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Abstract
SkePU is a pattern-based high-level programming model for transparent program

execution on heterogeneous parallel computing systems. A key feature of SkePU is

that, in general, the selection of the execution platform for a skeleton-based function

call need not be determined statically. On single-node systems, SkePU can select

among CPU, multithreaded CPU, single or multi-GPU execution. Many scientific

applications use pseudo-random number generators (PRNGs) as part of the com-

putation. In the interest of correctness and debugging, deterministic parallel exe-

cution is a desirable property, which however requires a deterministically

parallelized pseudo-random number generator. We present the API and imple-

mentation of a deterministic, portable parallel PRNG extension to SkePU that is

scalable by design and exhibits the same behavior regardless where and with how

many resources it is executed. We evaluate it with four probabilistic applications

and show that the PRNG enables scalability on both multi-core CPU and GPU

resources, and hence supports the universal portability of SkePU code even in the

presence of PRNG calls, while source code complexity is reduced.

Keywords Skeleton programming � Parallelizable algorithmic pattern �
Heterogeneous system � GPGPU � Deterministic parallel pseudo-random

number generator

1 Introduction

For the foreseeable future, computer systems for performance-demanding applica-

tion domains such as HPC, machine learning and image processing, will continue to

be characterized by multi-/many-core parallelism and heterogeneity. Faced with the

increasing slowdown of Moore’s Law, a ‘‘Cambrian explosion’’ of computer
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architectures is foreseen [16] that will continue to introduce new CPU and GPU

architectures and entirely new accelerator types at a fast pace to sustain future

hardware performance growth, while at the same time an increasing share of

performance growth needs to come from both application and system software

improvements. This imposes a challenge on the software side: How can we support

the creation of truly portable, future-proof software that is high-level yet can

efficiently leverage the hardware resources of today’s and tomorrow’s heteroge-

neous parallel architectures without permanent rewriting and re-optimization?

The skeleton programming approach [3, 4] is a powerful and programmer-

friendly way to portable high-level parallel and heterogeneous programming, which

has been demonstrated by a number of programming frameworks during the last

decade [5, 7, 8, 21, 26, 28]. Skeletons are generic programming constructs based on

higher-order functions such as map, reduce, stencil etc. used to express certain

parallelism patterns, that can be parameterized in problem-specific code (the so-

called user functions) and that come with parallel or accelerator-specific

implementations (the so-called backends), which are hidden behind a

portable high-level API, today usually based on C??. In short, skeletons expose

possible application-level parallelism but not its implementation details to the

programming framework and its runtime system, which might then be free to decide

which skeleton instances in a program to use (and how), and which ones should

better remain sequential.

SkePU [9] is a pattern-based high-level programming model for transparent

program execution on heterogeneous parallel computing systems. A key feature of

SkePU is that, in general, the selection of the backend, and thus, the execution

platform for a skeleton-based function call need not be determined statically, i.e.

prior to execution. On single-node systems, SkePU can select among CPU,

multithreaded CPU, single or multi-GPU execution. For example, run-time selection

of the expected fastest [6] backend (depending on operand size and location) can be

tuned automatically based on training executions or manually set by a flag outside

the program’s source code. By careful API design, each SkePU program is a valid

C?? program with sequential execution semantics if compiled with a standard

C??(11 or later) compiler, and SkePU’s design for portability aims at executions

over multiple cores or one or several GPUs to show the same input-output behavior

as this sequential view.

Many scientific applications, such as Monte-Carlo simulations, use pseudo-

random number generators (PRNGs) as part of the computation. In the interest of

correctness and debugging, deterministic parallel or heterogeneous execution of

such a program that remains consistent with sequential execution also in terms of

generated random numbers is a desirable property, which however requires a

deterministic parallel pseudo-random number generator. This becomes a challenge

with SkePU’s design of late decision about sequential, parallel or accelerator

execution.

In this paper, we present the principle, API and implementation of a

deterministically parallelized portable PRNG extension to SkePU that exhibits the

same behavior regardless where and with how many resources a SkePU program is

executed. Our deterministic PRNG parallelization also relaxes the implicit
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dependence structure of applications using the PRNG. We show that the

implementation is scalable on both multi-core CPU and GPU resources, and hence

supports the universal portability of SkePU code even in the presence of PRNG

calls. It also leads to more compact source code. Core contributions are the

determinism and the high-level language integration of our approach. While our

solution is prototyped and evaluated in SkePU, where it is important due to the

execution unit of a skeleton call being statically unknown, the approach could be

adapted and integrated into other frameworks for high-level portable pattern-based

parallel programming.

The remainder of this paper is organized as follows: Section 2 introduces

background about SkePU and parallel random number generators, shows two

motivating examples of previous workarounds used with SkePU to achieve

deterministic parallel PRNG behavior, and discusses their drawbacks. Section 2.3

discusses related work. Section 3 explains three fundamental parallelization

methods for PRNGs and presents the new API and implementation of the new

built-in deterministic parallel PRNG in SkePU. Section 4 presents experimental

results, and Sect. 5 concludes.

2 Background and Related Work

2.1 SkePU

In its current version [9], SkePU (https://skepu.github.io) provides 7 data-parallel

skeletons: Map (elementwise transformation), MapOverlap (stencil updates in

1D...4D), MapPairs (generic outer product of vectors), Reduce (generic

reduction), Scan (generic prefix sums), and the combinations MapReduce and

MapPairsReduce. In general, the skeletons allow both element-wise accessed,

random-access and scalar operands and are fully variadic within each of these

categories. Most skeletons also allow multiple return operands. Array-based oper-

ands can have 1 to 4 dimensions.

By instantiating a skeleton with one or several matching problem-specific user

functions (detailed further below), a callable entity (a skeleton instance) is
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generated, see Listing 1 for an example. The MapReduce instance dotprod can

be used like any manually written function, but comes with multiple back-ends

(implementations) for the different target platforms, such as sequential execution,

OpenMP multithreaded execution, CUDA and OpenCL for GPUs. There exists also

a cluster backend for SkePU that targets the MPI interface of the StarPU runtime

system [9].

For passing array-type data into or out of skeleton instance calls, so-called data
containers must be used, which transparently perform memory management,

software caching and data transfers for contained array elements. SkePU 3 supports

data containers for arrays in 1D (Vector), 2D (Matrix), 3D and 4D (Tensor
X D). All data containers are generic in the element type.

User functions must be side-effect free and be written in a restricted subset of

C?? (e.g., no dynamic memory allocation, no explicit parallelism, no skeleton

instantiations or -calls, no global variable access) as they are translated into the

various platform-specific programming models (e.g., OpenMP, CUDA, OpenCL)

and may execute on an accelerator with a possibly separate address space. For array-

based operands passed as arguments to user functions, the foreseen access pattern is

specified by access proxy parameter objects such as Vec\[ for random-accessed

vector, Region XD\[ for stencil halo regions in MapOverlap (X 2 f1; :::; 4g)
or Index X D for the index of the element operated on in Map-based skeletons;

element-wise access is the default (no proxy parameter type required). Access to the

proxy elements depends on where the user function will be executed and is thus

entirely managed by SkePU’s data containers. User functions can also be defined as

C?? lambda (anonymous) functions, allowing for in-line skeleton instantiation.

2.2 Parallel Pseudo-Random Number Generation

A pseudo-random number generator is a finite state automaton. Each time it is

invoked, its output function computes and outputs a pseudo-random number in a

pre-defined range from the current inner state, and transitions the inner state via the

state transition function (also called update function) into the follow-up state. The

generator only receives input upon the time of seeding, when the seed is processed

by the initialization function to produce an initial inner state. Thus, the generator

only has a very limited amount of randomness, which is stretched over many

outputs, i.e. pseudo-random. Still, current generators pass statistical tests such as

Diehard. The complexity to achieve this may lie in the output function and/or the

update function. For a complex output function, the update function can be as

simple as a counter [17].

If an output of m bits is produced, the inner state comprises more than m bits. The

state transition function mostly is non-bijective.1 Thus, the state graph of the PRNG

comprises one node for each state x, and a directed edge (x, f(x)) for the transition

from x to its follow-up state f(x), assuming f as the state transition function. Thus

1 A notable exception is the linear congruential generator with transition function f ðxÞ ¼ axþ bmod N
for a, b chosen such that the period is maximum [18], e.g. a prime and b ¼ 0
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each node has an outdegree of exactly 1, but the indegree can vary. An example

state graph is shown in Fig. 1.

Flajolet and Odlyzko [11] investigated the expected structure of state graphs if all

possible transition functions are equally likely. The graph falls into a small number

of weakly connected components, of which one comprises the majority of the nodes

(about 75%). Each component comprises a cycle with a number of trees directed

towards the cycle, where the largest tree is expected to comprise 50% of all nodes.

The expected length of the longest cycle is less than 2
ffiffiffiffi

N
p

, where N is the number of

nodes, i.e. quite short. Trees are ragged with depth about
ffiffiffiffi

N
p

.

The sequence of generated pseudo-random numbers is only dependent on the

seed. In a sequential program with a deterministic program flow, the calls to the

pseudo-random number generator will produce exactly the same numbers at the

same program place if the seed is fixed. If the program is parallelized, then the

PRNG state becomes a shared resource. Moreover, the order of calls to the PRNG

changes: consider e.g. a nested loop with one call per iteration of the inner loop,

where the outer loop is parallelized, so that now the first iterations of all instances of

the inner loop call the PRNG first. Still, a deterministic parallel execution with

results similar to the sequential version (and independent of the number of threads

used to parallelize the outer loop) demands that the sequence of PRNG outputs for

each inner loop execution remains unchanged, e.g. to do debugging in the sequential

version when the parallel version has an error. This calls for a deterministic PRNG

implementation as part of the parallelization.

2.3 Related Work

Kneusel [17] has a chapter on parallel PRNGs, but with respect to deterministic

execution only reports a manual construction of duplicating the state variable for

each thread, plus skipping a number of states in order to achieve the same state as in

Fig. 1 State-space of a pseudo-random number generator
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a sequential execution. He also explains counter-based PRNGs and their suitability

for parallelization because they allow skipping any given number of states with

constant effort. Fog [12] discusses requirements on PRNGs in parallel computa-

tions, but focuses on avoiding overlapping sequences in different threads by

combining generators, while L’Ecuyer et al. [19] focus on providing independent

streams and substreams. Salmon et al. [27] focus on output functions for counter-

based PRNGs to provide fast skipping of states but still provide good statistical

quality. All do not focus on deterministic execution independent of parallelization,

and have static mapping of tasks to threads in mind.

Leiserson et al. [20] argue that SPRNG [22], which provides a deterministic

parallel PRNG, shows poor performance on Cilk programs and thus is not

suitable for massive parallelism. They propose pedigrees, a mechanism to achieve a

kind of linearization (i.e. a kind of equivalence to a sequential execution) in a Cilk

program independent of the Cilk scheduler. However, they do not address pattern-

based parallelization.

Parallel PRNG specifically for GPU include the cuRAND library for CUDA,

SYCL-PRNG for SYCL, and work by Ciglarič et al. [2] for OpenCL. The Thrust

skeleton library for CUDA also includes a PRNG library. Passerat et al. [23] discuss

general aspects of PRNG on GPGPUs. GASPRNG [14] is an early attempt at

realizing the full SPRNG generator set on CUDA GPUs, including clusters of

CUDA GPU nodes.

2.4 Previous Manual Parallelization of PRNG in SkePU Programs

With previous versions of SkePU, a deterministic parallel random number generator

behavior had been achieved by the two workarounds described in the following.

However, we will show that both have drawbacks.

2.4.1 Monte-Carlo Pi Calculation—Index-Based Scrambling

As a first example, we consider a simple Monte-Carlo simulation, namely

probabilistic Pi approximation. This computation can be easily expressed as a

MapReduce instance, see Listing 2, where the user function needs to generate two

pseudo-random numbers, one per dimension. Here, a deterministic parallel PRNG

was simulated by an index-scrambling technique, i.e., generation of pseudo-random

numbers does not follow the automaton-based best-practice technique described

above; instead, they are calculated independently of each other based on a

transformation of the index in the parallelized main loop. In the code example in

Listing 2, the scramble function itself has been extracted from a SPH (Smoothed

Particle Hydrodynamics) simulation code. The drawback of the index scrambling

method is that it may not really produce random numbers of high quality but can

expose more regular patterns.
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2.4.2 Markov Chain Monte Carlo methods in LQCD – PRNG with Explicit State

The code excerpt in Listing 3 is extracted from a Lattice QCDmini-application which

computes the Yang-Mills theory of the SU(3) group. This computation is typically

done by applying the Metropolis algorithm, a common Markov Chain Monte Carlo

(MCMC) based method. The Metropolis calculations are performed on a 4D tensor

whose elements are structures of complex number arrays, with a 81-point

(3� 3� 3� 3Þ stencil computation required to evaluate the Metropolis acceptance

function. For an in-depth introduction to MCMC methods in LQCD, see [15].

Unlike the conventional Monte Carlo method showcased in Listing 2, MCMC

methods are inherently sequential. Thus, a PRNG for MCMC methods has to be

stateful, i.e. a finite state automaton as outlined in Sect. 2.2. This conflicts with the

requirement that SkePU user functions must be side-effect free. The chosen solution

for the user functions of Listing 3 is a sequential PRNG which is algorithmically

equivalent to POSIX drand48 but has an explicit state argument instead of

drand48’s internal state variable.

For such an approach, the PRNG state has to be explicitly managed. As a

dedicated data container for PRNG state is not a viable solution due to syntactical

constraints of the MapOverlap skeleton, the state is embedded directly in the data

set. This has the drawback of having an unusually large memory footprint for a

PRNG. Specifically, the memory requirement for storing the PRNG states grows by

OðL4Þ where L is the side length of the 4D tensor, i.e. linearly with the problem size.

Usage of the proposed new library PRNG inside SkePU is expected to lower the
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memory footprint of PRNG state storage to O(p) where p is the number of

computational units used in the selected backend.

While it would be possible to adapt the index-based scrambling technique of

Listing 2 to perform the initial seeding of the resulting parallel PRNG, Listing 3

contents itself with using the Scan skeleton to force a non-repeating state set into

existence. While this is viable as a quick and dirty solution to deterministic parallel

PRNG seeding, it is likely to produce random numbers of suboptimal quality; in that

respect, a mathematically robust library solution is preferable.
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3 Designing a Deterministic PRNG for SkePU

We will now introduce a more systematic approach that provides deterministic

parallel random number generation for use in SkePU, together with an API

extension of SkePU 3 that makes PRNG streams a fundamental part of the API. We

will start by discussing inherent challenges to pseudo-random number generation in

parallel programming and proceed step by step towards a deterministic PRNG

implementation at the framework level.

3.1 Global Synchronization

A straightforward approach to random number generation in parallel applications is

to consider the PRNG as a shared resource. As such, the PRNG needs to be

protected by the appropriate synchronization operations during access, to avoid race

conditions such as multiple threads reading the same random value, which would

decrease the quality of the random number stream, or even the PRNG state itself

being corrupted due to simultaneous writes.

This approach ensures a high-quality random number stream as each value is

generated in the same manner as in a sequential program. Any random number

generator can be used in this approach, including external entropy sources, since

synchronization guarantees protected sequentialized access. This synchronization

does however add significant overhead and is unfeasible in massively parallel

accelerators such as GPUs. Only if the synchronization method guarantees a

deterministic order of accesses to the critical section containing the PRNG state

(which is usually not the case for ordinary lock-based synchronization), the random

number stream generated from this method will be itself deterministic. We cannot

predict in which order the threads will generate a value from the PRNG and update

the state space.

3.2 Stream Splitting

With the goal of avoiding or minimizing global synchronization of the PRNG state,

we consider a different approach [13]. As a PRNG state has to be considered a

shared resource for proper operation, we can get around the synchronization

requirement by assigning each individual thread its own PRNG state. A thread-

private PRNG stream does not need protected access and will yield a perfect

sequential series of random values by itself. However—aside from a large increase

in memory space consumed by the replicated states—with several or many parallel

threads in the system, the aggregate random number stream over all task invocations

will differ greatly from a sequential program.

Whether data-parallel tasks are assigned in blocks or interleaved, we effectively

have split the single PRNG stream into many shorter sequences distributed over the

working set in the same pattern as the data-parallel tasks. The resulting pattern can

be seen in Fig. 2a. This degrades the quality of the random values in aggregate,

which is undesirable for sensitive applications.
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There is another unfortunate consequence of this approach: ensuring determinism

in the random value stream is possible, but with significant restrictions. Due to the

aforementioned parallelization of the computation using the PRNG, the observed

PRNG stream across the data set is a mangled mixture of (a potentially large

number of) individual streams. This mangling has to be replicated in the sequential

execution of the program to preserve determinism; and worse, all parallel backends

have to observe the same such mapping. This can prove tricky when the parallel

backends vary significantly in properties such as the available parallelism degree. A

consequence of this behavior is also that in any execution of the program for which

deterministic random values are desired, the maximal number of threads has to be

known a priori, before even executing a sequential backend variant. If the degree of

parallelism ever is increased, e.g. by moving to a larger processor, GPU, or cluster,

the previous runs are invalidated with respect to the determinism criterion.

3.3 State Forwarding

The approach taken in this work is state forwarding. We attempt to side-step the

issues of both the global synchronization as well as the stream splitting approaches.

This is done by utilizing properties of the PRNG state spaces. A true sequential

single-stream variant of the program is taken as the gold standard output, and the

goal is to replicate the same output on any parallel backend, without the need of

global synchronization or advance knowledge of parallelism degree. As in the

stream splitting approach, data-parallel work items are deterministically mapped

across available computational units (threads). This means that the number of tasks

assigned to each thread is known ahead of time, and for simplicity without the loss

of generalization we assume the work can be split evenly among threads.

(a) (b)

Fig. 2 Approaches for parallelizing a PRNG sequence
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Furthermore, we assume that the number of times a PRNG state is updated (i.e.,

the number of times a random value is generated) is known ahead of time for each

work unit. Combining the knowledge of work unit count and random calls per work
unit, we know exactly how many state-forwards each thread will generate in the

respective data-parallel construct (i.e., skeleton invocation).

We can therefore, for each thread, pre-forward the state of the PRNG and store a

copy of the forwarded state. These per-thread forwarded clones of the original

PRNG can now act as the thread-private PRNG streams in the stream-splitting

approach, with the additional property that when interleaved during the data-parallel

execution, the aggregate observed stream now is equivalent to the sequential stream,

which was the primary hurdle in the stream-splitting approach. Figure 2b illustrates

the resulting pattern.

Still, the extra memory footprint of the thread-private PRNG states persists and

will lead to additional overhead. The state-forwarding adds an additional

computation step before the execution of the tasks, which can in the worst case

be equally costly as the PRNG value extraction process itself (though it can also be

parallelized). Properties of the PRNG state space have to be exploited to speed up

the forwarding process and reduce the induced overhead.

The leapfrog resp. sequence splitting method for state forwarding, introduced by

Celmaster and Moriarty [1] for use with vector computers, considers a special case

that allows to parallelize the forwarding phase of the PRNG. A linearly congruential

PRNG with factor a is partitioned into p linearly congruential PRNGs each to be

used r times, which are defined based on the same linear factor a, by seedðiÞ ¼
ðar � seedði� 1ÞÞ mod m for i ¼ 1; :::; p, randði; 0Þ ¼ seedðiÞ and

randði; jÞ ¼ a � randði; j� 1Þ mod m. Hence, the p PRNGs equally partition the

period of the seed PRNG in contiguous sub-sequences of length r. First, the air for
i ¼ 0; :::; p� 1 and the seed sequence can be calculated in parallel by a Scan in

Oðlog pÞ steps, using the property a2k mod m ¼ ððak mod mÞ2Þ mod m. Then the

rand calls are independent for each i. (For reasonably low numbers of p such as for a
current multicore CPU, sequential computation of the seeds should be faster; this is

done in the current implementation.) The leapfrog / sequence splitting method

scales well but is known to have problems for lcg with power-of-2 values for

modulus and p. Skipping can also be applied for counter-based PRNGs [27] with

output functions based on block ciphers for better statistics at a higher cost.

3.4 Optimizing Long or Iterated Skeleton Chains by Pre-Forwarding

While some applications may consist of a single parallelized step (such as a

parallel for loop or skeleton call; we will use the latter here), others, in particular

larger applications, will have multiple phases which are individually parallelized. A

common example is iterative applications where each iteration in turn consists of

one or more skeleton calls. To achieve good efficiency, we need to ask the question:

when is the PRNG state split and forwarded for the purposes of parallelization in a

skeleton invocation scenario?
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In a naive implementation of the state-splitting approach, the state splitting and

forwarding step (see Fig. 3a) is done right before each skeleton call. On the other

hand, if we have a known number of skeleton calls (determinable by static analysis,

lineage building [10], or program instrumentation), we only need to perform the

splitting and forwarding of the PRNG states once per application. This is referred to

as pre-forwarding and is illustrated in Fig. 3b. In practice, restrictions such as data-

dependent control flow (e.g., branches or iteration bounds) may limit the degree to

which pre-forwarding can be applied, and application programmers may benefit

from awareness of the cost-reduction opportunities from pre-forwarding already

during program design.

3.5 API Extension Design

We have implemented the state-forwarding approach in the skeleton programming

framework SkePU 3. SkePU did not previously have a random number generation

component, and as shown in Sect. 2.4, previous manual implementations of PRNG-

like functionality in SkePU applications have been ad-hoc and substantially

different from each other. A baseline contribution of a framework-level PRNG

library in SkePU is the programmability gains from reducing the effort of designing

probabilistic applications on top of SkePU, as well as readability benefits from

having a unified system for random number generation across all SkePU programs.

3.5.1 Random Number Extraction in User Functions

As explained in Sect. 2.1, a SkePU skeleton is defined entirely by its type (e.g., Map),
the signature of its instantiating user function, and state properties set on the resulting

skeleton instance (such as .setOverlap(...) for MapOverlap instances).

(a) (b)

Fig. 3 Data container indexing and memory layout
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PRNG extraction is made available in all skeletons with a fully data-parallel mapping

stage, which is the entire skeleton set except for Reduce and Scan.2

As such, the user function signature (‘‘header’’) itself should encode the use of

random number extraction. This is analogous to the preexisting option for mapping

user functions to request the index of the currently processed element (see Listing

2). Therefore, we encode PRNG reliance in the same way. At the start of the

parameter list (after the index parameter, if any), a parameter of type

skepu::Random \N[& is added. N is a compile-time constant used in

SkePU’s template metaprogramming-based implementation to deduce the number

of random values extracted by the user function in the dynamic extent of its

evaluation. N is required to be known ahead-of-time for the state forwarding to work

and determinism to be preserved.3 A compilation option allows for run-time

verification that the extraction count is obeyed.

Value extraction is carried out by a call to one out of two member functions of the

skepu::Random \N[ object. random.get() produces integers in

½0; SKEPURANDMAXÞ while random.getNormalized() returns real numbers

in [0, 1). Each call corresponds to one extraction and state update of the PRNG stream. A

basic example of a user function with 5 random number extractions is shown in Listing 4.

SkePU user functions are allowed to call other functions, subject to some but not

all restrictions of skeleton-instantiating user functions. As the extraction count N is

only required for instantiation, passing a PRNG stream object to indirect user

functions is instead done with a skepu::Random \[ � parameter with no

positional requirement.

3.5.2 PRNG Streams and Skeleton Invocations

Once a skepu::Random \N[&-enabled user function is present, a skeleton

can be instantiated as usual. In addition to the skeleton instance, a PRNG stream

object needs to be defined in the program: an object of type skepu::PRNG.
Initialization of the PRNG stream takes an optional seed integer argument. The seed

changes the deterministic sequence generated in the stream and can be assigned

from an external entropy source (e.g., a timestamp) if non-determinism across

program runs is preferred.

2 Reduce and Scan are parallelized through tree reductions reliant on the associativity property of their

user functions.
3 If determinism is not required by the application, N can be treated as an upper bound, which instead

guarantees that no sub-sequences of random numbers are overlapping.
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The stream object is a state machine which registers skeletons ahead of

invocation time. Also in this way PRNG streams work like SkePU’s index

parameters: the stream is not part of a skeleton call’s argument list. Instead they are

registered as skeleton.setPRNG(prng), if the programmer wants explicit

control over stream objects and the way they map to skeleton instances; if no stream

is registered, the skeleton picks a global PRNG stream by default at invocation time.

The full flow chart of the registration and evaluation process is shown in Fig. 4. In

short, several skeleton instances may be registered before reaching an evaluation
event. Only at this point is the PRNG sequence split across computational units and

forwarded to the appropriate state. The input size (i.e., the maximum degree of

parallelism) has direct impact on the forwarding leaps and is only known at the

evaluation point from the input arguments to the skeleton call.4 In subsequent

skeleton invocations, the PRNG object checks for existing forwarded state and skips

directly to evaluation (refer to Fig. 3b).

Listing 5 shows a variant of the Monte-Carlo Pi calculation algorithm using the

new SkePU API. Implementation with a MapReduce \0[ skeleton enables a

data-parallel computation without explicit data container allocation, as the

algorithm needs no element-wise input data to the user function; all input is

derived from the PRNG stream. Internally, SkePU will use two data containers: one

input data set for the split PRNG sub-sequence states, and one output data set for the

results of the user function invocations. Note, however, that SkePU will optimize

the size of these intermediate data sets; they grow by O(p), the number of

computational units, and not O(n), problem size (here the sample count).

4 The input size is assumed to be uniform over a sequence of skeleton calls.
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Our prototype implementation handles multiple PRNG stream objects across

different skeleton calls, but a single skeleton call (and thus its user function) can

only receive values from one PRNG stream per invocation. skepu::Random
usage can be combined with most other SkePU features, with a notable exception

being dynamic scheduling for multi-core execution introduced [9] in SkePU 3.

The SkePU implementation of deterministic PRNG streams cover a wide set of

backend targets. ForOpenMP,OpenCL, andCUDA, the forwarding is straightforward
as the worker threads are homogeneous, running on equal hardware resources. In

SkePU’s hybrid backend which simultaneously targets multi-core CPU and GPU

resources, the normal forwarding process is done twice in sequence: first once for the

GPU, then the same stream is forwarded again for the CPU threads. The end result is a

single set of forwarded thread-specific state objects (Fig. 5a), but with non-equal step

count. Finally, we have an early prototype implementation targeting the cluster
backend. In this case, parallelization is done in two steps: once among nodes through

StarPU and once among CPU cores bymeans of OpenMP. The forwarding process for

PRNG streams is therefore hierarchical, as illustrated in Fig. 5b.

4 Experimental Evaluation

For the performance evaluations in this section, we use a server with two six-core

Xeon E5-2630L CPUs with two-way hardware multi-threading, a Nvidia K20c

GPU, and 64 GiB of main memory. The system runs Ubuntu 18.04.5 LTS and GCC

10.3.0 is used as backend compiler with -O3 optimization level. Results are

presented as the median of several measurement runs (varying between the

programs).

Fig. 4 Flow-chart of the deterministic PRNG implementation. Here ellipses are events and boxes
correspond to processes

(a) (b)

Fig. 5 Differences in state-forwarding approach in cluster backend
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4.1 Monte-Carlo Pi Approximation

We begin with the probabilistic Pi calculation from Sect. 2.4.1. SkePU code using

the new skepu::Random API is shown in Listing 5.

Figure 6 contains the performance results from executing the SkePUized

program on various backends. The Monte-Carlo Pi calculation algorithm is an

interesting stress test due to the random number generation dominating the total

work. The application scales well on the GPU using the OpenCL backend (up to

180x speedup compared to sequential in the presented results), even though the

work done in the user function is very lightweight.

4.2 LQCD Mini-Application

For the LQCD mini-application introduced in Sect. 2.4.2, SkePU code using the

new PRNG API is shown in Listing 6.

Figure 7 shows the times of 10 iterations of LQCD with the OpenMP backend,

comparing the manual workaround of Listing 3 to the new version using

skepu::Random of Listing 6. We can see that no new overheads are introduced

while code complexity decreases (see Sect. 4.5).

Fig. 6 Monte-Carlo Pi calculation with varying sample count on different backends

Fig. 7 Time (seconds) for 10 iterations of LQCD with lattice sizes L ¼ 16 and L ¼ 24 for varying
number of hardware threads in the OpenMP backend
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4.3 Miller-Rabin Primality Testing

The Miller-Rabin primality test [25] is a probabilistic algorithm to determine for

a given number if it is likely prime or not. The actual test gets two inputs: n, the
number to be tested for primality, and a value a in the range f2:::n� 2g. The test

performs a computation on a and n, and depending on the result it outputs ‘‘n is

prime’’ or ‘‘n is composite’’. While the latter answer is always true, there is a certain

probability that the former answer is wrong, and this probability can be reduced by

doing the computation repeatedly with randomly chosen a, see Listing 7. This can

be easily parallelized, as the t iterations are independent (except for calls to the

PRNG), but for comparability it is helpful that the random choices are similar to the

sequential version.
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Our SkePU implementation of the Miller-Rabin algorithm is largely based on an

open-source implementation in C?? by Larsen5 where the main Monte-Carlo

parallelism is expressed by a MapReduce \0[ skeleton instance.

Parallel performance of the SkePUized Miller-Rabin application can be seen in

Fig. 8. Instruction flow is highly divergent throughout the algorithm due to data-

dependent control flow, which is challenging for the GPU backend: it is just barely

faster than multi-core CPU computation. This property distinguishes the program

from the Monte-Carlo sampling algorithm wherein the PRNG values have no effect

on control flow. For the multi-core OpenMP backend we observe speedup up to 13x.

4.4 Natural Noise Generation

The PRNG construct now built-in to SkePU generates uniformly distributed real or

integer values (‘‘white’’ noise; Fig. 9a). When other distributions are desired, post-

processing of the generated data in application space can be a solution. One such

scenario is for the generation of natural-looking noise patterns where the value

distribution is dependent on factors such as signal frequency.6 One way of

generating such ‘‘colored’’ noise is with a gradient noise algorithm, also known as

Perlin noise [24]. The algorithm (Listing 8) first generates n-dimensional grids of

uniformly distributed values at different grid densities. The values are interpreted as

gradients for the resulting n-dimensional noise pattern, and for each sample point,

the neighbor gradients are interpolated to produce a noise value. The sampling

process is repeated for each grid density (frequency) level, taking a weighted sum of

the individual samples as the resulting output value. A typical output is found in

Fig. 9b.

Fig. 8 Miller-Rabin primality test with varying sample count on different backends

5 C.S. Larsen: The Miller-Rabin primality test in C??. https://github.com/cslarsen/miller-rabin
6 Used for example in computer-generated image production or as initial values in simulations.
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Performance evaluation of the noise generator is done on a 3D domain. It

produces 256 time-linked textures, with the spatial domain as a square with side

length sampled at powers of two. The program generates the entire 3D domain in

one sweep with the SkePU tensor data-container, with 10 superimposed octaves of

noise. The results in Fig. 10 indicate very good scalability with just over 15x

speedup on OpenMP and 43x on OpenCL.

(a) (b)

Fig. 9 Two-dimensional noise variants generated by a SkePU application

Fig. 10 3D natural noise generation results, varying the two spatial dimension side lengths. Vertical time
axis is in logarithmic scale
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4.5 Programmability Evaluation

In all7 of Pi calculation, Lattice QCD and Miller-Rabin primality test, the

implementations see a reduction in lines-of-code count after applying the SkePU

PRNG API. This effect primarily comes from abstracting the implementation details

of the PRNG engine itself. The entire code base of the SkePUized LQCD

application is reported by sloccount to be 1,212 lines of code before applying

the new skepu::Random API, and 1,137 afterwards. This amounts to a reduction

by 6.2%. In addition, the change simplifies the data structure hierarchy, and fewer

skeleton calls and user function declarations are necessary.

5 Conclusion and Future Work

We have proposed a method for realizing a deterministic parallel PRNG for use with

skeleton-based high-level programming of heterogeneous parallel systems where

the type and number of parallel execution resources of skeleton calls can be selected

dynamically at run-time. We provided an extension of the SkePU API and its

prototype implementation based on state forwarding. We evaluated it with four

probabilistic applications on multi-core CPU and GPU backends, and found that the

proposed API and parallelization approach performs at least equally well as manual

workarounds while code complexity is reduced. The SkePU PRNG implementation,

with CPU, GPU, and Hybrid backends, is publicly available as part of the open-

source distribution.

Future work will extend the current implementation of the PRNG functionality in

SkePU, in particular the cluster backend. Another possible area of investigation is

different types of PRNG generators, which may need specially-adapted forwarding

schemes.

Acknowledgements This work was partly funded by EU H2020 project 801015 (EXA2PRO), http://
www.exa2pro.eu and by CUGS, Linköping University.
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