
International Journal of Parallel Programming (2021) 49:761–775
https://doi.org/10.1007/s10766-021-00703-4

Bounds Checking on GPU

Troels Henriksen1

Received: 27 October 2020 / Accepted: 2 March 2021 / Published online: 25 March 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
We present a simple compilation strategy for safety-checking array indexing in high-
level languages on GPUs. Our technique does not depend on hardware support for
abnormal termination, and is designed to be efficient in the non-failing case. We rely
on certain properties of array languages, namely the absence of arbitrary cross-thread
communication, to ensure well-defined execution in the presence of failures. We have
implemented our technique in the compiler for the functional array language Futhark,
and an empirical evaluation on19benchmarks shows that the geometricmeanoverhead
of checking array indexes is respectively 4% and 6% on two different GPUs.

Keywords GPU · Functional programming · Compilers

1 Introduction

Programming languages can be divided roughly into two categories: unsafe languages,
where programming errors can lead to unpredictable results at run-time; and safe
languages, where all risky operations are guarded by run-time checks. Consider array
indexing, where an invalid index will lead an unsafe language to read from an invalid
memory address. At best, the operating system will stop the program, but at worst, the
program will silently produce invalid results. A safe language will perform bounds
checking to verify that the array index iswithin the bounds of the array, and if not, signal
that something is amiss. Some languages perform an abnormal termination of the
program and print an errormessage pointing to the offending program statement. Other
languages throw an exception, allowing the problem to be handled by the program
itself. The crucial property is that the resulting behaviour is well-defined.We use array
indexing as the motivating example, but we are concerned with all safety checks that
can be condensed to a single boolean expression; for example integer division by zero.

B Troels Henriksen
athas@sigkill.dk

1 University of Copenhagen, Copenhagen, Denmark

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-021-00703-4&domain=pdf
http://orcid.org/0000-0002-1195-9722


762 International Journal of Parallel Programming (2021) 49:761–775

Users of unsafe languages are often wary of the run-time overhead of performing
safety checks. However, it has been known since even the early days of high-level
languages that bounds errors are easy to make and can have disastrous consequences
[15], and hence most languages provide at least the option of automatically checking
risky operations. In this paper we distinguish failures from errors. A failure is a
checked operation that fails in some controlled manner. For example an array index
that is discovered to be out-of-bounds. An error is a misuse of some low-level API or
language construct that causes undefined behaviour. For example, writing to an invalid
address. A safe programming language must ensure that anything that would be an
error will instead become a failure.1

GPUs have long been popular for general-purpose parallel programming, and sev-
eral high-level languages support compilation to GPU, including Accelerate [5], Lift
[19], Julia [4], ×10 [7], Harlan [16], APL [12,17], and SaC [11]. As these are all
high-level languages, most of them provide at least the option of performing bounds
checking when running on a CPU, but none of them can perform bounds checking
in generated GPU code. One important reason is that the most popular GPGPU APIs
(OpenCL and CUDA) do not provide good support for abnormal termination of a
running GPU kernel.

For example, CUDA provides an assert() macro that, if it fails, will terminate
the calling kernel. However, it will also invalidate the entire CUDA driver context,
meaning that memory that has been copied to the GPU by the current process becomes
unavailable. Further, the error message will be printed to the standard error stream,
which may be difficult to capture and propagate (e.g. by throwing an exception on
the CPU). This means failures cannot be handled in any way other than completely
scrubbing the entire GPU state, including even data that was not available to the failing
kernel, and restarting from scratch, which is often not acceptable. While a single GPU
thread can always terminate itself, this can introduce deadlocks (see Sect. 2.3), which
is an error. OpenCL is similar, except there is no way for a GPU thread to abnormally
terminate an entire running kernel.

Functional array languages [3], where programs consist primarily of bulk opera-
tions such as map, reduce, and rank-polymorphic “vectorised” operators, do not
contain indexing errors, as such operations are guaranteed to be in-bounds. However,
some algorithms do still require ad hoc indexing, in particular when we use arrays to
encode more complicated structures, such as graphs. In particular, parallel “gather”
and “scatter” operations have all the same risks as traditional scalar array indexing, and
should therefore be checked at run-time. Fortunately, as we shall see, array languages
based on bulk operations have certain properties that enable a particularly efficient
implementation of run-time safety checks.

The contribution of this paper is a compilation strategy for inserting safety checks
in GPU code generated by compilers for high-level parallel languages, without relying
on support for abnormal termination or error reporting in the GPU API or hardware
itself. Our design goals are the following:

1 The error/failure nomenclature is more or less arbitrary and not standard or common, but the distinction
is important for this paper. In C, the term undefined behaviour is a close (but not exact) analogue to what
we call errors.

123



International Journal of Parallel Programming (2021) 49:761–775 763

Completeness all possible safety checks that are expressible as a boolean expression
can be handled.

Efficiency overhead must be low, as programmers are quick to turn off safety checks
that they believe are detrimental to performance. However, we focus only on per-
formance of the non-failing case, as we assume failures are rare and exceptional
situations.

Robustness the GPU driver context must remain operational even in the presence of
safety check failures—errorsmust not occur, as far as the GPU programming API
is concerned.

Quality of reportingwemust be able to produce accurate information about the source
of the failure, phrased in terms of original high-level language (e.g. the failing
expression and index) rather than low-level details (e.g. the invalid address).

Note that we are not claiming to safety-check GPU kernels hand-written in low-
level languages such as CUDA and OpenCL. Our strategy depends on properties that
are straightforward to guarantee in code generated by compilers for deterministic
parallel programming languages, but which would not hold for languages that support
programmer-written low-level communication between threads.

1.1 PriorWork

Several tools for detecting invalidmemory accesses have been implemented for GPUs.
Oclgrind [18] presents itself as an OpenCL platform which runs all kernels in an
interpreter and reports accesses to invalid memory locations. However, Oclgrind is
primarily a debugging tool, as it runs far slower than real hardware. NVIDIA provides
the similar tool cuda-memcheck, which detects invalid memory accesses, but as the
instrumented kernels run with a significant run-time overhead, it is also a debugging
tool, and not intended for code running in production.

Amore efficient (and less precise) tool is the vendor-agnostic clARMOR [9], which
surrounds every allocation with an area of unique canary values. If at any point any
of these values have been changed, then it must be because of an out-of-bounds write.
The overhead isminor (10%on average), but clARMORcan detect only invalidwrites,
not reads, and cannot identify exactly when the invalid access occurred.

All these tools are low-level and concernedwith the semantics ofOpenCLorCUDA
kernel code, and so are not suitable for implementing bounds checking for a high-level
language. In particular, they would not be able to live up to our expectations for error
messages. Further, all such tools run the risk of false negatives, where a bounds failure
ends up corrupting memory at an address that is valid, but unintended. This cannot be
detected by tools that merely verify addresses.

There is also the option of using entirely static techniques to perform bounds check-
ing, such as dependent types [21], which demand that the programmer provides a proof
that all indexing is safe before the type checker accepts the program. No checking is
then needed at run-time. However, dependently typed programming languages are
still an active research topic with regards to both programming ergonomics and run-
time performance, and so are not necessarily a good choice in the near future for
performance-oriented languages. In either case, such techniques are complimentary

123



764 International Journal of Parallel Programming (2021) 49:761–775

to run-time checking: where the programmer is willing to invest the time to provide a
proof of safety, we can turn off run-time checks, while keeping checks in the unverified
parts of the program.

A closely related problem is de-optimisation in the context of JIT compilation,
where an assumption made by the JIT compiler may turn out to be false at run-time,
and execution must be rolled back in order run a slower interpreted version of the
code. Prior work on JIT compiling R to GPU code [10] uses a technique similar to the
approach we will be discussing in Sect. 2, but without the optimisations of Sects. 2.2
and 3, and of course also without error messages.

1.2 Nomenclature and Technicalities

We use OpenCL terminology for GPU concepts. Despite the naming differences with
CUDA, the concepts are identical, and our approach works just as well with CUDA
as with OpenCL. An OpenCL work-group corresponds to what CUDA calls a thread
block, and is a collection of threads that executes together and may communicate with
each other. OpenCL local memory corresponds to CUDA shared memory.

We are assuming a particularly simple and conventional GPUmodel, with the GPU
operating as a co-processor that merely receives commands and data from the CPU.
In particular, we assume a kernel cannot enqueue new kernels, and cannot allocate or
free memory. Some real GPUs do have these capabilities, but they have significant
performance caveats, are not crucial to GPU programming, and in particular are not
used in the code generated by any of the previously mentioned high-level languages.

2 Design and Implementation

As currently popular GPGPUAPIs (e.g. OpenCL and CUDA) do not permit abnormal
termination of GPU kernels, we need to turn failing executions into normal kernel
termination, and somehow communicate the failure back to the CPU. It is important
that we do not at any point execute errors, such as reading from invalid memory
addresses.

A simple solution is to allocate a single 32-bit integer in GPU memory, which we
call global_failure, and which we use to track failures. We use the convention
that a value of −1 means “no failure”, and other values indicate that a failure has
occurred.When a failure occurs, the failingGPU threadwrites a non-negative integer to
global_failure and immediately returns, which stops the thread. After every
kernel execution, we can then copy the value of global_failure back the CPU,
and if it contains a non-negative value, propagate the failure using conventional CPU
mechanisms, such as throwing an exception or printing an error message. This idea is
the foundation of our approach, but in this simple form it has significant problems:

1. It is uninformative, because simply knowing that the program failed is not enough
to provide a good error message. For an array indexing failure, we usually wish to
provide the expression that failed, the attempted index, and the size of the array.

123



International Journal of Parallel Programming (2021) 49:761–775 765

2. It is slow, because it requires a global synchronisation after every kernel execution,
to verify whether it is safe to execute the next kernel. GPUs perform well when
given a large queue of work to process at their own pace, not when they constantly
stop to transfer 32 bits back to the CPU for inspection, and have to wait for a
go-ahead before proceeding.

3. It is wrong, because GPU threads are not isolated, but may communicate through
barriers or other synchronisation mechanisms. In particular, it is undefined
behaviour for a barrier to be executed by at least one but not all threads. We
cannot in general abort the execution of a single thread without risking errors.

We will now explain at a high level how to address these problems, accompanied
by a sketch of a concrete OpenCL implementation.

2.1 Better Failure Information

Treating failure as a boolean state, without revealing the source of the failure, is not
very user-friendly. Our solution is to assign each distinct failure point in the program
a unique number: a failure code. A failure point is a program location where a safety
check is performed. If the check fails, the corresponding failure code is written to
global_failure. The write is done with atomic compare-and-swap to ensure that
any existing failure code is not clobbered. The distinguished value −1 indicates that
no failure has yet occurred. We use compare-and-swap to ensure that at most one
thread can change global_failure from −1 to a failure code. This implies that
if multiple threads contain failures, it is not deterministic which of them get to report
it. We can only report a single failure to the user, and multiple runs of the same failing
program may produce different error messages. During compilation of the original
program, we construct a table that maps failure codes to the original source code
locations. When we check global_failure at run-time on the CPU, we can then
identify the exact expression that gave rise to the failure.

To provide human-readable error messages, we associate each failure point with a
printf()-style format string such as the following:

"index %d out of bounds for array of size %d"

For simplicity we assume that %d is the only format specifier that can occur, but
each distinct format string can contain a different number of format specifiers. We
then pre-allocate an int array global_failure_args in GPU memory that is
big enough to hold all parameters for the largest format string. When a thread changes
global_failure, it also writes to global_failure_args the integers cor-
responding to the format string arguments. When the CPU detects the failure after
reading global_failure, it uses the failure code to look up the corresponding for-
mat string and instantiates it with arguments from global_failure_args. Note
that the CPU only accesses global_failure_args when a failure has occurred,
so performance of the non-failing case is not affected.

For a non-recursive language, each failure point can be reached through a finite
number of different call paths, and stack traces can be provided by generating a distinct
format string for each possible path. The recursive case ismore difficult, and outside the

123



766 International Journal of Parallel Programming (2021) 49:761–775

scope of this paper, but can possibly be handled by simply deciding on a maximum
backtrace length, and then representing a failure point as an entire array of source
locations, rather than a single one.

2.2 Asynchronous Failure Checking

It is expensive to check global_failure on the CPU after every kernel execution.
We should do so only when we are, for other reasons, required to synchronise with
the GPU. This is typically whenever we need to copy data from GPU to CPU, such as
when making control flow decisions based on GPU results, or when we need the final
program result.

Simply delaying the check is not safe, as kernel i +1 may contain unchecked oper-
ations that are safe if and only if the preceding kernel i completed successfully. To
address this, we add a prelude to every GPU kernel body where each thread checks
global_failure. If global_failure contains a failure code, that must mean
one of the preceding kernels has encountered a failure, and so the all threads of
the current kernel terminate immediately. This is an improvement, because check-
ing global_failure on the GPU is much faster than checking it on the CPU,
and does not involve any CPU/GPU synchronisation. The overhead is a single easily
cached global memory read for every thread, which is in most cases negligible, and
Sect. 3.5 shows cases where even this can be elided.

This technique means that an arbitrary (but finite) amount of time can pass from
the time that a GPU kernel writes to global_failure, to the time that the failure
is reported to the CPU. Specifically, the time is bounded in the worst case by the time
it would have taken the program to finish successfully. We consider this an easy price
to pay in return for improving the performance of the non-failing case.

2.3 Cross-thread Communication

In general, a GPU thread cannot safely terminate its own execution, as other threads
may be waiting for it in a barrier. Consider Fig. 1a, which shows a typical OpenCL
summation kernel, where each thread performs a sequential summation of a chunk of
the input, followed by a parallel summation of the per-thread results within the GPU
work-group. This requires a barrier (line 25) to ensure that all threads have written
their result to the shared sums array before the parallel reduction takes place.

In this kernel, the sequential part involves indirect indexing, where the array js
contains values used to index vs. These indexes can be out-of-bounds, which on
Fig. 1a is handled by setting global_failure and terminating the thread with
return. But this is risky, as other threads may already be waiting at the barrier,
which will never be reached by the failing thread.

The solution, shown on Fig. 1b, identifies the location of the next barrier in the
code, places a distinct label just before it (line 24), and then goto that label instead
of immediately terminating. We call this label/barrier pair a synchronisation point.
Immediately after the synchronisation point, all threads in the work-group check
whether any of them have failed, by inspecting global_failure, and terminate

123



International Journal of Parallel Programming (2021) 49:761–775 767

(a) (b)

Fig. 1 OpenCL-like pseudo-code for kernel that sums an indirectly indexed array of integers

if so. The barrier implies a memory fence, so the threads within the work-group will
have a consistent view of the global_failure variable. We also need a barrier
immediately after this check, because other failure pointsmayoccur in the remainder of
the kernel, and these would also set global_failure. A kernel may have multiple
synchronisation points, each identified with a distinct label. We must ensure that all
kernels end with a final synchronisation point, such that there is always a place to
jump from a failure point.

Viewed as a control flow graph, the kernel code must have the property that every
node that controls a failure point has a postdominator that contains a synchronisation
point, and that there are no barriers on the path to the synchronisation point. It is
crucial that this is a postdominator, because even non-failing executions must reach
it. This property does not hold for arbitrary GPU kernels, but it is straightforward to
ensure it when compiling array languages, because all cross-thread communication
(and hence, barriers) is implicit in the source program and controlled by the compiler.
For example, consider the control flow graph on Fig. 2. If a failure occurs in node
B, where should we jump? The choice of the next barrier is not decided until node

123



768 International Journal of Parallel Programming (2021) 49:761–775

Fig. 2 Control flow graph where the failure point in node B cannot know the location of the next barrier

C. The compiler must insert a synchronisation point in C to ensure that there is an
unambiguous location to which the failure point can jump.

GPU programmers usually view gotowith scepticism. Apart from the usual prob-
lems [8], unrestricted use of goto can cause irreducible control flow, which is in
general highly inefficient and sometimes unsupported on SIMT architectures. How-
ever, our use of goto to jump to postdominators does not cause irreducible control
flow, and as we shall see in Sect. 4, performance on contemporary GPUs is good.

3 Further Optimisations

This section shows additional optimisations and implementation hints that reduce the
overhead of failure checking. The sum impact of these optimisations is shown in
Sect. 4.

3.1 Avoiding Global Memory Accesses

Some GPU kernels contain significant cross-thread communication within each work-
group, which must be interleaved with checking the global_failure variable
before every barrier. This can be a bottleneck, as global_failure is stored in
globalmemory, and the kernelmayotherwise usemostly themuch faster localmemory.
To address this, we introduce a boolean variable local_failure, stored in local
memory, that indicates whether a failure has occurred within the current work-group.
When a thread fails, we set both global_failure and local_failure, but
synchronisation points check only the latter. This is sufficient to ensure safety, as GPU
work-groups cannot communicate with each other, and hence cannot be affected by a
failure in another work-group. The final code emitted for a failure point is shown on
Fig. 3c, and the code for a synchronisation point on Fig. 3d

123



International Journal of Parallel Programming (2021) 49:761–775 769

(a)

(b)

(c)

(d)

Fig. 3 Essential code fragments for our implementation of GPU bounds checking. This lists kernel param-
eters and code only

3.2 Avoiding Unnecessary Failure Checking

As we discussed in Sect. 2.2, threads in a running kernel initially check global_
failure for whether a failure has occurred in a previous kernel. This requires mul-
tiple barriers to ensure that threads in the current kernel do not run ahead, fail, and

123



770 International Journal of Parallel Programming (2021) 49:761–775

set global_failure before all other threads have had a chance to read its initial
value. While barriers are relatively cheap, we have observed that this initial checking
still has a cost for very simple kernels. In many cases, we have run-time knowledge
that no kernels with failure points have been enqueued since the last time we checked
global_failure, and hence checking it is wasteful.

We address this by adding to every kernel another int-typed parameter,
failure_is_an_option, that indicates whether *global_failure is poten-
tially set. The value for this parameter is provided by the CPU when the kernel is
enqueued.

The full prelude added to OpenCL kernels for failure checking is shown on Fig. 3b,
and the pertinent kernel parameters on Fig. 3a. Note that we still need a barrier to
ensure local_failure is properly initialised.

The failure_is_an_option parameter corresponds to an ordinary variable
maintained by the CPU. It is initially zero, and set whenever we enqueue a ker-
nel that contains failure points. Whenever the CPU synchronises with the GPU, and
would normally copy global_failure back to the CPU to check its value, we
first check failure_is_an_option. If zero, that means there is no reason to
check global_failure. Our motivation is avoiding the latency of initiating a
transfer, as copying a single 32-bit word of course takes very little bandwidth. After
any CPU–GPU synchronisation where global_failure is checked, we reset
failure_is_an_option to zero.

3.3 Avoiding Synchronisation Points

Many kernels, particularly those corresponding to a map, contain no communication
between threads, and hence no barriers. For these kernels, failure points can simply
return.

3.4 Non-failing Kernels

Many kernels contain no failure points, and are guaranteed to execute successfully.
These kernels must still check global_failure when they start, because this
guarantee may be predicated on the successful execution of previous kernels, but
they do not need the failure_is_an_option or global_failure_args
parameters, and their kernel prelude can be simplified to the following:

if (*global_failure >= 0) return;

3.5 Failure-Tolerant Kernels

Some particularly simple kernels are able to execute safely (i.e. error-free) even when
previous kernels have failed, typically because they merely copy or replicate memory,
possibly with an index transformation. Matrix transposition is an example of such a
kernel. For these kernels we can eliminate all failure checking entirely. This is because
failures cannot result inmemory becoming inaccessible; it can only result in the values

123



International Journal of Parallel Programming (2021) 49:761–775 771

stored being wrong, and these simple kernels are not sensitive to the values they are
copying.

4 Experiments

We have implemented the presented technique in the compiler for Futhark [14], a
functional array language that can be compiled to OpenCL and CUDA. Apart from
checking array indexes, we also check for integer division by zero, as well as arbitrary
programmer-provided assertions. These can be handled using the same approach as
bounds checking. Futhark is a purely functional language, and so is not suitable for
writing full applications. Instead, a compiled Futhark program presents a C API, with
Futhark entry points exposed as C functions, which are then called by programs writ-
ten in other programming languages. Futhark does not support exceptions or similar
error handling mechanisms, so in the event of a failure, the error message is simply
propagated to the return value of the C API, where it is made available for the caller
to do with as they wish. One option is of course to print the message to the console
and then terminate the entire process, but the GPU and Futhark state remains intact,
including the data that was passed to the Futhark entry point, so it is also possible to
continue execution with other data.

To investigate the efficiency of our implementation technique,wehavemeasured the
run-time of a range of Futhark programs compiled with and without bounds checking
enabled. The full Futhark benchmark suite2 contains 41 programs ported from Accel-
erate [5], FinPar [2], Rodinia [6], and Parboil [20]. Of these, 19 benchmarks require
bounds checks inGPU kernels, and are the ones we use in our experiments. See Table 1
for a table of the benchmarks and workloads. Since our focus is the relative cost of
bounds checking, we do not compare our performance with the original hand-written
benchmark implementations. Prior work has shown that Futhark’s objective perfor-
mance is generally good [13], so we consider our results representative of the cost of
adding bounds checking to already well-performing code.

4.1 Methodology

Each benchmark program is compiled and benchmarked with four different ways of
handling bounds checks:

Without any checking our baseline.
Checked full bounds checking.
Unoptimised excludes the optimisations from Sect. 3.
Synchronous clFinish() after every kernel enqueuing.

For the latter three we report the relative slowdown compared to the baseline. Our
experiments are run on two systems: an AMD Vega 64 GPU where we use Futhark’s
OpenCL backend, and an NVIDIA RTX 2080 Ti GPUwhere we use Futhark’s CUDA
backend. We use the futhark bench tool to perform the timing, and the OpenCL

2 https://github.com/diku-dk/futhark-benchmarks.

123

https://github.com/diku-dk/futhark-benchmarks


772 International Journal of Parallel Programming (2021) 49:761–775

Table 1 Benchmarks and
datasets used for the
measurements on Fig. 4

Benchmark Dataset

FinPar

LocVolCalib Large

OptionPricing Large

Accelerate

Canny 512 × 512

fft 1024 × 1024

Fluid Medium

Hashcat Rockyou

Pagerank Small

Parboil

Stencil Default

Tpacf Large

Benchmark Dataset

Rodinia

Backprop Medium

bfs graph1MW_6

cfd fbcorr.domn.193K

Hotspot 1024

lavaMD 10 boxes

lud 2048

nw large

Myocyte Medium

Particlefilter 128× 128× 10 image,

400000 particles

srad 502× 458 image

The names of datasets are from the original benchmark sources (hence
the inconsistent naming), and have been chosen to be the largest avail-
able

backend for code generation. The timing does not include GPU driver setup and
teardown, nor does it include copying the initial input data to the GPU, nor the final
results from the GPU. All other CPU–GPU communication is counted. We report the
average runtime of 10 runs for each benchmark.

4.2 Results

The results are shown on Fig. 4. The most obvious conclusion is that synchronous
execution canhave ruinous overhead; exceeding5× for thenw benchmark, and exceed-
ing 2× on five other benchmarks on the RTX2080. The most affected benchmarks
are structured as a rapid sequence of kernels that each run for at most a few dozen
microseconds. Halting the GPU after every kernel, rather than letting it process the

123



International Journal of Parallel Programming (2021) 49:761–775 773

(b)

(a)

Fig. 4 Runtime slowdown of performing bounds checking compared to not performing bounds checking.
See Table 1 for the benchmark workloads. Checked is the full implementation with the optimisations listed
in Sect. 3. Unoptimised is without the optimisations. Synchronous is with GPU synchronisation after every
kernel enqueuing

queue on its own, adds a significant constant cost to every kernel, which slows down
these benchmarks significantly. On the other hand, those benchmarks that run just a
few large kernels, such as OptionPricing, are not significantly affected. The Vega 64
is slightly less hampered than the RTX 2080 Ti, which is likely because the Vega 64
is relatively slower, so the kernels run for longer on average.

The Sect. 3 optimisations have a relatively small impact on most benchmarks. The
largest impact is on particlefilter on the Vega 64, where the optimisations reduce
overhead from almost 1.6× to essentially nothing. The bfs benchmark is an excellent
demonstration of bounds checking, as it implements a graph algorithm by representing
the graph as several arrays containing indexes into each other. A compiler would have
to be sufficiently smart to a very high degree to statically verify these index operations.
At the same time, most of the GPU kernels are map or scatter-like operations with
no communication between threads, so the Sect. 3.4 optimisation applies readily. The
srad and stencil benchmarks suffer significantly under bounds checking on the RTX
2080 Ti. Both of these are stencil nine-point stencil computations, and are written in

123



774 International Journal of Parallel Programming (2021) 49:761–775

a way that prevents the Futhark compiler from statically resolving eight of the nine
bounds checks that are needed for each output element.

5 Conclusions

We have demonstrated an implementation technique for implementing checking of
array indexing and similar safety checks in GPU kernels generated from high-level
array languages, even when the GPU programming API does not support abnormal
termination.

Implementing the technique in a mature GPU-targeting compiler took only mod-
erate effort, and our experiments show that the overhead of bounds checking has a
geometric average of a relatively modest 6%, counting only those programs where
checking is necessary in the first place. This is comparable to other work on bounds-
checking C programs [1], although this comparison is admittedly not entirely fair, as
a functional array language need not check indexing that arises from operations such
as map and reduce. Nevertheless, our results suggest that bounds checking can be
performed by default even in high-performance array languages.

Acknowledgements This research has been partially supported by a grant from the Independent Research
FundDenmark, under the research projectFUTHARK:Functional Technology forHigh-performance Archi-
tectures.

References

1. Akritidis, P., Costa, M., Castro, M., Hand, S.: Baggy bounds checking: an efficient and backwards-
compatible defense against out-of-bounds errors. In: Proceedings of the 18th Conference on USENIX
Security Symposium, USENIX Association, USA, SSYM’09, pp. 51–66 (2009)

2. Andreetta, C., Bégot,V., Berthold, J., Elsman,M.,Henglein, F.,Henriksen, T.,Nordfang,M.B.,Oancea,
C.E.: Finpar: a parallel financial benchmark.ACMTrans.Archit. CodeOptim.13(2), 18:1-18:27 (2016)

3. Bernecky, R., Scholz, SB.: Abstract expressionism for parallel performance. In: Proceedings of the
2nd ACM SIGPLAN International Workshop on Libraries, Languages, and Compilers for Array Pro-
gramming, pp. 54–59 (2015)

4. Besard, T., Foket, C., De Sutter, B.: Effective extensible programming: unleashing Julia on GPUs.
IEEE Trans. Parallel Distrib. Syst. 30(4), 827–841 (2019)

5. Chakravarty, MM., Keller, G., Lee, S., McDonell, TL., Grover, V.: Accelerating haskell array codes
with multicore GPUs. In: Proceedings of the Sixth Workshop on Declarative Aspects of Multicore
Programming, Association for Computing Machinery, New York, NY, USA, DAMP ’11, pp. 3–14.
https://doi.org/10.1145/1926354.1926358 (2011)

6. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, JW., Lee, SH., Skadron, K.: Rodinia: A benchmark
suite for heterogeneous computing. In: 2009 IEEE International Symposium on Workload Character-
ization (IISWC), IEEE, pp. 44–54 (2009)

7. Cunningham,D., Bordawekar, R., Saraswat, V.: GPU programming in a high level language: compiling
x10 to cuda. In: Proceedings of the 2011 ACM SIGPLAN X10Workshop, Association for Computing
Machinery, New York, NY, USA, X10 ’11. https://doi.org/10.1145/2212736.2212744 (2011)

8. Dijkstra, E.: Go to Statement Considered Harmful, pp. 27–33. Yourdon Press, USA (1979)
9. Erb, C., Greathouse, JL.: Clarmor: A dynamic buffer overflow detector for opencl kernels. In: Proceed-

ings of the International Workshop on OpenCL, Association for Computing Machinery, New York,
NY, USA, IWOCL ’18. https://doi.org/10.1145/3204919.3204934 (2018)

10. Fumero, JJ., Steuwer, M., Stadler, L., Dubach, C.: Just-in-time GPU compilation for interpreted lan-
guages with partial evaluation. In: Proceedings of the 13th ACM SIGPLAN/SIGOPS International

123

https://doi.org/10.1145/1926354.1926358
https://doi.org/10.1145/2212736.2212744
https://doi.org/10.1145/3204919.3204934


International Journal of Parallel Programming (2021) 49:761–775 775

Conference on Virtual Execution Environments, VEE 2017, Xi’an, China, April 8–9, 2017, ACM, pp.
60–73. https://doi.org/10.1145/3050748.3050761 (2017)

11. Guo, J., Thiyagalingam, J., Scholz, SB.: Breaking the GPU programming barrier with the auto-
parallelising sac compiler. In: Proceedings of the SixthWorkshop on Declarative Aspects of Multicore
Programming, Association for Computing Machinery, New York, NY, USA, DAMP ’11, pp. 15–24.
https://doi.org/10.1145/1926354.1926359 (2011)

12. Henriksen, T., Dybdal, M., Urms, H., Kiehn, AS., Gavin, D., Abelskov, H., Elsman, M., Oancea,
C.: APL on GPUs: a tail from the past, scribbled in futhark. In: Proceedings of the 5th International
Workshop on Functional High-Performance Computing, ACM, New York, NY, USA, FHPC 2016, pp.
38–43. https://doi.org/10.1145/2975991.2975997 (2016)

13. Henriksen, T., Serup, NGW., Elsman, M., Henglein, F., Oancea, CE.: Futhark: Purely functional GPU-
programming with nested parallelism and in-place array updates. In: Proceedings of the 38th ACM
SIGPLANConference on Programming Language Design and Implementation, ACM, NewYork, NY,
USA, PLDI 2017, pp. 556–571. https://doi.org/10.1145/3062341.3062354 (2017)

14. Henriksen, T., Thorøe, F., Elsman, M., Oancea, C.: Incremental flattening for nested data parallelism.
In: Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming, ACM,
New York, NY, USA, PPoPP ’19, pp. 53–67. https://doi.org/10.1145/3293883.3295707, (2019)

15. Hoare, C.A.R.: The emperor’s old clothes. Commun. ACM 24(2), 75–83 (1981). https://doi.org/10.
1145/358549.358561

16. Holk, E., Newton, R., Siek, J., Lumsdaine, A.: Region-based memory management for GPU pro-
gramming languages: enabling rich data structures on a spartan host. SIGPLAN Not. 49(10), 141–155
(2014). https://doi.org/10.1145/2714064.2660244

17. Hsu, AW.: A data parallel compiler hosted on the GPU. PhD Thesis, Indiana University (2019)
18. Price, J., McIntosh-Smith, S.: Oclgrind: an extensible opencl device simulator. In: Proceedings of the

3rd International Workshop on OpenCL, Association for ComputingMachinery, New York, NY, USA,
IWOCL ’15. https://doi.org/10.1145/2791321.2791333 (2015)

19. Steuwer, M., Remmelg, T., Dubach, C.: Lift: A functional data-parallel IR for high-performance
GPU code generation. In: Proceedings of the 2017 International Symposium on Code Generation and
Optimization, IEEE Press, CGO ’17, pp. 74–85 (2017)

20. Stratton, JA., Rodrigues, C., Sung, IJ., Obeid, N., Chang, LW., Anssari, N., Liu, GD., Hwu, WmW.:
Parboil: A revised benchmark suite for scientific and commercial throughput computing. In: Center
for Reliable and High-Performance Computing, vol. 127 (2012)

21. Xi, H.: Dependent ml an approach to practical programming with dependent types. J. Funct. Program.
17(2), 215–286 (2007). https://doi.org/10.1017/S0956796806006216

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1145/3050748.3050761
https://doi.org/10.1145/1926354.1926359
https://doi.org/10.1145/2975991.2975997
https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1145/3293883.3295707
https://doi.org/10.1145/358549.358561
https://doi.org/10.1145/358549.358561
https://doi.org/10.1145/2714064.2660244
https://doi.org/10.1145/2791321.2791333
https://doi.org/10.1017/S0956796806006216

	Bounds Checking on GPU
	Abstract
	1 Introduction
	1.1 Prior Work
	1.2 Nomenclature and Technicalities

	2 Design and Implementation
	2.1 Better Failure Information
	2.2 Asynchronous Failure Checking
	2.3 Cross-thread Communication

	3 Further Optimisations
	3.1 Avoiding Global Memory Accesses
	3.2 Avoiding Unnecessary Failure Checking
	3.3 Avoiding Synchronisation Points
	3.4 Non-failing Kernels
	3.5 Failure-Tolerant Kernels

	4 Experiments
	4.1 Methodology
	4.2 Results

	5 Conclusions
	Acknowledgements
	References




