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Abstract
PageRank kernel is a standard benchmark addressing various graph processing and

analytical problems. The PageRank algorithm serves as a standard for many graph

analytics and a foundation for extracting graph features and predicting user ratings

in recommendation systems. The PageRank algorithm is an iterative algorithm that

continuously updates the ranks of pages until it converges to a value. However,

implementing the PageRank algorithm on a shared memory architecture while

taking advantage of fine-grained parallelism with large-scale graphs is hard to

implement. The experimental study and analysis of the parallel PageRank metric on

large graphs and shared memory architectures using different programming models

have been studied extensively. This paper presents the asynchronous execution of

the PageRank algorithm to leverage the computations on massive graphs, especially

on shared memory architectures. We evaluate the performance of our proposed non-

blocking algorithms for PageRank computation on real-world and synthetic datasets

using POSIX Multithreaded Library on a 56 core Intel(R) Xeon processor. We

observed that our asynchronous implementations achieve 10� to 30� speed-up with

respect to sequential runs and 5� to 10� improvements over synchronous variants.
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1 Introduction

Graphs are widely used to represent data in various areas, including biology,

genomics, astrophysics, transportation networks, web and social network analysis,

and scientific computing [1]. Many of these graphs are enormous and scale to

billions of nodes and edges while having uncommon and nuanced structures. As a

result, numerous attempts have been made to build graph frameworks and graph

libraries to solve these problems. Performance remains a significant problem in

processing graphs and graph applications, especially in shared memory architec-

tures. It is also essential to leverage the existence and interpretation of these large

graphs by adding specific metrics for deriving useful analytics on many of these

large graphs. PageRank is one such property that can be used to determine the

quality of nodes in a web graph. Page et al. [2] devised this algorithm for Google

Search Engine. The PageRank computation proceeds iteratively to estimate the

significance of a web page. In each iteration, we calculate the importance of a page

by randomly selecting a page and picking a random link at uniform probability d to

visit another page. This process continues by updating the rank of a particular page.

Pages with more links are more likely to be visited, so they eventually have higher

ranks. If the outgoing link is not available, then the process moves to a new page

with probability ð1� dÞ and restarts the process from this page.

The primary understanding of the algorithm derives the rank of a page based on

its incoming link. Pages that have more links are more likely to be visited so they

eventually have higher ranks [2]. The rank pr of node u in Graph G is formally

defined as:

prðuÞ ¼ 1� d

n
þ d �

X

ðv;uÞ2E

prðvÞ
q

ð1Þ

where n is number of pages, q is outdegree defining the number of hyperlinks on

page v and d is the dampening parameter initialized to 0.85.

Parallel implementations of PageRank algorithm have been extensively studied

on various architectures. As PageRank algorithm iteratively progresses, multiple

threads coordinate easily using synchronous mechanisms. Synchronization can be

applied for both vertex-centric and edge-centric computations and on shared-

memory and distributed memory architectures [3]. The barriers synchronization

mechanism is more suitable for iterative algorithms such as the PageRank

algorithm. However, synchronous computations utilize Thread-Level Parallelism

which leads to drawbacks in dealing with progress conditions in the occurrence of

thread failures. On the other hand, in asynchronous computations, progress is

guaranteed where threads do not have to wait for slower threads or failure threads.

This criterion motivates us to apply asynchronous computations on shared memory

architecture for vertex-centric, edge-centric, or graph-centric algorithm implemen-

tations. The algorithm implementations relied on processing and computing

vertices, in a Vertex-centric model [3]. Edges are the key computational units in

an Edge-centric model [4]. In a Graph-centric model, the computations are

performed on sub graphs with implicit compiler optimizations [5].
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In this paper, we present approximation techniques for our earlier proposed non-

blocking methods to leverage the computation of PageRank algorithm on massive

graphs, especially on shared memory architectures. Our main focus is on designing

an asynchronous PageRank algorithm with no synchronous limitations that can be

applied to vertex-based and edge-based representations. We examined that applying

asynchronous computations using the No-sync variant on the PageRank algorithm

can speed up performance over synchronous methods. The Loop-Perforation is an

approximate technique that skips some iterations of a loop to increase the

computational speed-up. The primary idea of the loop perforation approximate

technique is to reduce the amount of computation performed within each iteration as

the algorithm makes progress [6, 7]. Loop-Fusion is an optimization technique that

unites two or more independent loops into a single loop and is applied only when

data dependencies are preserved. Loop fusion technique when applied increases data

locality and the level of parallelism and decreases the overhead of loop control. In

this direction, we applied loop perforation and loop perforation approximate

technique and enabled loop fusion optimization technique to compute the PageRank

algorithm.

1.1 Our Contributions

Our contributions in this work are

• Design of asynchronous techniques for iterative algorithms, especially

PageRank,

• Analysis of vertex-centric and edge-centric computation on PageRank

Algorithm,

• Testify the performance improvements of 5� to 10� speed-up when compared

with synchronous variants.

2 Background and Motivation

This section gives a formal description of various synchronization approaches [8]

for designing shared data objects and algorithms proposed in this paper. Also, we

discuss the primary motivation to design an asynchronous technique for the iterative

PageRank algorithm. In a Shared Memory Multiprocessors or Multicore systems
multiple processors or processing elements need to coordinate accesses using shared

memory. Programming implementations on shared memory systems is challenging

as multiple processes simultaneously access shared resources due to lack of

coordination, resulting in unpredictable delays and performance bottlenecks. An

efficient synchronization mechanism is apt to deal with these issues in parallel

computation by multiple processes. Two classes of synchronization approaches deal

with multiple processes. (a) The Blocking synchronization approach uses locks to

allow one thread at a time to access a shared object and thus prevents conflicts

between the coordinating threads. However, it results in busy waiting and deadlocks

conditions. (b) The Non-Blocking synchronization approach uses lock-free and
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Wait-free methods to deal with the conflicts between the coordinating threads.

When multiple threads access a shared object, the Wait-free approach guarantees

that every thread finishes its execution in a finite number of steps. lock-free
approach ensures that infinitely often, some thread finishes in a finite number of

steps. To implement synchronization using wait-free approach, the most prominent

atomic primitive used is Compare-And-Swap, CAS [8].

2.1 Motivation

Most of the research done so far on PageRank computation is on the pre-processing

step, i.e., processing the graph [7, 9, 10], equal distribution of load to the threads

[11], etc. Most of these algorithms use a Barrier synchronization after each iteration.

However Barrier synchronization has drawbacks as every thread needs to wait at

each iteration and blocks indefinitely with no progress. Our main motive is to

increase the computational speed by avoiding barriers and allowing the threads to

run independently throughout the execution.

Designing a parallel algorithm has to solve many issues and challenges that deal

with performance and memory bottlenecks. Concurrent execution by the threads to

harness the underlying multi-core architecture, is an essential component that

handles these challenges. In iterative algorithms, the computations of current

iteration depend on the values computed from the previous iteration.

Until now, Barriers synchronization solutions achieve better parallelism on

iterative algorithms. However, performance bottlenecks remain to interpret the

results on scalable graphs; even though the implementation of the PageRank

algorithm on shared memory architecture tends to be simpler, these solutions do not

guarantee progress. Non-Blocking algorithms guarantee progress and lock-freedom/

wait-freedom properties. Spotting independence across the iterations of the

PageRank algorithm is non-trivial. So far, the approaches proposed for achieving

better parallelism on the PageRank algorithm focuses on graph-optimization/

adjacency-matrix optimization techniques. Our technique is unique, which guaran-

tees non-blocking progress property on a PageRank algorithm. We used piece-wise

concurrent programming by removing barrier constraints from an iterative

algorithm and eliminating the iterations dependency.

2.2 System Model for Implementing PageRank Algorithm

We assume that our system consists of finite set of p threads running on

multiprocessors. Threads run asynchronously and communicate with each other
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using shared objects. To deal with the issues raised during thread communication,

we use common atomic primitives—CAS to implement wait-free algorithm and we

rely on CPP vector template library to guarantee thread-safety on lock-free

algorithm.

3 Related Work

This section presents an overview of the literature related to the PageRank

computation from its origin to recent advances. PageRank is Google’s first and

previously used algorithm to rank websites in their search engine results. Page et al.

[2] devised this algorithm for computing the ranks of web pages iteratively until the

PageRank values converge. As it is a popular and extensively used metric to

calculate the importance of web pages, there has been a lot of research interest in the

past decades. Parallel computation of the PageRank metric on graphs has been

studied extensively on shared memory architectures using many different

programming models in recent years [1, 9, 10, 12] to mention a few.

Parallel PageRank algorithm proposed by Berry and colleagues [12] in their

Multi-Threaded Graph Library (MTGL), runs on Cray XMT (Multi-Threaded

Architecture extended with 128 threads) and used Q-Threads APIs for processing

threads and implementing synchronization among them. Each thread computes the

PR value of a node by accumulating the votes of its incoming edges of a given

vertex. However, the parallel implementation of the PageRank algorithm using

Q-Threads was not optimized and results in performance bottlenecks.

GraphLab—a vertex-centric programming model proposed initially on the

shared-memory architecture by Low et al. [13] evolved into distributed systems for

implementing parallel machine learning algorithms. The GraphLab framework was

implemented in C?? using Pthreads and supports an asynchronous programming

approach for computing the vertices’ PageRank values by using schedulers and

aggressively tuning the parameters [14]. However, in each iteration, the PageRank

computations in parallel are carried out by using synchronization locks and barriers.

Wang et al., in their paper titled Asynchronous Large-Scale Graph Processing

Made Easy [15], proposed Grace—a programming platform designed for shared

memory systems. Grace supports synchronous iterative graph programming

approach along with asynchronous features. A driver thread coordinates a group

of worker threads to compute PageRank of the scheduled vertices in parallel using

Barriers.

The authors of [16], discussed graph mining algorithms with a primary focus on

the PageRank Algorithm. The paper aims to develop a framework for designing

scalable data-driven algorithms for graph mining algorithms through a case study on

the PageRank algorithm. The paper investigates various implementations of the

page rank algorithm in the purview of three design axes—work activation, data

access pattern, and scheduling criteria to test and understand how various design

choices affect the performance. The results showed that considering data-driven

designs, which are also scalable over iterative algorithms, improves performance.
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The results specifically showed that the data-driven, push-back algorithmic

implementations had increased the performance by 28� :
Parallel PageRank algorithm implemented using Ligra proposed by Shun and

Blelloch [9] uses simple routines. It takes advantage of Frontier Based computations

where an active set of vertices and edges dynamically changes through the duration

of execution. To achieve parallelism, Ligra uses Clik Plus parallel codes.

Garg and Kothapalli [10] proposed four algorithmic techniques—STICD for

Strongly connected components, Topological sort, Identical nodes—nodes with the
same set of incoming neighbor nodes, Chain nodes—nodes with one incoming and
one outgoing node, and Dead nodes to optimize the PageRank computation by

looking at the graph properties and structure. The algorithm techniques adopted in

this paper exploit the nature of real-world graphs and reduces the PageRank

computation by removing redundancies in edges and nodes of the graph. These

kinds of optimizations can speed-up the computations when compared with the

baseline parallel version. However, the preprocessing techniques used in this work

are not parallelized and still need performance improvements.

The authors in the paper [17], applied an optimization technique called

propagation blocking to the PageRank algorithm to reduce the memory commu-

nication bound computations, thereby improving spatial locality on DRAM. This

technique is specialized to use an edge-centric representation of input data.

However, the implementation is bounded by barrier synchronization.

Hamza Omar et al. in the paper [18], perform a study on the impact of input

dependence for graph algorithms in the context of approximate computing. The

authors justify that using perforation on the input graphs over the algorithms

improves performance. Additionally, they proposed a predictor algorithm that helps

in reducing the challenges in input dependencies of loop perforation for graphs and

enables a satisfactory accuracy level. Experiments were tested using CPU and GPU

architectures such as Nvidia, Intel CPU architectures-8 core Xeon and 61-core Xeon

Phi. The results have exhibited a 30% improvement of performance on using

perforation in input graphs and this, when applied to the Nvidia architecture,

showed an increase of 19% of power utilization.

In [7], the authors aimed to design approximation techniques for computing,

enabling good performance coupled with lesser loss of accuracy. The main

techniques proposed are loop perforation, vertex/edge ordering, threshold scaling,

and other heuristics such as data caching, graph coloring, etc., which are

implemented and tested on the two graph algorithms, i.e., PageRank and community

detection. The paper shows the performance improvement of the PageRank

algorithm by 83% and up to 450� for community detection with low influence on

the accuracy of using the approximation techniques on the iterative techniques. The

authors conclude that approximation techniques will provide good performance

with lesser loss of correctness and optimality of solutions. The performance results

show 7–10 times better improvement when compared with an efficient algorithm

STICD [10]. However, the approximate PageRank computation uses extra memory

for storing the sorted edge-list in computing the PageRank of the target vertex. The

parallel implementation still uses barriers to synchronize the computation.
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The GraphPhi framework proposed by [19] mainly focuses on optimizing graph

representations and uses a hybrid vertex-centric and edge-centric execution design

on Intel Xeon Phi-like architectures. GraphPhi framework leverages the benefits of

data-locality, effective scheduling, and load balancing. However, inspite of the

advantages, the implementation is still bounded by barrier synchronization.

An optimized shared-memory graph processing framework introduce by [11]

increases cache and memory efficiency. This framework is called GPOP (Graph

Processing Over Partitions) framework, which promises to increase the efficiency

by executing the graph algorithms at lower granularities called partitions. This

framework is compared against Ligra, GraphMat, and Galois on different graph

algorithms using large datasets to check the efficiency. In comparing the

frameworks, GPOP shows fewer cache misses than the other frameworks and

increases the performance, which is almost 19� faster than Ligra, 9:3�- GraphMat,

and 3:6�- Galois, respectively. The paper discusses GPOP and establishes that the

framework improves cache performance, enables faster convergence, and the

standard work efficiency of a given graph algorithm.

4 Description of Algorithms

This section explains the parallel PageRank computation using Blocking and Non-

Blocking algorithms on large-scale graphs. Implementation of iterative parallel

graph algorithms takes into consideration the following factors, like convergence,

performance. We rely on convergence factor at three different levels for our

algorithm: Node-level, Algorithm-level, and Thread-level. In node-level conver-

gence, the termination of the PageRank algorithm depends on the convergence of

each node independently. In algorithm-level convergence, the termination of the

PageRank algorithm depends on all nodes from all partitions. In thread-level

convergence, each partition terminates independently. In the below algorithms,

Barriers, Barriers-Edge, Barriers-Helper fall under the algorithm-level convergence

category, whereas No-Sync, No-Sync-Edge fall under thread-level convergence

category. Barriers-Opt falls under a combination of node-level and algorithm-level

convergence categories. No-Sync-Opt fall under a combination of node-level and

thread-level convergence categories.

4.1 Barrier Algorithm

The Barriers Algorithm 2 explained here is the baseline version discussed in paper

[10]. Given a graph G ¼ ðV ;EÞ; vertices are divided into p equal-sized partitions.

Each thread is responsible for the computation of one partition. We employed a

static load allocation technique to assign nodes to partitions. Lines 4–9, to begin

with, initializes all the variables and the arrays. This algorithm uses two arrays for

storing PageRank values. The prev_pr array holds the PageRank values from the

previous iteration, and the pr array stores the current iteration PageRank values. The

error variable helps us decide if the iteration should either continue or converge.

This error value is the difference between the Previous PageRank and the PageRank
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for each vertex. The threshold is a constant value initialized to 10�16, which

determines the termination condition of the algorithm.

In this algorithm the computation is divided into two phases. Lines 12–18 are the

first phase of the algorithm that is responsible for PageRank computations. The

algorithm computes the maximum absolute difference between the Previous

PageRank and the PageRank values and saves the value in the thrErr array. Lines

20–22 are responsible for updating the shared variables. After computing the

PageRank values in the current iteration, the algorithm proceeds to the next phase:

to copy the values from the pr array to prev_pr array and calculate the global error

value.

4.2 Barrier_Edge Algorithm

Barriers-Edge is the baseline algorithm proposed in [7] paper. In this approach, the

author has developed a three-phase PageRank algorithm in which the second and

third phases are similar to the Barriers Algorithm. In the second phase, instead of

computing the contribution values of the incoming neighbors, we directly fetch the

values from the ContributionList vector. In the first phase, each node traverses

through its outLinks and populates the contribution value to its respective outgoing

neighbor. Similar to the Barrier Algorithm, each phase ends with barrier instruction.
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4.3 No_Sync

In our work, we proposed an asynchronous algorithm (No-Sync) for vertex-centric

PageRank computations [20]. At least one thread should compute and update the

PageRank values and make progress. Multiple threads can access the same element

in this approach, but only one thread will be responsible for writing to the memory.

In this process, we can encounter read–write conflicts but not write–write conflicts.

A thread can read the previous PageRank value (or the one computed in the current

iteration) in such a scenario. C?? vector templates guarantee this thread-safety

property https://en.cppreference.com/w/cpp/container.

We modified Algorithm 2 to make it an asynchronous algorithm. The most

notable change is to eliminate Barriers from the computation at the end of each

phase. This change will allow threads to proceed to the next iteration without

waiting for other threads to complete their task. The subsequent change reduces the

memory usage by eliminating the Previous PageRank array. Since we are

eliminating the iteration level dependency with our first change, we can apply

our second change to Algorithm 2.

Along with the PageRank computation, each thread will compute the error value

locally. In the synchronous setting, each thread will update the local error value to

the global value in the second phase of computation. A thread will update its local
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error value and partially computed error values from other threads and enter the next

iteration in an asynchronous algorithm. This property allows us to have thread-level

convergence irrespective of the mode of load allocation.

Lemma 1 The algorithm eventually terminates in finite steps.

Proof According to the algorithm, all threads will terminate when the error value of

all the threads is less than the threshold. So it is enough to prove that the error value

of every thread decreases in every iteration. Error value of every thread is the

maximum of the error value of all the vertices that are allocated to the thread. So the

problem statement boils down to prove that the error value of every vertex decreases

in each iteration.

According to base algorithm, PageRank and error of vertex u in the ith iteration is

given by Eqs. 2 and 3 respectively.

prui ¼
1� d

n
þ d �

X

ðv;uÞ2E

prvi�1

outDegðvÞ ; ð2Þ

errui ¼ prui � prui�1

�� ��: ð3Þ

In the No-Sync algorithm, as the threads are allowed to compute in different iter-

ations simultaneously, at a particular instant the PageRank value of a vertex can

belong to any iteration (1st to max iteration). As a base case, threads can be

considered to be present in two consecutive iterations at a particular instant.

Equation 2 can be modified to Eq. 4 considering that the threads are present in ith

and ði� 1Þth iterations. Let Sui be a set of vertices where (v, u) 2 E and PageRank of

v is from ith iteration.
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prui�1:i ¼
1� d

n
þ d �

X

v2Sui

prvi�1

outDegðvÞ þ d �
X

v2Su
i�1

prvi�2

outDegðvÞ : ð4Þ

Error in Eq. 3 can also be modified accordingly.

errui�1:i ¼ prui�1:i � prui�1

�� ��: ð5Þ

At any given instant prui�1 � prui�1:i � prui if prui�1 � prui which means prui�1:i always

lies between prui and prui�1.

prui�1:i � prui�1

�� ��� prui � prui�1

�� �� ) errui�1:i � errui ð6Þ

errui from the base algorithm is always expected to decrease in every iteration, so

errui�1:i also decreases with every iteration. h

Lemma 2 The algorithm leads to a similar result as that of Sequential.

Proof PageRank of a vertex is computed from the PageRank of all its incoming

vertices. As the threads are allowed to compute in different iterations simultane-

ously, the PageRank of a vertex can be computed from the PageRank of incoming

vertices which may belong to any iteration. Equation 4 can be modified for the

threads to be present in 1st to ith iteration.

cprui ¼ 1� d

n
þ d �

XI

l¼1

X

v2Su
l

cprvl
outDegðvÞ : ð7Þ

The algorithm continues until the error of every node is less than the threshold, so

the PageRank values of all nodes reach an almost constant value. With the given

termination condition the Eq. 7 can be modified as Eq. 8 where

Su ¼
SI

l¼1 S
u
l ¼ fvjðv; uÞ 2 Eg.

cpru ¼ 1� d

n
þ d �

X

v2Su

cprv
outDegðvÞ : ð8Þ

The error obtained from the modified PageRank values is less than the threshold

based on the termination condition. Hence, the PageRank values from the algorithm

are also similar to that of the Sequential output with an error which is less than the

threshold. Equation 8 is exactly same as Eq. 2 where jpru � cpru j � threshold is

satisfied only at the termination condition. This lemma is also proved experimen-

tally and the L1 norm of the PageRank values is less than 1/10th of the threshold for

all the experiments. h
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4.4 No_Sync_Edge

Likewise to how we developed an asynchronous algorithm for a 2-phased PageRank

computational model, we also developed an asynchronous algorithm for the

3-phased PageRank computational model. The changes proposed in the previous

algorithm are also applicable for this variant. In Algorithm 2, PageRank compu-

tations are happening in one single equation, whereas in Algorithm 3, Barriers-

Edge, we split the equation into two parts. Though we successfully developed

asynchronous variants for both algorithms, this variant does not guarantee

convergence for particular types of datasets. This variant resulted in better speed-

ups when we tested it on our synthetic datasets; however, it did not converge with

the given threshold for standard datasets. Since the asynchronicity is entirely

random, we are still exploring the reasons behind the non-convergence of this

variant.

4.5 Barrier and No_Sync Variants Optimization

Many applications might not require the exact solution which can help reduce the

overall computational cost. When using approximation techniques, we skip some
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portions of the computation to arrive at an approximate solution. This technique can

significantly improve the performance by a minimum compromise on accuracy.

Loop perforation is an optimization technique that can reduce iterations without

changing the definite description of an algorithm when applied to iterative

algorithms. We used this technique for our Barriers and No-Sync variants as

proposed in paper [7] to compute the PageRank algorithm. We made a slight

modification to the author’s technique, where we are eliminating the PageRank

computations if the absolute difference of PageRank and Previous PageRank of a

node is less than 10�21.

4.6 Barrier_Helper

In this Wait-free algorithm, we address thread delay/failure scenarios by ensuring

the algorithm’s correctness. Here the threads are not allowed to enter into the next

iteration until it computes the PageRank for all nodes in that particular iteration.

Any thread that finishes the computation of its allocation will help any other random

thread before proceeding into the next iteration. The threads continue to help other

threads in progress until PageRank of all nodes gets computed. In Algorithm 7, all

available threads execute the ThreadPageRank () procedure in line 47. Each thread

computes the PageRank of nodes in its partition by calling ComputePR() in line 51.

After finishing its partition, threads are allowed to help incomplete threads from

lines 53 and 54. Updating global variables like iteration number, error, and

PageRank of Sink nodes happens in 56 to 59. Each thread has a global atomic

variable (glbThdInfo), which stores the information like iteration number, latest
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computed node, thread error, and thread PageRank of sink nodes. This thread

variable is global and accessible by every other thread. Thd1 helping Thd2 update

the information in the Thd2 global variable. This update of glbThdInfo is done from

lines 24 to 28 in the ComputePR( ) procedure. UpdatePR( ) method from lines 1 to

12 is used to update the PageRank value and the iteration number using CAS

operation. Every variable is associated with an iteration number to avoid any wrong

updates by a slow thread present in previous iterations, where some helper thread

would have already updated.

5 Experiments Evaluation

5.1 Platform

We conducted our simulations on a 56 Intel(R) Xeon(R) E5-2660 v4 processor

architecture with two CPU sockets. Each socket has 14 cores and two logical

threads per core running at 2.06 GHz core frequency. Every core’s L1: 32K, L2:

256K cache memory is private to that core, and L3: 35840K cache memory is

shared across the cores.
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All the simulations were coded in C/C??, compiled using g?? 7.5.0 and the

POSIX Multi-Threaded library. We also compared our experiments using OpenMP

APIs.
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5.2 Datasets

We use both synthetic datasets and four categories of real-world datasets in our

simulations, as listed in Table 1. The datasets are chosen, ensuring the related

studies [9, 10, 21] in providing a fair comparison. We conduct initial experiments on

randomly generated synthetic graphs in the range of 1 � 106to7 � 106 edges using

RMAT graph library [22]. Later on, Web-Graphs, Social-Networks, and Road-

Networks, from standard datasets repository [23]. All the [21] graph datasets sizes

are in Adjacency List format, which is later converted to both CSR (Compressed

Sparse Row) format and an edge representation. We tested all the proposed

algorithms on the given datasets.

5.3 Results and Discussion

In this section, we present the speed-up achieved by parallel variants of PageRank

algorithms. The ratio between the Sequential execution time (the original PageRank

algorithm)and Parallel execution time is the metric for calculating the algorithm’s

speedup. With a fixed number of threads (56) on a different class of datasets, we

Table 1 Real-world and

synthetic graph datasets
Datasets #Vertices #Edges Size (MB)

Web Graphs [23]

web-Stanford 281,903 2,312,497 30

web-NotreDame 325,729 1,497,134 20

web-BerkStan 685,230 7,600,595 20

web-Google 875,713 5,105,039 7

Social Networks [24]

soc-Epinions1 75,879 508,837 5.7

Slashdot0811 77,360 905,468 10.7

Slashdot0902 82,168 948,464 11.3

soc-LiveJournal1 4,847,571 68,993,773 1100

Road Networks [24]

road-italy-osm 6,686,493 7,013,978 109.9

great-britain-osm 7.7M 8.2M 28

asia-osm 12M 12.7M 5.1

germany-osm 11.5M 12.4M 98.5

Synthetic Graphs [21, 22]

D10 491,550 0,999,999 13.2

D20 954,225 1,999,999 28.3

D30 1,400,539 2,999,999 43.3

D40 1,871,477 3,999,999 59.0

D50 2,303,074 4,999,999 74.1

D60 2,759,417 5,999,999 89.9

D70 3,222,209 6,999,999 105.6
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execute the programs and obtain the execution times. When incorporated with

existing graph processing methods, the proposed algorithms prove significant

improvement at the hardware level.

Figure 1a shows the speed-ups obtained by parallel variants (blocking and non-

blocking variants) on standard datasets using 56 threads. Barrier variants result in a

maximum of 10� on standard datasets, whereas No-Sync variants (except for No-

Sync-Edge) consistently produce greater than 10� speed-up on almost all datasets.

It is observed from the results that No-Sync, No-Sync-Identical, No-Sync-Opt and

No-Sync-Opt-Identical, are performing better than the Barriers, Barriers-Identical

and Barriers-Edge on all the datasets. We achieve substantial performance benefits

by removing the barriers and allowing partial computations on shared variables to

eliminate iteration-level dependency and thread-level dependency. Thus it can be

concluded that asynchronous variants outperform synchronous variants by a

considerable magnitude. As each thread progresses independently and completes the

given task, we achieve the lock-free property on the No-Sync variants. We conclude

that the lock-free variants of the PageRank algorithm provide better performance

improvements compared to the other variants. The notion behind the Wait-free

variant is to display the sustainability of the current program execution and hence is

not explicitly designed for performance. Since we are not using any compiler

optimization flags, the Barriers-Edge variant is not as performant. Figure 1b shows

the speed-ups obtained by parallel variants on synthetic datasets. The insights noted

in Fig. 1a are also applicable here for synthetic datasets. Barrier variants result in a

maximum of 5� speed-up on synthetic datasets, whereas No-Sync variants (except

for No-Sync-Edge) consistently produce greater than 10� speed-up on almost all

datasets. It is observed for Synthetic datasets that as size increases, No-Sync

variants consistently outperform Barriers variants in terms of performance.

Figure 2a, b show the speed-ups obtained by parallel variants by varying the

threads on randomly selected datasets (web-Stanford a standard dataset and D70 a
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Fig. 1 Speed-Up vs. Programs on Standard and Synthetic Datasets (56 Threads)
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synthetic dataset). In this work, we apply the static load balancing technique to all

parallel variants. With an increase in the number of threads, the speed-up rate is

significantly less for barrier variants than the No-Sync variants since each thread has

to wait for others in the barrier variants. This also leads No-Sync variants to have

much better scalability in comparison to barrier variants. On the other hand, in No-

Sync variants, as each thread progresses independently, we achieve a higher speed-

up with a higher thread value. These results suggest, our lock-free variant scales

well with the increase in the number of threads.

Figure 3a, b show the speed-up and L1-norm obtained by parallel variants on a

randomly selected dataset (web-Stanford a standard dataset and D70 a synthetic
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dataset) with a fixed thread count (fixed at 56). The summation of differences

between PageRank of each node from sequential and parallel variants denotes L1-

norm. For most Barrier variants, the L1-norm is zero, which means the page rank

values are equal to the sequential ones. No-Sync algorithms, except approximation

algorithms on all datasets, is achieving a zero L1-norm. The value is high for No-

Sync-Opt and No-Sync-Opt-Identical as we are performing the loop-perforation

technique and skipping the computations when its PageRank value is less than

10�21. The result of using the above approximation technique leads to an increase in

speed-up and L1-norm.

In Fig. 4, we compare the number of iterations taken by each parallel variant.

Ideally, we expect each variant to achieve convergence with the same number of

iterations. In our case, as we are allowing threads to do partial updates on shared

variables that depend on the convergence, No-Sync variants are taking a fewer

number of iterations than barrier variants. Our lock-free variant not only gives better

speed-up but it also converges faster. Prior to this work, we knew about node-level

convergence and algorithm-level convergence on the iterative algorithm, but to our

knowledge, we are the first ones to propose thread-level convergence.

Sleeping variants to evaluate the impact of the Wait-free algorithm, we

deterministically added sleep to the threads in selected iterations. In the Barrier

algorithm, each thread has to wait until the completion of the sleeping thread. In No-

Sync, the work corresponding to the sleeping thread will be resumed after the thread

awakes. Our Wait-free (Barrier-helper) algorithm is robust enough to handle the

above two drawbacks. In the case of a Wait-free algorithm, a thread will not wait for

another thread and helps other threads after completing the assigned task. In Fig. 5,

we can see the execution times of Barriers and No-Sync algorithms are increasing

with an increase in sleep time, whereas Wait-free execution time is consistent.

Failing variants except for Wait-free, other parallel variants do not handle thread

failures. We deterministically added failures to the threads after the end of the first

iteration to evaluate its impact. In Fig. 6, we can see the increase in the program

execution time as we increase thread failures.
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5.4 Comparative Results using OpenMP

OpenMP and POSIX Pthreads are two different paradigms for multi-threading.

OpenMP supports scheduling and load balancing of threads implicitly at the system

level. Both of these help achieve parallelism on a multicore machine. Pthreads use

low-level APIs and have fine-grain control. On the other hand, OpenMP uses high-

level pragma directives that are portable, scalable, and gives programmers a simple

and flexible interface [25]. A few of our observations:

We use the nowait clause of OpenMP parallel pragma to achieve similar

functionality of the no-sync PageRank variant and use a default barrier clause for

pragmas at the end to achieve blocking synchronization. We tested our Barriers and

No_Sync parallel variants with varied thread count on synthetic and web-graphs

standard datasets using Pthreads and OpenMP APIs.

From Figs. 7a, 7b and 8a, b, it is observed that the speed-up obtained is almost

identical for both Pthreads and OpenMP implementations, with Pthreads being
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slightly better performant. It is also observed that the No_Sync variant performs

better than the Barriers variant with Pthreads and OpenMP implementations.

Asynchronous methods with non-blocking progress properties like lock-freedom

and wait-freedom can be achieved by using Pthreads. In this work, we demonstrated

that using Pthreads lock-freedom can be achieved for computing PageRank. But it is

not clear how to implement non-blocking method s using OpenMP. This is because

with Pthreads, we can specify the running code of each threads which is not possible

with OpenMP.

6 Conclusion and Future work

This paper proposed a Non-Blocking (No-Sync and Wait-free) algorithms to

implement the parallel PageRank algorithm on Shared Memory architectures. The

proposed methods replace the Lock-Based and Barrier synchronization mechanism

found in the state-of-the-art approaches. Our simulation results on various graphs

found that our approach will achieve better performance when combined with the
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existing methods. The results shown in this paper motivates that the non-blocking

variants, when applied for iterative algorithms, can lead to performance

improvements.

As part of future work, we plan to integrate our proposed approach with the

existing graph framework. We also plan to apply our approaches for applications

where iterative algorithms are the direction for future work. The source code is

available on1.
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