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Abstract
Providing convenient APIs and notations for data parallelism which remain

accessible for programmers while still providing good performance has been a long-

term goal of researchers as well as language and library designers. C??20 intro-

duces ranges and views, as well as the composition of operations on them using a

concise syntax, but the efficient implementation of these library features is restricted

to CPUs. We present the Celerity High-level API, which makes similarly concise

mechanisms applicable to GPUs and accelerators, and even distributed memory

clusters of GPUs. Crucially, we achieve this very high level of abstraction without a

significant negative impact on performance compared to a lower-level implemen-

tation, and without introducing any non-standard toolchain components or com-

pilers, by implementing a C?? library infrastructure on top of the Celerity system.

This is made possible by two central API design and implementation strategies,

which form the core of our contribution. Firstly, gathering as much information as

possible at compile-time and using metaprogramming techniques to automatically

fuse several distinctly formulated processing steps into a single accelerator kernel

invocation. And secondly, leveraging C??20 ‘‘Concepts’’ in order to avoid type

erasure, allowing for highly efficient code generation. We have evaluated our

approach quantitatively in a comparison to lower-level manual implementations of

several benchmarks, demonstrating its low overhead. Additionally, we investigated

the individual performance impact of our specific optimizations and design choices,

illustrating the advantages afforded by a Concepts-based approach.
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1 Introduction

With the end of Dennard scaling [1], the hardware complexity of today’s high-

performance computing (HPC) systems is now—by necessity—growing along with

their computational power. The TOP 500 list [2] shows that many of the most

powerful current HPC systems are highly parallel and heterogeneous, consisting of a

combination of multi-core CPUs, GPUs and/or accelerators in clusters of

interconnected nodes.

Writing efficient applications for such systems is often labor-intensive and prone

to error, as it requires the use of specific low-level parallel programming paradigms

at node level (e.g., OpenMP [3] or OpenCL [4]), while leaving inter-node

communication to libraries such as MPI [5]. Although all of these technologies

have evolved over time, their use still limits productivity as the application

programmer is responsible for the complexity of scheduling computational tasks

and moving data as required.

To deliver higher productivity for scientists and other end-users, a number of

high-level, abstract programming models have been proposed. Most of these

programming models require the user to locate and specify parallelism or explicitly

require user-placed synchronization; examples include UPC [6], Cilk [7], and

Chapel [8]. Although static, user-specified schedules and partitionings are common,

the increasing complexity of contemporary and future systems encourages

automatic tuning support to dynamically optimize the utilization of resources

through runtime systems; examples of such dynamic systems supporting heteroge-

neous distributed memory architectures are StarPU [9] and OmpSs [10].
A promising HPC programming approach leverages C?? template libraries,

which hide the details of the underlying infrastructure from application experts.

Implementations of this principle include Kokkos [11] from Sandia National

Laboratories and the RAJA portability layer [12]. A lower level of abstraction,

which is based on similar technology, is provided by the OCCA library [13].

A particularly interesting option in a similar category is SYCL [14], an industry

standard supported by the Khronos group. SYCL provides a higher-level C??

interface to accelerators with broad industry support, but remains constrained to a

single node. To overcome this limitation, the Celerity project [15] extends the

SYCL approach to accelerator clusters.

However, while Celerity obviates the need for explicit message passing and data

decomposition, its SYCL-like interface still assumes that programmers are familiar

with concepts such as GPU kernels, task graphs and asynchronous work queues.

Modern high-level languages commonly allow the abstract application of sequences

of operands and their composition on data, in a manner which specifies only the

operations required but does not constrain the implementation of these operations.

C??20 range adaptors and views are one example of this principle.

With the Celerity high-level API (Celerity HLA), we introduce a programming

interface which provides a very high level of abstraction, inspired by C?? ranges

and views, while targeting not just single accelerators or shared memory nodes, but

clusters of accelerators. Crucially, we achieve this goal without introducing
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significant overhead compared to a manual implementation in many benchmark

scenarios. Our concrete contributions are as follows:

• The design and implementation of the Celerity High-level API, providing a very

high level of abstraction and a functional programming style for targeting

clusters of GPUs, which was previously only available for CPUs on single

shared-memory nodes.

• Details on our research into various potential sources of overhead and their

mitigation using state-of-the-art API design and programming techniques. This

includes concept-based typing to eliminate the need for type erasure, as well as

compile-time metaprogramming to maximize automatic kernel fusion

opportunities.

• A performance evaluation of the Celerity HLA compared to direct low-level

implementations, demonstrating the overall applicability of our approach as well

as the impact of our overhead mitigation strategies across a set of benchmarks.

The remainder of this paper is structured as follows. In Sect. 2, we provide some

background information on SYCL and Celerity, as well as the new C??20 standard

library features for working with collections, which served as an inspiration for the

Celerity HLA. Section 3 describes our core contributions, including the Celerity

HLA API design and implementation featuring concept-based typing and compile-

time fusion of operations into single kernels. In Sect. 4 we evaluate our

implementation and demonstrate its low performance overhead compared to more

verbose options. We also investigate the impact of some specific implementation

choices and optimizations. Finally, Sect. 5 discusses some related work and Sect. 6

concludes the paper.

2 Background

2.1 SYCL & Celerity

SYCL is a single-source programming model for heterogeneous computing that

builds on pure C??. Unlike other GPU computing options such as CUDA, the

language is not extended syntactically, and SYCL programs are valid C??

programs. When accelerators are targeted, a SYCL implementation requires a

dedicated compiler that identifies kernels, extracts them, and compiles them into a

representation—such as SPIR-V [16]—suitable for a given accelerator. As both

kernel and host code are stored in the same source file and have access to the same

data structures, SYCL therefore enables C?? features such as templates to work

seamlessly and in a type-safe manner across boundaries of host and device code.
This property is of particular importance for the Celerity HLA.

In SYCL, the execution of data parallel kernels is organized by an implicitly

constructed task graph, which is based on data access specifications that a

programmer associates with a kernel by constructing accessor objects.
Celerity [15] builds upon and extends SYCL—which can be seen as a domain-

specific embedded language—to enable execution on distributed memory clusters.
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While shared memory parallel kernels are still handled by SYCL on each individual

worker node, the Celerity runtime acts as a wrapper around each compute process,

transparently handling inter-node communication and scheduling. This is made

possible by an asynchronous multi-pass execution process, which allows the

distributed system to gain a shared understanding of the program being executed

and automatically distribute kernel executions while ensuring that their data

requirements are fulfilled.

Listing 1 illustrates a simple example which adds two matrices in Celerity. Note

the use of the simple access pattern specifier in lines 10 to 12. This

information enables the Celerity runtime sytem to correctly associate data with parts

of the implicitly distributed kernel [15]. While this code is quite succinct when

considering that it is capable of executing on a cluster of GPUs and handling all

related distributed memory and accelerator complexities, it is still very verbose

compared to a functional specification of the algorithm. This gap in expressiveness

motivates our work on the Celerity HLA.

2.2 C1120 Ranges and Views

With C??20, the C?? standard library starts supporting pipelines of operations for

a more concise programming style inspired by functional programming. This pattern

is widely used in other languages such as C# (LINQ [17]) or Python and allows for

more concise viewing and manipulation of collections of elements. Consider an

example of discarding all odd values from an integer collection and converting the

remaining values to their string representation.
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Listing 2 shows a traditional, imperative way of solving this problem. While

straightforward to grasp in this simple example, this approach quickly becomes hard

to comprehend for more complicated sequences of operations. It also loses semantic

information regarding potential parallelism. Therefore, it is usually preferable to use

named algorithms from the standard library, making it easier for the reader to follow

the individual steps performed and clarifying their semantics.

This solution is implemented in listing 3, demonstrating the effect of using

named algorithms on readability and clarity. However, since the computation has

been divided into two separate steps, those are performed sequentially, each of them

fully iterating over their respective input sequence. Depending on the use case and

run time requirements, this may not be a viable approach. These cases then require

pulling the condition which filters the odd numbers into the transform functor,

which in turn reduces readability again. In the case of a distributed, accelerator-

based platform like Celerity, splitting computations in this manner is especially

costly—as queuing operations to accelerators on different nodes is relatively

expensive—and should be reduced to a minimum.

The functional approach in Listing 4 achieves the optimal run time properties of

Listing 2 while being even more concise than Listing 3 by allowing range adaptions

to be composed and evaluated lazily upon iteration in a single pass. This functional

style of processing ranges of elements is yet to be adopted widely in the C??
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landscape, but with the standardization in C??20 it is very likely to gain broad

adoption in the future. It has been chosen as the model for designing the celerity

high-level API because it fits our requirements very well: it provides optimal run

time complexity while still being clear and descriptive.

3 Method

The Celerity High-Level API is implemented as an open source C??20 library on

top of the Celerity Runtime system.1 Figure 1 provides an overview of the software

stack of an application using the Celerity HLA.

Application code is based on the HLA C?? library, which transparently turns a

functional processing pipeline formulation into buffers, kernels and accessor

operations understood by the Celerity runtime system.

It in turn manages the launching of kernels and provisioning of memory using an

underlying SYCL implementation, and implements communication between nodes

via MPI. In this way, the Celerity HLA program is capable of executing on multiple

GPUs in a distributed memory system.

Given the additional constraints imposed on GPU kernel code, as well as the

requirements for dealing with distributed memory, achieving performance compa-

rable to a low level implementation in Celerity HLA while maintaining

programmability and functional composition requires very specific API design

choices and researching various implementation alternatives and optimizations.

3.1 API Design

Listing 5 shows a simple Celerity HLA example. In all HLA examples, in the

interest of readability, a preamble including and

is assumed. Note that the code closely resembles the C?? ranges

and views API illustrated in listing 4 with two additions: first, as with every SYCL

kernel submission, a kernel name has to be specified. Therefore, is passed

an explicit template type argument . Note that this ceases to be required

with SYCL 2020 [18], which further simplifies Celerity HLA usage (i.e. eliminating

in the example). We have chosen to include these classes in the example

code presented in this paper to maintain its compatibility with existing SYCL 1.2

implementations.

1 The Celerity HLA is available on GitHub: https://github.com/celerity/celerity-hla.

123

346 International Journal of Parallel Programming (2022) 50:341–359

https://github.com/celerity/celerity-hla


As a second addition compared to standard C??, to trigger kernel submission to

the Celerity queue, the operation sequence is terminated with . Note

that since the lambda expression passed to takes a simple as

parameter, the kernel may only access the current element.

Selecting another Celerity access pattern (i.e. builtin range mapper) is done by

changing the parameter type of the kernel functor. This is similar to dependency

injection, a technique used in managed languages like Java to request certain

services to be passed to a method or constructor by a framework. In Celerity HLA

we use the same pattern to tell the run time which portion of the buffer we want to

access: a single element, a slice, a block of adjacent elements or all elements of the

corresponding input buffer.

The buffer type of is automatically deduced from the submission of the

operations sequence, in this case .

Listing 6 shows an example of using to request slice range mapping

of the corresponding input buffers to compute the product of two square matrices.

The template arguments of define the data type on which to operate and the

desired dimension of the slice, as illustrated in Fig. 2. Since like

provide iterators for traversing their respective ranges, the column-row

inner product can be conveniently computed using the algorithm

from the standard library.

Note how the second buffer is piped in using the stream operator in line 9. This

code will result in only a single kernel submission as those two operations are

Celerity Runtime
HLA C++ Library

SYCL MPI
GPU Cluster

Application CodeFig. 1 Overview of the Celerity
HLA software stack
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suitable for kernel fusion, merging them into one single kernel. We will now

elaborate on how this is achieved internally.

3.2 Kernel Fusion and Implementation Optimization

Listing 7 shows an example of an operation sequence with fusible kernels—i.e.

kernels which can be merged into a single one, resulting in a single task

submission—and non-fusible kernels. Kernels and can be fused as the

latter only reads a single element per work item. However, and can

not be fused, as reads a slice of input data, which needs the

transformations of (and ) to have already been applied.

Figure 3 illustrates the process of building the final, partially fused operation

sequence. The first step is to package up the kernel functors and all available

Fig. 2 ‘‘Slice’’ chunk examples
on a 2D buffer. Blue: dimension
1, Red: dimension 0 (Color
figure online)
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compile-time information. These are crucial for the following stages and serve as a

decision-making basis. After the tasks have been built, they are sequenced by using

the pipe operator | and secondary input buffers are streamed in using .

When the full sequence is built, the operation linking phase starts. Here the

decision whether two kernels are eligible for fusion is made. This decision depends

on the access pattern of the latter task. Thus, the decision boils down to the question

if the second task has loop-carried dependencies or not. If it does, those tasks can

not be fused, otherwise they can be. Now, it might seem difficult to extract this

information from the kernel with a library-based approach which does not allow

analysing kernels on a source level. However, interestingly, this information is

already available to the Celerity runtime, although in a different form. Recall that

the Celerity runtime requires users to specify which data ranges they plan to access

in the form of range mappers. This is needed to determine which parts of buffers

need to be available on each distributed node. The range mapper

indicates that in every iteration step only the current element is accessed which

means loop-independent dependence, while all other range mappers allow accessing

elements other than the currently iterated one and thus describe loop-carried

dependencies. Consequently, knowing which range mappers are used inside a kernel

suffices to decide fusibility. Conveniently, the Celerity high-level API handles the

selection of range mappers and thus already has that information.

In short, fusibility of two unary kernels is decided by considering the requested

range mapper of the second kernel - if and only if it is a one-to-one mapping, the

kernel can be fused with its predecessor.

buffer
<int, 1>

transform
(int->int)

transform
(int->int)

transform
(slice,slice->int)

buffer
<int, 1>

transform
(int->int)

transform
(int->int)

transform
(slice,slice->int)

buffer
<int, 1>

buffer
<int, 1>

transform
(int->int)

transform
(int->int)

transform
(slice,slice->int)

buffer
<int, 1>

buffer
<int, 1>

transient
buffer

<int, 1>

buffer
<int, 1>

Item-
context
<int, 2>

task packaging

opera�on linking

kernel fusion

buffer
<int, 1>

buffer
<int, 1>

buffer
<int, 1>

Fig. 3 Processing steps for the operation sequence in listing 7
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For binary kernels (which have two predecessors) the decision of fusing them or

not has to be evaluated for both inputs in isolation. If the first input is accessed in a

loop-independent manner then the respective predecessor can be merged into the

binary kernel. The same applies to the the second input, which results in the

following final decision algorithm: for each input of the kernel, examine its range

mapper and if and only if it is an one-to-one mapping, merge the corresponding

predecessor kernel into the one in question while preserving the sequence of

operations.

In case two adjacent kernels can be fused, they are linked through a transient
buffer which indicates that there is no actual buffer-like storage required. Otherwise,
the operations are connected by creating a temporary Celerity buffer acting as the

sink for the first kernel and source for the second. At the end of this phase, the final

buffer which will hold the result of the sequence is created and linked as a sink to

the last operation.

Finally, kernel fusion is performed. In this pass, for each task pair which is

connected via a transient buffer a new task is created containing the merged kernel

functor of those two tasks. Internally, the two kernel functors communicate through

an which acts as a kernel-local, shared storage. In the case depicted in

Fig. 3, the first kernel retrieves its input from the first input buffer and writes its

result to the . Subsequently, the serves as input to the

second kernel which in turn writes its output to the temporary Celerity buffer

created earlier (see Listing 8).
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3.2.1 From Type Erasure to Concepts

Task packaging presented implementation challenges, mainly because of the limited

possibilities of type erasure required to implement HLA accessors. Type erasure is

needed to hide the actual Celerity accessor behind the user-visible HLA accessor

classes. Since virtual functions and function pointers are disallowed inside SYCL

kernels, the only possible way—while keeping a succinct interface—was to turn the

compile-time type information of the Celerity accessor not present in the HLA

accessor (e.g. and ) into run

time information and reconstruct the type using multiple switch statements. Our

initial hope was that the compiler could eliminate the related branching in most

cases, but as detailed in Sect. 4.3, and confirmed by inspection of the generated PTX

code, this was not the case.

Consequently, with C??20 compiler support maturing, a completely different

approach leveraging concepts was explored. Instead of defining a concrete type as

parameter for the kernel functor, a concept is specified which constraints the set of

types which are accepted. Conceptually, this is the same as having a template

function and using to impose restrictions on the template parameter.

In Listing 9 we can see two functions, each constrained to accept only integral

types (e.g. ). The first one uses the traditional way of employing

in conjunction with . In this case,

is a template meta-function which has the effect of removing the

function from the overload set at a given call site if the template parameter is

instantiated with a concrete type which does not fulfill the stated condition

( ). Detailing the mechanisms involved in this process goes

beyond the scope of this work, and we would like to refer readers to the existing

literature on template metaprogramming [19].

The second function uses C??20 concepts and the standard-supplied concept

to achieve the same goal. These concepts can be thought of as named

sets of constraints. In this case, the parameter has only a single constraint but even

such a simple example clearly illustrates how concepts can improve readability and

conciseness. Additionally, since concepts are a language construct, these require-

ments can be checked more easily by the compiler which in turn can generate

clearer error messages. The most significant advantage of concepts for our work in

this paper, however, comes from the fact that they can be succinctly used in lambda
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expressions (see listing 10). By constraining the parameter types of the kernel

functor, we can specify how we want to access data. For example, we can create a

slice concept to signal that we need a type that allows us to access a slice of data.

Listing 11 shows the concepts variant of listing 6. Here, the multiply kernel takes

two parameters which are both constrained using the concept.

Passing this functor to an algorithm basically tells the runtime the following:

‘‘Provide me with some type that satisfies the concept and thus contains a

Celerity accessor with slice range-mapping.’’. So, rather than requesting an explicit

type we specify what features the requested type has to support. This allows the

runtime to provide the kernel with a type that holds the required Celerity accessor

as-is, without any type erasure involved. Performance-wise this means no branching

and hence no diverging instruction paths. However, from runtime perspective,

detecting which concept was specified is significantly more involved than with the

type erasure approach. With type erasure, detecting the accessor type boils down to

checking if the parameter type equals a certain type. With concepts, the library now

has to probe the kernel functor with a fixed set of types. Depending on the compile-

time information for which of those types the kernel functor is invocable, it can infer

the access concept and create the matching Celerity accessor. This approach
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simplifies the function signature of the kernel functor even further by discarding the

data type from the accessor template parameters. However, since there is no way of

specifying the dimension of the slice in the concept type, this configuration has to be

provided via a method inside the kernel functor.

Note how in listing 11 the range adaptor which takes two input buffers is now

created using instead of . This is necessary because it is

not possible to determine the arity of a function template without having valid input

argument types. Since the function call operator of the kernel functor with its

concept-constrained input types is a function template, this also applies here. This in

turn means that at the time the operation is packaged there is no way of telling if the

kernel functor takes one or two arguments. Thus we need to discern between

transformation (one input) and zipping (two inputs) at the call site using two distinct

function templates.

4 Evaluation

The significant advantages in terms of code succinctness, readability, and

composition conferred by the Celerity HLA would be relatively meaningless if

they came at a large general loss in performance potential. Therefore, we provide a

set of benchmarks in this section demonstrating the performance of our approach,

and analyzing the impact of our design choices and optimizations.

Table 1 summarizes the hardware of our benchmarking machine, as well as the

software stack used for this evaluation. We used various benchmarks from the

PolyBench GPU suite, which was previously ported to low-level Celerity,2 and

which we ported to idiomatic Celerity HLA for this work.

The results presented are based on the median of 5 benchmark runs for each

configuration, and there was no significant cross-run variance.

4.1 General Performance

Figure 4 illustrates the relative execution time of the Celerity HLA version of each

benchmark compared to a low-level baseline—that is, the existing Celerity versions

with explicit kernel invocations and accessor management by the application

programmer. Three categories of results are visible: for the largest group including

the atax, bicg, covar, gesumv and mvt benchmarks, the relative difference in

execution time between both versions is 1% or less. We can consider these results

Table 1 Specification of the benchmarking system

Host AMD Ryzen Threadripper 2920X 12-Core, 32 GB DDR4 RAM

GPUs 4� Nvidia RTX 2070

Software Ubuntu 20.04; OpenMPI 4.0.0; GPU driver 460.32.03; hipSYCL 0.9; Celerity 0.2.1

2 https://github.com/bcosenza/celerity-bench/tree/master/polybench.
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practically identical, indicating that for these benchmarks the higher level of

abstraction and succinctness of the Celerity HLA comes at no performance cost.

The 2DConv, 2mm, 3 mm and syr2k benchmarks form the second group. Here,

the implementations based on the Celerity HLA are measurably and consistently

slower, between 4% for 2DConv and 8% for 3 mm. These differences can be

explained by backend code generation overheads—related to the additional level of

indirection introduced—which we were not able to fully eliminate in the current

version of the Celerity HLA. However, this overhead remains below 10% in all

cases.

Finally, syrk and gemm both show significantly better performance in their HLA

versions than in the baseline implementation. After investigating the unusually large

performance differential, we discovered a performance bug in the baseline: it

specifies the output buffer access as even though it could be rewritten to

only require .

Of course, as is the nature of low-level APIs, the baseline versions of both of

these benchmarks could be rewritten to perform as well or better than the HLA

version. However, we believe it is interesting and noteworthy that the automatic

mechanisms in the Celerity HLA can help uncover inefficiencies in manual, lower-

level implementations in this fashion, without requiring manual intervention by

developers.

Overall, general performance remains within an acceptable margin across the

entire set of benchmarks, given the significantly higher level of abstraction provided

by Celerity HLA.

4.2 Kernel Fusion

The performance impact of kernel fusion varies with the pipeline structure of any

given application—operator pipelines which have no fusible kernels are unaf-

fected—as well as its problem size and memory access behaviour. To illustrate the

dependence on problem size, Fig. 5 shows a comparison between the standard

Celerity HLA implementation, and a version in which kernel fusion was manually

disabled, for the gemm benchmark containing two fusible kernels.

At smaller problem sizes, performance is not significantly affected by kernel

fusion, but at the largest tested problem size fusion improves the throughput

achieved by 26%.
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Fig. 4 Performance comparison between Celerity HLA and a low-level baseline
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4.3 Concepts-based Design vs. Type Erasure

In Sect. 3.2 we outlined the reasoning, implementation and consequences of the

final, C??20 concepts-based, HLA implementation. Figure 6 provides a quanti-

tative perspective on this issue.

The first fundamental result visible is that the concepts-based version outper-

forms the version based on type erasure for all benchmarks. However, the actual

performance difference induced varies widely based on the properties of a given

benchmark. Some, such as 2DConv, are primarily memory bandwidth limited, and

as such the execution time impact associated with type erasure is relatively small.

For the specific covar case, the backend compiler can actually statically detect the

branches taken, resulting in almost identical performance.

Finally, for 2 and 3 mm, the compiler is incapable of moving the additional

control flow for dealing with type erasure out of the innermost computational loops,

which also prevents any further optimizations, and results in a massive performance

differential. Overall, these results illustrate that a concepts-based API which makes

dispatch decisions at compile time is essential for broad applicability.

5 Related Work

The introduction already covers some related work necessary to establish the larger

context of the Celerity HLA, including low-level accelerator and networking APIs

such as CUDA, OpenCL, OpenMP and MPI, as well as popular runtime systems and

abstraction layers such as StarPU, OmpSs, Kokkos and RAJA. In this section, we

Fig. 5 gemm kernel fusion
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Fig. 6 Comparing HLA implementation versions based on concepts and type erasure
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want to focus on three additional types of related work: those which introduce

techniques leveraged in the design and implementation of the Celerity HLA,

skeleton-based libraries and frameworks, and some additional projects which are

less widely used but closer in nature to our work than the popular APIs covered in

Sect. 1.

In the first category, the history of C?? expression templates is of particular

note. Introduced by Haney et al. [20], they were developed into one of the most

powerful tools for providing very high levels of abstraction with minimal

overhead [21], with Chen et al. initially applying these methods to GPU computing

using CUDA [22].

Esterie et al. [23] introduced a numerical template toolbox based on an

architecture-aware domain engineering method for reusable algorithmic libraries.

Their library NT2 follows a substantially different interface design philosophy

compared to Celerity HLA, with the goal being relatively simple porting from

Matlab code, while our API design seeks to match the expectations of and appear

familiar to C??20 programmers.

Expression templates are frequently used in concert with skeleton-based APIs in

order to provide a high level of abstraction in C?? EDSLs. Early implementations

of this general concept include the Quaff library by Falcou et al. [24], as well as the

Orléans Skeleton Library developed by Noman and Loulergue [25].

Matsuzaki et al. [26] developed a parallel skeleton library for distributed memory

environments which supports kernel fusion for list skeletons via an expression

template mechanism, but this work was not targeting GPUs or accelerators.

Shigeyuki et al. [27] provided an early application of algorithmic skeletons to GPU

computing. As was common at the time of this work, only CUDA-based GPU

platforms are supported, and the API is still lower level than more recent

approaches. More recently, Ernstsson et al. [28] developed an extension to the

SkePU skeleton programming model which lazily records the lineage of skeleton

invocations, and applies tiling once partial results are actually required by the

program.

Several of these approaches feature optimizations which are similar in principle

to the kernel fusion performed by Celerity HLA, with one difference being that our

heterogeneous SYCL target presents some complications—as outlined previously—

for a pure runtime system. Additionally, our work also builds upon modern

advances in C?? in terms of API design as well as implementation, and applies to

distributed memory clusters of multiple GPUs using a vendor-agnostic interface

rather than only targeting CPUs or individual GPUs.

Looking beyond the rich history of expression templates and skeleton-based

APIs, we will now discuss some projects which are closer to Celerity HLA in terms

of target platforms and underlying GPU computing technologies.

Huynh et al. [29] presented a high-level framework targeting streaming

applications which maps these applications to multiple GPUs. Their work focuses

specifically on the partitioning and communication challenges involved in this type

of application. Crucially, they focus on a set of GPUs connected to a single host,
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while the Celerity HLA system is designed for leveraging distributed memory

clusters of GPUs using an underlying MPI layer.

PHAST [30] is a wrapper library which, at first glance, seems to be positioned

very closely to the Celerity HLA. It also seeks to provide a C?? interface to GPUs

using STL-like algorithms and iterators, and maps to multiple lower-level backends.

However, there are several significant differences: from an API perspective,

PHAST—like most mainstream technologies covered in the introduction, and unlike

skeleton-based approaches—is based on a procedural formulation of algorithms,

while our work introduces a functional pipeline composition approach; in terms of

implementation, we focus particularly on enabling automatic kernel fusion; and in

terms of target platforms, PHAST is limited to single GPUs while the Celerity HLA

can transparently target multiple GPUs.

The same comparative analysis holds concerning other existing STL-on-GPUs

implementations, such as those based on SYCL [31]. As we demonstrate in our

benchmarks, providing a composition-based functional API necessitates careful

type treatment to achieve performance comparable to lower-level procedural

implementations.

6 Conclusion and Future Work

We have presented the Celerity High-level API, which, for the first time, enables the

development of applications for accelerator clusters using composable functional

operator pipelines. As demonstrated in our evaluation, we achieve this very high

level of abstraction without substantially compromising performance: most

benchmarks perform almost identically to a lower-level implementation, and the

worst cases of overhead remain below 10%.

These results are enabled by two key features: a concept-based API design

allowing for concise syntax while maintaining compile-time dispatch, and an

automatic kernel fusion procedure which eliminates temporary buffers and merges

separate kernel invocations whenever possible.

We are aware of two main avenues for future work. Firstly, kernel code is highly

sensitive to register assignment by the compiler, which currently limits kernel

fusion performance gains to larger problem sizes. Consequently, there is ongoing

work to simplify the portion of the fusion algorithm which should

reduce run-time overhead further. Secondly, HLA accessor iterators induce some

overhead when iterating multi-dimenstional ranges such as 2D stencils or 3D

voxels. Improvements in the iterator facilities could help bring Celerity HLA to

performance parity with manual low-level implementations in even more cases.
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24. Falcou, J., Sérot, J., Chateau, T., Lapresté, J.T.: Quaff: efficient C?? design for parallel skeletons.

Parallel Comput. 32(7), 604–615 (2006). Algorithmic Skeletons

123

358 International Journal of Parallel Programming (2022) 50:341–359

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.top500.org
https://www.researchgate.net/publication/228734882_Introduction_to_UPC_and_language_specification
https://www.researchgate.net/publication/228734882_Introduction_to_UPC_and_language_specification
http://arxiv.org/abs/1403.0968
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf


25. Javed, N., Loulergue, F.: Parallel programming and performance predictability with Orléans skeleton
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