline) and B (optimized). Note that their maxflow 
values are almost the same and overlap

Fig. 36   Performance comparison of Algorithms A (baseline) and B (optimized)
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of maximum flow computation by Algorithm B. From Fig. 35, we observe that the 
maximum flow value generated by Algorithm B is primarily the same as that of 
Algorithm A. On an average, we observe an accuracy loss of 0% in the maximum 
flow values computed by Algorithm B.

Figure 36 compares performance of the two algorithms. We observe that the aver-
age execution time for Algorithm A is 1.773 s, while that for Algorithm B is 0.06 s. 
On an average, we observe a geomean speedup of 32.41× due to our proposed tech-
niques, clearly indicating their benefit.  

Acknowledgements  We thank the anonymous reviewers for their helpful comments which considerably 
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