
International Journal of Parallel Programming (2020) 48:603–625
https://doi.org/10.1007/s10766-020-00667-x

Refactoring GrPPI: Generic Refactoring for Generic
Parallelism in C++

Christopher Brown1 · Vladimir Janjic2 · Adam D. Barwell1 ·
J. Daniel Garcia3 · Kenneth MacKenzie4

Received: 16 October 2019 / Accepted: 13 June 2020 / Published online: 10 July 2020
© The Author(s) 2020

Abstract
The Generic Reusable Parallel Pattern Interface (GrPPI) is a very useful abstraction
over different parallel pattern libraries, allowing the programmer to write generic
patterned parallel code that can easily be compiled to different backends such as Fast-
Flow, OpenMP, Intel TBB and C++ threads. However, rewriting legacy code to use
GrPPI still involves code transformations that can be highly non-trivial, especially for
programmers who are not experts in parallelism. This paper describes software refac-
torings to semi-automatically introduce instances of GrPPI patterns into sequential
C++ code, as well as safety checking static analysis mechanisms which verify that
introducing patterns into the code does not introduce concurrency-related bugs such
as race conditions. We demonstrate the refactorings and safety-checking mechanisms
on four simple benchmark applications, showing that we are able to obtain, with little
effort, GrPPI-based parallel versions that accomplish good speedups (comparable to
those of manually-produced parallel versions) using different pattern backends.

Keywords Refactoring · Parallelism · Parallel patterns · TBB · C++ · GrPPI · C++
threads

1 Introduction

The scale of parallelism in modern hardware systems is increasing at a very fast
rate, with 72-core systems available off-the-shelf even in the embedded market.1 At
the same time, such systems are becoming increasingly heterogeneous, integrating
GPUs, FPGAs, DSLs and other specialised processors within the same chip. The
large scale of parallelism and heterogeneity of systems make programming modern
parallel hardware very difficult, often requiring a combination of different (and usu-

1 http://www.mellanox.com/page/products_dyn?product_family=238&mtag=tile_gx72.

B Christopher Brown
cmb21@st-andrews.ac.uk

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-020-00667-x&domain=pdf
http://orcid.org/0000-0001-6030-2885
http://www.mellanox.com/page/products_dyn?product_family=238&mtag=tile_gx72

604 International Journal of Parallel Programming (2020) 48:603–625

ally complex) programming models (e.g. POSIX threads for the central multicore
processor and OpenCL for GPUs), coupled with careful manual tuning, to achieve
good performance. Parallel patterns [4] have been recognised as an excellent compro-
mise between the ease of programming and the ability to generate efficient code for
large-scale heterogeneous parallel architectures. They have been endorsed by several
major IT companies, such as Intel [42] and Microsoft [14], giving rise to a multitude
of parallel pattern libraries, most of which are incompatible with one another and each
of which usually has specific advantages (and disadvantages) over the others. GrPPI2

[16] represents one of the first attempts at a uniform interface to parallel patterns, based
on C++ template programming, that allows the generation of target code for different
pattern libraries. Listings 1 and 2 show code for a farm pattern (a typical embarrass-
ingly parallel pattern) that targets both OpenMP and Intel TBB pattern libraries. We
can observe that the only difference is in the declaration of the par variable, in Line 1,
where the back-end for implementation is specified. While GrPPI makes the patterned
code easier to write [16], and also minimizes the cost of switching between different
implementation pattern libraries, transforming sequential code to use GrPPI is still a
very non-trivial task. The programmer needs to first ensure that it is safe (in terms of
unexpected side effects and race conditions) to transform the sequential code into its
equivalent parallel implementation, and, secondly, to transform loops of the sequen-
tial code into calls to the appropriate patterns. An equivalent version of the code in
Listing 2 is given in Listing 12.

This paper describes refactorings to introduce GrPPI patterns into sequential
code. These refactorings, implemented in the ParaFormance toolset for developing
and maintaining parallel programs, provide a semi-automatic way of transform-
ing sequential C++ code into its parallel patterned counterpart. The programmer
is only required to insert simple annotations in the code to denote the parts that
are, possibly, amenable to patterned parallelisation. We also describe safety check-
ing mechanisms that ensure the parts of the code annotated by the programmer
are, indeed, safe to be transformed into patterns. Safety checking is based on
static analyses of the loops in the application to ensure that refactoring the code
does not introduce any undesired behaviour to the execution once parallelised.

2 https://github.com/arcosuc3m/grppi.

123

https://github.com/arcosuc3m/grppi

International Journal of Parallel Programming (2020) 48:603–625 605

Listing 1 GrPPI Example targeting
OpenMP

1 parallel_execution_omp par{};
2
3 pipeline(par,
4 [] -> optional<image> {
5 image im;
6 if (read(im)) return im;
7 else return {};
8 },
9 farm(4,

10 [](const image & im) {
11 return process_image(im);
12 }
13),
14 [](const image & im) {
15 write_image(im,file);
16 });

Listing 2 GrPPI Example targeting TBB

1 parallel_execution_tbb par{};
2
3 pipeline(par,
4 [] -> optional<image> {
5 image im;
6 if (read(im)) return im;
7 else return {};
8 },
9 farm(4,
10 [](const image & im) {
11 return process_image(im);
12 }
13),
14 [](const image & im) {
15 write_image(im,file);
16 });

The specific research contributions of this paper are:

1. Novel refactorings to introduce farm and pipeline parallelism, based on the GrPPI
interface, into sequential C++ code, implemented as part of the ParaFormance
refactoring tool-set;

2. A study into the process of refactoring sequential C++ applications into their
safe parallel equivalents, on a range of different real-world examples, for differ-
ent parallel implementations, using a fully-automated tool-supported refactoring
framework;

3. Demonstrations of the effectiveness of the performance of refactored examples,
showing speedups of up to 23.93 on a 28-core machine over the sequential code;

4. The transformations of four applications into their GrPPI equivalents, together
with a discussion of the transformation methods.

2 Patterns, GrPPI and Refactoring

Parallel patterns are a high-level abstraction for representing classes of computations
that are similar in terms of their parallel structure, but different in terms of problem-
specific operations. A typical example of a parallel pattern is a parallel map, where
the same operation is applied to disjoint subsets of the input in parallel. Regardless
of whether the actual operation is, for example, multiplying a matrix by a vector
or processing a pixel of an image, the parallel structure of the computation will
be the same. Parallel patterns are typically implemented as library functions, which
handle creation, synchronisation and communication between parallel threads, while
the problem-specific (and often sequential) computations are provided as the pattern
parameters. In this paper, we restrict ourselves to two classical parallel patterns, which
can be further generalised to include a broader set of parallel patterns.

– The pipeline pattern models a parallel pipeline. Here, a sequence of functions,
f1, f2, . . . , fm are applied, to a stream of independent inputs, x1, . . . , xn . The
output of fi becomes the input to fi+1, so that the parallelism arises from executing
fi+1(fi (. . . f1(xk) . . .)) in parallel with fi (fi−1(. . . f1(xk+1) . . .)). In this case the

123

606 International Journal of Parallel Programming (2020) 48:603–625

parallelismarises fromexecutingdifferent stages fi in parallelwhile itemsprogress
through the pipeline.

– The farm pattern models a task parallel computation for a stage fi in a pipeline that
can be applied to a stream of independent inputs, x1, . . . , xn . For each item x j in
the input stream the farm delivers to the output stream the value fi (x j). Multiple
applications of the operation to different input stream elements may be processed
in parallel.

Details and semantics of these and other patterns are described in [16]. Note that the
technique described in this paper can be further generalised to include the full set of
commonly-used parallel patterns.

Refactoring is the process of changing the structure of a program while preserving
its functional semantics in order, for example, to increase code quality, programming
productivity and code reuse. The term refactoring was first introduced by Opdyke in
his PhD thesis in 1992 [38], and the concept goes at least as far back as the fold/unfold
system proposed by Burstall and Darlington in 1977 [13]. In our case, refactorings are
source-to-source transformations of the code that are performed semi-automatically,
under the programmer’s guidance, and possibly with their input. ParaFormance 3 is
a refactoring tool-suite developed at the University of St Andrews that refactors C
and C++ programs into parallel versions. It targets a number of different back-ends,
including FastFlow, OpenMP, GrPPI and Intel Threading Building Blocks (TBB).

GrPPI [16] is a parallel pattern interface that uses C++ template metaprogramming
to provide implementations of a number of parallel patterns. The patterns in GrPPI
are generic over a number of different parallelism models, currently including sup-
port for ISO C++ Threads, OpenMP, Intel TBB, and FastFlow, as well as sequential
execution. The ability of decoupling patterns from the concrete execution model is a
key idea in GrPPI. With GrPPI, the application source code can be the same indepen-
dently of the concrete execution policy. This approach reduces the conceptual load
for programmers as they can focus on how computations are composed without pay-
ing attention to details that are specific to a programming model [16]. Moreover, this
increases portability as moving from one parallel framework to a different one has no
significant impact on source code. Additionally, some models might not be available
(or allowed by coding standards or certification policies) in given platforms which is
solved in GrPPI by selecting a different one. The ISO C++ Threads back-end is pro-
vided as a fallback and is always guaranteed to be present in any ISO C++ compliant
platform. In [23] additional evidence on the negligible overhead of GrPPI over manual
implementations is provided. GrPPI offers a set of patterns that can be classified in
three groups: data patterns, task patterns and stream patterns. In this paper we focus on
stream patterns. Data patterns perform a transformation on one or more data sets and
give as a result a new data set (map, stencil) or a value (reduce or map/reduce). In all
those patterns the input dimensionality is unbounded, meaning that the transformation
can be applied to any number of data sets. This is different to the C++ standard library,
which takes one or two data sets as an input, but similar to the approach of SkePU 2
[21]. The only task pattern included in GrPPI is divide-and-conquer which allows the
expression of computations where a given problem is split (possibly recursively) into

3 http://www.paraformance.com.

123

http://www.paraformance.com

International Journal of Parallel Programming (2020) 48:603–625 607

smaller sub-problems which are then solved and combined. GrPPI is able to apply
parallelism during the three stages of the pattern. The basic GrPPI model for stream
parallelism is a pipeline which processes a stream of data items: items are produced
by a generator, processed by some intermediate components, and then disposed of by
a sink. The individual stages can all be executed in parallel. A pipeline stage can be
any callable entity. However, the most common case is a C++ lambda expression. A
simple example is given below that reads a number of integers from a file, squares
each one, and writes the results to standard output. The first lambda reads a value from
the input file and returns it. If the read operation returns false (meaning end-of-file)
the empty optional is returned. The second stage is a farm replicating its lambda in
four independent tasks. Each of them receives a number and returns its square. Finally,
the third lambda receives a number and prints it to standard output. Note, that all the
communication and synchronization between stages is managed internally by GrPPI.

1 parallel_execution_native par{};
2
3 pipeline(par,
4 [&]() -> optional<int> {
5 int i;
6 if (file >> i) return i;
7 else return {};
8 },
9 farm(4,
10 [](int k) { return k*k; }
11),
12 [](int n) {
13 cout << n << "\n";
14 }
15);

The parallel_execution_native definition introduces a GrPPI object that describes
the execution model to be used by the parallel pipeline. In this case, the native object
is used to indicate that the native execution model (C++ threads) should be used; in
order to use, e.g., TBB instead, one would replace this with parallel_execution_tbb.
Further details on the interfaces and semantics of patterns available in GrPPI can be
found in [16].

3 Refactoring for Introducing a GrPPI Pipeline

We define a refactoring that converts a C++ for loop into a GrPPI pipeline pattern,
containing one or more stages that are executed concurrently to process a sequence
of data items indexed by the loops. We currently support both sequential stages that
process a single data item at a time, and farm stages that process multiple items in
parallel. For a singular farm pattern, our current refactoring approach would transform
the code into a pipeline with a single stage that is farmed.

3.1 Refactoring Strategy

To refactor a for loop, the loop must be in the form,

1 for (T x=e1; e2; e3) {. . .}

123

608 International Journal of Parallel Programming (2020) 48:603–625

for some variable, x, and type T, where Tmay be omitted. As is standard, e1 is an initial
value for x, e2 is some bounding condition, and e3 is an expression that updates the
value of x.When e2 is empty, the pipeline will run forever. The refactoring requires that
e3 must not be empty, and that the loop must declare or initialise a single variable in
the initialiser; this variable represents data items passing through the pipeline. These
patterns enable the refactoring of common types of loop; e.g.

1 for (int i=0; i<N; ++i) { . . . }

and

1 for (auto i = v.begin(); i != v.end; ++i) { . . . }

The refactoring requires that the body of the for loop is a compound statement
enclosed in braces, i.e., and is dependent upon the existence of pragmas in the
loop body that indicate the pipeline stages. These pragmasmaybe introducedmanually
by the programmer, or automatically via some tool, which we intend to investigate
as part of future work. We note that these pragmas are not part of GrPPI, and do not
affect the functional behaviour of the program in any way, but are instead introduced
here as an aid to the refactoring. These pragmas include:

– #pragma grppi seq stage

– #pragma grppi farm stagen

A GrPPI farm stage pragma must specify a number of threads to execute the farm,
specified by n, where n is a literal integer or variable name bound to a literal integer. It
is possible to create a pipeline that comprises a single farm stage: this is equivalent to
running multiple (and possibly all) iterations of the loop concurrently. Once invoked,
the refactoring requires the programmer to provide: a name for the pattern to be
inserted; themodel of parallelism, e.g. C++ threads or TBB; and any additional headers
for other modes. The refactoring procedure creates a GrPPI pipeline object and inserts
a source object that returns consecutive values for x in the form of optional items, with
an empty value when there are no data items left. The pipeline stages in the loop
body are converted into a sequence of lambda expressions following the source. For
example, the loop,

1 for (int i = 0; i < NUM_ELEM; i++) {
2 #pragma grppi seq stage
3 xs[i] = s1(xs[i]);
4 #pragma grppi farm stage 4
5 xs[i] = s2(xs[i]);
6 }

which iterates over the array xs, applying the composition of s1 and s2, is transformed
into

123

International Journal of Parallel Programming (2020) 48:603–625 609

1 parallel_execution_native pipe { };
2
3 pipeline(pipe,
4 [i=0,max=NUM_ELEM]() mutable -> std::optional<int> { // source
5 if (i < max) return i++;
6 else return {};
7 },
8 [&](int i) { // stage 1
9 xs[i] = s1(xs[i]);
10 return i;
11 },
12 farm(4, [&](int i) { // stage 2
13 xs[i] = s2(xs[i]);
14 return;
15 }));

If a variable is declared inside a loop stage but required in a later stage, it will be
returned from the corresponding lambda and passed as an argument to the following
lambda: if there is more than one such variable then they will be returned packed into
a tuple which will then be unpacked into variables in the next stage. Variables that are
declared outside the loop are captured in the lambda expressions by reference, which
means that the lambdas can modify them. This may lead to race conditions. They
can also be captured by value when no modification is needed. This option improves
thread safety.

3.2 Refactoring Observations

This paper presents a full framework for tool-supported parallel programming in C++.
GrPPI provides a high-level unified interface to the underlying skeleton implementa-
tion, providing a palette of parallelisations to execute. Refactoring provides the user
with the choice and guidance to ensure a correct and safe implementation of the skeletal
choice. Although GrPPI provides a high-level easily accessible interface to skeletal
programming in C++, refactoring is still a necessary step and provides a number
of unique benefits over manual parallelisation. Refactoring helps the user make deci-
sions about their program and the appropriate skeletal configuration to choose for their
application. Our refactoring support, together with its safety checking, avoids common
pitfalls in parallel programming, such as introducing deadlocks and race-conditions,
which are notoriously difficult and subtle errors to find and repair. Refactoring fol-
lows very precise (and well-understood) transformation rules that are based on well
known semantics-preserving program rewriting techniques, ensuring that only correct
programs can be derived, saving the programmer time and effort in fixing bugs. The
idea of annotating the source program with annotations (or pragmas) is different from
previous refactoring approaches of introducing farms and pipelines [29]. Identifying
the stages and/or components of the skeletons using pragmas also allows for further
tool-support to discover candidates for parallelism [10]. Such static analysis tech-
niques (such as those in [17]) can identify the components of the skeletons and insert
annotations into the source code that the refactorings can then use.

123

610 International Journal of Parallel Programming (2020) 48:603–625

4 Safety Checking

The refactorings presented in this paper should preserve the correctness of the func-
tional semantics of the C++ program. This means that when given the same input
value(s), the program should produce the same output value(s) before and after a
refactoring, up to a given ordering. This is ensured by safety checking, a fundamental
feature in the ParaFormance tool. It gives confidence that the code being refactored is
safe for parallelisation, meaning that it is free from dependencies, side effects (such
as writing to a global state) and that it does not contain code that may interfere with
the parallel logic. In the ParaFormance tool, we centred the safety checking around
Array Race Detection Analysis, a common technique that is based on Pugh’s Omega
Test Library [39] and standard compiler techniques, such as data dependency analysis
and those described in [2] and [37]. We give some details of our implementation in
this section. Some terminology:

– An index means a loop control variable like i in for (int i=0; ...).
– A subscript means an expression like e or 4 appearing in A[e][4].
– A linear expression is an expression of the form e1 ∗ i1 + . . . + en ∗ in + k where
e1, . . . , en and k are constants and i1, . . . in are loop variables.

Our basic problem is to detect when two array accesses A[e1] and A[e2] access the
same element of an array during different iterations of a loop nest, where e1 and e2

are expressions that may depend on the loop control variables. For example, in

1 for (int i=0; i<10; i++) A[i] += A[i+1];

the iterations at i=4 and i=5 both access A[5], leading to a possible data race if we
execute the iterations in parallel. Similarly, if we have

1 for (int i=0; i<10; i++)
2 for (int j=0; j<10; j++)
3 A[i+j] += 1;

and we execute the iterations of the outer loop in parallel we will write to (for exam-
ple) A[4] at (i, j) = (0, 4), (1, 3), (2, 2), (3, 1), and (4, 0). Our strategy is as follows.
Given a loop, we search for all array accesses within it, saving the subscript expres-
sions.We then compare all pairs of subscripts (apart from the case where both accesses
are reads, since simultaneous reads do not lead to a data race). For accesses with non-
linear subscripts (e.g. A[i*i], A[f(i)], A[B[i]]), it is generally undecidable whether
two subscripts are identical, so we give up immediately, reporting a potential race.
We allow multidimensional accesses like A[i+j][j+2*k][k], where we look for simul-
taneous solutions for corresponding pairs of subscripts. If the subscripts are linear
expressions with constant coefficients (A[2*i+7*j-k+1], for example), then we use the
Omega library [39] to check for satisfiability. If a race can occur, we use the Omega
library to give example values of index variables causing a race. If the loop bounds
are also simple linear expressions, then we include them in the data for the test and
we get a precise result: the test will always tell us whether or not a race condition
occurs. If the bounds are not simple linear expressions (for example, v.size()), then
we leave the corresponding variable unbounded and the Omega test’s response will
be conservative. For example, if we have

123

International Journal of Parallel Programming (2020) 48:603–625 611

1 for (i=0; i<=i*i; i++) A[i] += A[2];

then the loop will only execute with i=0 and i=1, so there cannot be a race with A[2].
However, our test assumes that i can take any positive value, and so will report a
possible data race at i=2 (even though the user may be able to see that we never get
to i=2). If the loops are linear expressions with non-literal coefficients, like A[M*i+N]

where M and N are variables, then we fall back on a symbolic test. We allow loops of
the form

1 for (T i=e1; i op e2; incr) ...

where op is <, <= and incr is i++, ++i, i+=n, or i=i+n. The index variable can be of
any integral type T, and one can also use index variables which are declared outside
the loop header. The lower and upper bounds e1 and e2 can be arbitrary expressions,
but we get better results if they are fairly simple (for example, known integers). The
Omega test will correctly handle literal strides greater than 1; for example, in

1 for (i=0; i<N; i+=10) for (j=0; j<10; j++) A[i+j]++;

there will not be a race condition, but there will be one if i+=9 is put instead. Other
safety checks that we implement as part of this framework will be described in future
work.

5 Evaluation

In this section, we present an evaluation of the refactorings to introduce GrPPI patterns
into sequential code. We consider four benchmark applications: Mandelbrot, Matrix
Multiplication, Ant Colony Optimisation and Image Convolution. As described in
Table 1, the benchmark applications belong to different domains and also contain
different compositions of parallel patterns, hence the refactorings applied for their
parallelisation are different. In addition, refactoring some of them exposes safety prob-
lems that are caught by the safety analysis, whereas the refactoring process for others
is more straightforward. For each, we start with a given sequential version of a bench-
mark. We then use the refactorings described in Sect. 3 to introduce GrPPI patterns,
using interfaces to C++ threads and TBB (GrPPI Native andGrPPI TBB, respectively,
in the graphs below). This produces the refactored parallel versions. To measure the
performance of these versions, we compare themwith themanually-produced parallel
versions of the baseline applications (ParManual in the graphs below). These versions
have been written by hand using C++ threads and are highly optimised. Our goal is to
verify how the execution time of the refactored parallel versions compare with good
hand-produced parallel code. All of our execution experiments are conducted on a
server with a 28-core Intel Xeon E5-2690 CPU running at 2.6 GHz, with 256 GB of
RAM, and the Scientific Linux 6.2 operating system.

123

612 International Journal of Parallel Programming (2020) 48:603–625

Table 1 Benchmarks used for evaluation

Benchmark Application area Type of parallelism

Mandelbrot Mathematical visualisation Farm

Matrix multiplication Computation mathematics Farm

Image convolution Image processing Pipeline with farms

Ant colony optimisation Evolutionary computing Pipeline with farm

5.1 Mandelbrot

Mandelbrot is a simple benchmark that calculates aMandelbrot set for a set of points in
complex plane and visualises it. A point C from the complex plane is in theMandelbrot
set if the orbit zn of the point, obtained using a recurrence relation zn+1 = z2n + C,
does not tend to infinity. The set can be visualised by colouring the points in the
complex plane based on the number of steps of the recursive relation required to reach
the maximum radius. The relevant part of the annotated original sequential version is
given in Listing 3.

Listing 3 Sequential Mandelbrot

1 template <typename F>
2 void get_number_iterations(window<int> & scr, window<double> & fract, int

iter_max,
3 std::vector<int> & colors, F func) {
4 int k = 0;
5 int N = scr.width();
6 for(int i = scr.y_min(); i < scr.y_max(); ++i) {
7 #pragma grppi farm stage 24
8 for(int j = scr.x_min(); j < scr.x_max(); ++j) {
9 complex<double> c(j, i);
10 c = scale(scr, fract, c);
11 colors[k++] = escape(c, iter_max, func);
12 }
13 }
14 }

Note that the pragma at Line 7 denotes the loop on the Lines 8–13 as a candidate for
parallelisation using the farmpattern.However, ifwe try to refactor the aforementioned
loop by replacing it with an instance of the farm pattern, the safety checking analysis
recognises that there is a global variable k that is incremented in each iteration of the
loop and that, therefore, straightforward parallelisation of this loop using the farm
pattern would introduce race conditions. The ParaFormance tool also suggests the
rewriting of the code into the equivalent version which avoids the above problem by
induction variable substitution; i.e. replacing the global variable k inside the loop with
a local one that is calculated based on the loop index. The listing in Figure 4 shows
this version.

123

International Journal of Parallel Programming (2020) 48:603–625 613

Listing 4 Improved Sequential Mandelbrot

1 template <typename F>
2 void get_number_iterations(window<int> & scr, window<double> & fract, int

iter_max,
3 std::vector<int> & colors, F func) {
4 int N = scr.width();
5 for(int i = scr.y_min(); i < scr.y_max(); ++i) {
6 #pragma grppi farm stage 24
7 for(int j = scr.x_min(); j < scr.x_max(); ++j) {
8 complex<double> c(j, i);
9 c = scale(scr, fract, c);
10 int Ni = N*i+j;
11 colors[Ni] = escape(c, iter_max, func);
12 }
13 }
14 }

Note that the global variable k has been replaced with the local variable Ni. The
loop on lines 7–12 is now safe for refactoring. Invoking the ‘Introduce GrPPI Pipeline’
refactoring from the ParaFormance tool then gives the following GrPPI native version
of the code

Listing 5 GrPPI Native Mandelbrot

1 template <typename F>
2 void get_number_iterations(window<int> & scr, window<double> & fract, int

iter_max,
3 std::vector<int> & colors, F func) {
4 parallel_execution_native pipe {};
5
6 pipeline(pipe,
7 [i=scr.y_min(),max=scr.y_max()]() mutable -> optional<int> {
8 if (i < max) return i++;
9 else return {};
10 },
11 farm(24, [&,N=scr.width()](int i) {
12 for (int j = scr.x_min(); j < scr.x_max(); ++j) {
13 complex<double> c(j, i);
14 c = scale(scr, fract, c);
15 int Ni = N*i+j;
16 colors[Ni] = escape(c, iter_max, func);
17 }
18 }
19));
20 }

As explained in Sect. 3, the GrPPI TBB version of the code can easily be obtained
by replacing parallel_execution_nativewith parallel_execution_tbb on line 4 of List-
ing 5. Finally, Listing 6 shows the manually produced parallel version of the code,
using the TBB library.

123

614 International Journal of Parallel Programming (2020) 48:603–625

2 4 6 8 10 12 14 16 18 20 22 24 26
0

4

8

12

16

20

24

Number of Workers (threads)

Sp
ee

du
p

Speedups for Mandelbrot

Par Manual
GrPPI Native
GrPPI TBB

(a) Speedup results for Mandelbrot

2 4 6 8 10 12 14 16 18 20 22 24 26
0

4

8

12

16

20

24

Number of Workers (threads)

Sp
ee

du
p

Speedups for Matrix Multiplication

Baseline
GrPPI Native
GrPPI TBB

(b) Speedup results for Matrix Multiplica-
tion

Fig. 1 Speedup results for Mandelbrot and Matrix Multiplication

Listing 6 Manual Parallel Mandelbrot

1 template <typename F>
2 void get_number_iterations(window<int> & scr, window<double> & fract, int

iter_max,
3 std::vector<int> & colors, F func) {
4 int k = 0;
5 int N = scr.width();
6 parallel_for(blocked_range<int>(scr.y_min(), scr.y_max()),
7 [&](const blocked_range<int> &range) {
8 for (int i = range.begin();i != range.end();++i) {
9 for(int j = scr.x_min(); j < scr.x_max(); ++j) {
10 complex<double> c(j, i);
11 c = scale(scr, fract, c);
12 int Ni = N*i+j;
13 colors[Ni] = escape(c, iter_max, func);
14 }
15 }
16 });
17 }

Figure 1a shows the speedups obtained for the GrPPI Native, GrPPI TBB and
Manual Parallelisation versions of the code, with respect to the number of workers
used in the farm pattern of the GrPPI and manual TBB versions. We can observe that
all the versions give very good and comparable results, so in this case the refactored
version of the code produced semi-automatically is as good in terms of performance
as is the manually produced parallel version.

5.2 Matrix Multiplication

Matrix multiplication is one of the most commonly used simple parallel benchmarks
that demonstrates the use of the map or farm pattern. Listing 7 shows the sequential
version of the benchmark that multiplies matrix a with matrix b and stores the result
in res.

123

International Journal of Parallel Programming (2020) 48:603–625 615

Listing 7 Sequential Matrix Multiplication

1 double multiply_row_by_column(const matrix & mat1, const matrix & mat2,
2 int row, int col) {
3 double sum = 0;
4 for (int k = 0; k < mat2.rows(); k++)
5 sum += mat1(row, k) * mat2(k, col);
6 return sum;
7 }
8
9 void multiply_row_by_matrix(const matrix & mat1, const matrix & mat2, matrix &

res,
10 int row) {
11 for (int col = 0; col < res.rows(); col++)
12 res(row, col) = multiply_row_by_column(mat1, mat2, row, col);
13 }
14
15 matrix matrix_multiply(const matrix & a, const matrix & b) {
16 matrix res{a.rows()};
17 for (int i = 0; i < a.rows(); i++)
18 multiply_row_by_matrix(a, b, res, i);
19 return res;
20 }

We can parallelise this version by assigning a separate task/thread to each call
to the multiply_row_by_column function, as these calls are completely independent of
each other. This would, however, create n× n tasks/threads for multiplying two n× n
matrices, making the parallelisation too fine-grained (and, indeed, infeasible if the
C++ threads are used for parallelisation). Therefore, both in our hand-tuned baseline
parallelisation using C++ threads and in the GrPPI version, we parallelise only the
loop in the matrix_multiply function (Line 16 in Listing 7), assigning separate tasks
for each call to the multiply_row_by_matrix function. In the baseline version, shown
in Listing 8, we further use chunking to increase granularity, grouping multiple calls
to the function into a single thread, so that we have exactly as many threads as there
are, for example, cores on a multicore machine where the application is executed, and
each of them executes a series of calls to the multiply_row_by_matrix function.

Listing 8 Baseline (C++ threads) Parallel Matrix Multiplication

1 // This is a chunked multiply_row_by_matrix function
2 void multiply_range(const matrix & a, const matrix & b, matrix & res,
3 int row_start, int row_end) {
4 for (int i = row_start; i < row_end; i++)
5 multiply_row_by_matrix(a, b, res, i);
6 }
7
8 void matrix_multiply(const matrix & a, const matrix & b, matrix & res, int

nthreads) {
9 using namespace std;
10 int chunk_size = a.rows() / nthreads;
11 vector<thread> tasks;
12
13 for (int i = 0; i < nthreads; i++) {
14 int start = i * chunk_size;
15 int end = (i == nthreads - 1) ? a.rows() : (i + 1) * chunk_size;
16 tasks.emplace_back(multiply_range, cref(a), cref(b), ref(res), start, end);
17 }
18 for (auto & t : tasks) { t.join(); }
19 }

123

616 International Journal of Parallel Programming (2020) 48:603–625

Listing 9 shows the GrPPI version of the application, obtained automatically from
the sequential version using the GrPPI refactorings. The code is for the native (C++
threads) parallelisation based on GrPPI.

Listing 9 GrPPI Matrix Multiplication

1 matrix matrix_multiply(const matrix & a, const matrix & b) {
2 using namespace grppi;
3 matrix res{a.rows()};
4 parallel_execution_native par;
5
6 pipeline(par,
7 [i = 0, max = a.rows()]() mutable -> std::optional<int> {
8 if (i < max) { return i++; }
9 else { return {}; }
10 },
11 farm(4, [&](int i) {
12 multiply_row_by_matrix(a, b, res, i);
13 })
14);
15 return res;
16 }

As explained in Sect. 2, to derive the OpenMP or TBB versions, we would
just need to replace the parallel_execution_native with parallel_execution_openmp or
parallel_execution_tbb, respectively. This assigns a separate task to each call to the
multiply_row_by_matrix function. Note that we do not use chunking in this version, as
this would require use of themap pattern which is present in GrPPI, but this is outside
of the scope of this paper. Note also that this example does not introduce any safety
problems, as there are no race conditions.

Figure 1 shows the speedups obtained for the Baseline, GrPPI Native and GrPPI
TBB versions of the code, with respect to the number of workers used in the farm
pattern of the GrPPI versions and the number of threads used in the baseline version.
We can note that all versions give very good speedups, which are comparable to the
GrPPI Native version; the GrPPI TBB being slightly faster than the Baseline version.
However, it is worth noting that the GrPPI Native and GrPPI TBB versions use one
thread more than the Baseline version, because there is a separate thread assigned to
the first stage of pipeline (Lines 6–10 in Listing 9). Therefore, speedups when the
same number of threads are used would be approximately the same.

5.3 Image Convolution

Image convolution is a technique widely used in image processing applications for
blurring, smoothing and edge detection. We consider an instance of the image con-
volution from video processing applications, where we are given a list of images that
are first read from a file and then processed by applying a filter. Applying a filter to
an image consists of computing a scalar product of the filter weights with the input
pixels within a window surrounding each of the output pixels:

out(i, j) =
∑

m

∑

n

in(i − n, j − m) × filt(n,m) (1)

123

International Journal of Parallel Programming (2020) 48:603–625 617

An obvious parallelisation of this algorithm is to set up a pipeline where the first stage
reads images from a file and the second stage applies the filter to the read images. Each
of the stages can be further farmed, so that we can read and process multiple images at
the same time. An alternative parallelisation is to set up a farm, where each worker first
reads an image from a file and then processes that image. The former parallelisation is
better if we need to have a different number of workers in the two farms, i.e. if reading
images is notably slower than their processing, whereas the latter one is better if the
two operations are of approximately the same computational cost. To demonstrate the
refactoring of this example into parallelised GrPPI versions, we start with the original
sequential version, below, in Listing 10, refactoring it to a single farm, annotated with
a GrPPI pragma indicating a single candidate exists for parallelisation using the farm
pattern (Line 2).

Listing 10 Sequential Image Convolution

1 for (int i = 0; i < nr_images ; i++) {
2 #pragma grppi farm stage 24
3 string_p image_name_p ;
4 image_name_p = get_image_name(N[i]);
5 task_t task = read_image_and_mask(image_name_p);
6 out_images[i] = process_image(task);
7 }

Running this through the ParaFormance tool, we are able to refactor the code into
the GrPPI parallelisation as shown in Listing 11. In this example, the code passes the
safety-checkingphase of the refactoringprocess, due to the fact that ImageConvolution
is a classical parallelisation example, being a relatively straightforward application to
parallelise.

Listing 11 GrPPI TBB Farm Image Convolution

1 tbb::task_scheduler_init init(nw);
2 parallel_execution_tbb pipe {};
3
4 pipeline(pipe,
5 [i=0, max=nr_images]() mutable -> optional<int> {
6 if (i < max) return i++;
7 else return {};
8 },
9 farm(nw, [&](int i) {
10 image_name_p = get_image_name(N[i]);
11 task_t task = read_image_and_mask(image_name_p);
12 out_images[i] = process_image(task);
13 }
14 }));

Speedup results for the GrPPI farm version of Image Convolution are shown in
Fig. 3a, where we show speedups for GrPPI versions utilising both the native backend
and the TBBbackend. Furthermore, we produce a native TBBversion, shown below, in
Listing 12. Figure 3a compares all versions of the farmed application with comparable
results.

123

618 International Journal of Parallel Programming (2020) 48:603–625

Listing 12 Native TBB Farm Image Convolution

1 tbb::task_scheduler_init init(NW);
2
3 parallel_for(blocked_range<int>(0, nr_images),
4 [&](const blocked_range<int> &range) {
5 for (int i = range.begin();i != range.end();++i) {
6 string_p image_name_p;
7 image_name_p = get_image_name(N[i]);
8 task_t task = read_image_and_mask(image_name_p);
9 out_images[i] = process_image(task);
10 }

One benefit of refactoring instead of manual parallelisation, is that it offers one
easily the choice of different parallelisations. For example, Image Convolution is
also an example where, instead of a typical parallelisation using a farm, we can,
instead, parallelise with a pipeline, farming different stages to attempt to increase
the parallelisation. This can be achieved by returning to the sequential application, by
choosing undo from the ParaFormance refactoringmenu, and then adjusting the GrPPI
pragmas, so that the stages of the pipeline are properly outlined, as shown below, in
Listing 13.

Listing 13 Sequential Image Convolution

1 for (int i = 0; i < nr_images ; i++ {
2 string_p image_name_p ;
3 image_name_p = get_image_name(N[i]);
4 #pragma grppi farm stage farm1
5 task_t task = read_image_and_mask(image_name_p);
6 #pragma grppi farm stage farm2
7 out_images[i] = process_image(task);
8 }

Here,we annotate the sequential versionwith twopragmas: one, atLine4, indicating
a farm stage for the computation read_image_and_mask, and a further one at Line 6 for
the computation process_image. For both of these pragmas, we use defined variables,
farm1 and farm2, indicating the number of farm workers for each stage of the pipeline.
The result of the refactored code is shown below, in Listing 14.

Listing 14 GrPPI TBB Pipeline Image Convolution

1 tbb::task_scheduler_init init(farm1+farm2);
2 parallel_execution_tbb pipe { };
3
4 pipeline(pipe,
5 [i=0,max=nr_images]() mutable -> optional<int> {
6 if (i < max) return i++;
7 else return {};
8 },
9 [&](int i) {
10 image_name_p = get_image_name(N[i]);
11 return std::make_tuple(i, image_name_p);
12 },
13 farm(farm1, [&](std::tuple<int,string_p> _args) {
14 int i = std::get<0>(_args);
15 string_p image_name_p = std::get<1>(_args)
16 task_t task = read_image_and_mask(image_name_p);
17 return std::make_tuple(i, task);
18 }),
19 farm(farm2, [&](std::tuple<int, task_t> _args) {
20 int i = std::get<0>(_args);
21 task_t task = std::get<1>(_args);

123

International Journal of Parallel Programming (2020) 48:603–625 619

1 2 4 6 8 10 12 14 16

1
2

4

6

8

10

12

14

16

No. of Δ2 workers

C
on

vo
lu

ti
on

Sp
ee

du
p

fo
r

Δ
1
||Δ

2
Δ1 = 1
Δ1 = 2
Δ1 = 4
Δ1 = 6
Δ1 = 8
Δ1 = 10

(a) Image Convolution with GrPPI Native
pipeline

1 2 4 6 8 10 12 14 16

1
2

4

6

8

10

12

14

16

18

20

22

No. of Δ2 workers

C
on

vo
lu

ti
on

Sp
ee

du
p

fo
r

Δ
1
|| Δ

2

Δ1 = 1
Δ1 = 2
Δ1 = 4
Δ1 = 6
Δ1 = 8
Δ1 = 10

(b) Speedups for Image Convolution with
GrPPI TBB Pipeline

Fig. 2 Speedup results for image convolution

22 out_images[i] = process_image(task);
23 }));

Speedup results for the Image Convolution are shown in Figs. 2a (for the GrPPI
Native pipeline version), 2b (for the GrPPI TBB pipeline version) and 3a (for the farm
version, including the baseline TBB parallelisation). In Figs. 2a, b, each dimension of
the graphs shows a varying number of workers for the farm in the first pipeline stage
(Δ1) and the the x-axis of the graph shows the increasing number of workers for the
farm in the second stage (Δ2). Here, we obtain speedups of around 13.98 for 2 Δ1
workers and 16 Δ2 workers. We can observe good speedups of up to 13.98 for the
GrPPI Native pipeline, 21.23 for the GrPPI TBB pipeline version and 21.43 for the
GrPPI Native farm version. We can also observe in Fig. 3a that the GrPPI versions
perform approximately the same as the native TBB version, giving almost the same
speedups.

5.4 Ant Colony Optimisation

AntColonyOptimisation (ACO) [20] is ametaheuristic used for solvingNP-hard com-
binatorial optimisation problems. In this paper, we apply ACO to the Single Machine
Total Weighted Tardiness Problem (SMTWTP) optimisation problem, where we are
given n jobs and each job, i , is characterised by its processing time, pi , deadline,
di , and weight, wi . The goal is to find the schedule of jobs that minimises the total
weighted tardiness, defined as

∑
wi · max{0,Ci − di }

where Ci is the completion time of the job, i . The ACO solution to the SMTWTP
problem consists of a number of iterations, where in each iteration each ant indepen-
dently computes a schedule, and is biased by a pheromone trail that is stronger along
previously successful routes. After all the ants have finished computing solutions in

123

620 International Journal of Parallel Programming (2020) 48:603–625

one iteration, results are gathered, the new best one is picked, the pheromone trail
is updated accordingly and the next iteration starts. The relevant part of the original
sequential code is given in Listing 15, with the addition of a pragma on Line 3.

Listing 15 Sequential Ant Colony Optimisation

1 for (int j=0; j<num_iter; j++) {
2 for (int i=0; i<num_ants; i++) {
3 #pragma grppi farm stage 24
4 cost[i] = solve (i);
5 }
6 best_t = pick_best(cost, &best_result);
7 update(best_t, best_result);
8 }

One of the parallelisations of this algorithm is to set up a sequential pipeline, where
ants compute solutions in the first stage, and in the second stage, the new running best
solution is picked and the pheromone trail is updated. Note that the second stage is
inherently sequential, but the first stage can be farmed, assigning a separate task for
each ant. This is the parallelisation that we used. The speedup results of which are
shown in Fig. 3. We can observe a speedup up to 23.93 for the GrPPI Native version
with 28 workers and a comparable speedup of 23.90 with the GrPPI TBB version, also
for 28 workers. We compare this to a baseline TBB parallelisation that doesn’t use
GrPPI and that gives comparable speedups of 22.89. The conclusions here are the same
as for the previous examples: the refactored GrPPI versions give good speedups that
are approximately the same as manually produced parallel versions. The refactored
GrPPI version is shown in Listing 16.

Listing 16 Native GrPPI Ant Colony Optimisation

1 parallel_execution_native pipe {};
2
3 pipeline(pipe,
4 [j=0,max=num_ants]() mutable -> optional<int> {
5 if (j<num_ants) return j++;
6 else {};
7 },
8 farm(24, [&](int j) {
9 cost[j] = solve (j);
10 }));
11
12 best_t = pick_best(cost,&best_result);
13 update(best_t, best_result);

6 RelatedWork

Refactoring has roots in Burstall and Darlington’s fold/unfold system [13], and has
been applied to a wide range of applications as an approach to program transforma-
tion [35], with refactoring tools a feature of popular IDEs including, i.a., Eclipse [22]
and Visual Studio [36]. Previous work on parallelisation via refactoring has primar-
ily focussed on the introduction and manipulation of parallel pattern libraries in C++
[11,29] and Erlang [6,9]. Another approach has been the automated introduction of
annotations in the form of C++ attributes [17]. Parallel design patterns, or algorith-
mic skeletons, were suggested as solution to the difficulties presented by low-level

123

International Journal of Parallel Programming (2020) 48:603–625 621

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28

1
2

4

6

8

10

12

14

16

18

20

22

No. of farm workers

C
on

vo
lu

ti
on

Sp
ee

du
p

GrPPI Native
GrPPI TBB
Baseline TBB

(a) Speedups for Image Convolution
GrPPIF arm

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28

1
2
4
6
8

10
12
14
16
18
20
22
24
26

No. of farm workers

A
nt

C
ol

on
y

Sp
ee

du
p

GrPPI Native
GrPPI TBB
Baseline TBB

(b) Speedups for Ant Colony

Fig. 3 Speedup results for image convolution and ant colony

approaches [4,24]. A range of pattern/skeleton implementations have been developed
for a number of programming languages; these include: RPL [29]; Feldspar [5]; Fast-
Flow [1]; Microsoft’s Parallel Patterns Library [14]; and Intel’s Threading Building
Blocks (TBB) library [42]. Since patterns are well-defined, rewrites can be used to
automatically explore the space of equivalent patterns, e.g. optimising for performance
[26,34] or generating optimised code as part of a DSL [25]. Moreover, since patterns
are architecture-agnostic, patterns have been similarly implemented formultiple archi-
tectures [28,41]. This introduces a level of specialisation, and the possibility of choice
between pattern implementations. Conversely, GrPPI [16] is capable of invoking other
libraries, and is thereby able to take advantage of the specialisations that they present
without potentially laborious reimplementation. Elsewhere, approaches to automatic
parallelisation have traditionally focussed on the transformation of loops. Examples
include Lamport’s early approaches in Fortran [30], Artigas’ approach for Java [2], on
doall and doacross loops [12,33], the polyhedral model [3,7,8] and more recently
on the generation of pipelines [45,46]. Other approaches to automatic parallelism have
included a focus on coarsely dividing programs into sections that can be run in paral-
lel [32,43]; less-abstractly on exploiting potential parallelism at the instruction-level
[44]; and on exploiting specialised hardware such as GPUs for automatic parallelisa-
tion [27,31]. Whilst fully automatic approaches simplify the parallelisation process
for the programmer by removing them from the process, such approaches can be very
specific in both the parallelism they are able to introduce and the code to which they
can be applied. Conversely, programmer-in-the-loop approaches, such as refactoring,
allow the programmer to employ their knowledge about both code and parallelism.
Similar to our approach, Dig et al. [18] use refactoring to introduce parallelism in
Java. However, unlike our approach, Dig et al. introduce low-level Java concurrency
primitives instead of patterns.More recently, Radoi andDig consider data races in Java
for parallelism, a key aspect of safety checking [40]. Other safety checking aspects
are covered by work on deadlock detection [15]. PPAT [19], is a parallel pattern iden-
tification tool, that uses static analysis and instrumentation to find pipeline and farm

123

622 International Journal of Parallel Programming (2020) 48:603–625

patterns. PPAT is designed as an offline (i.e. manual) refactoring framework with no
support for interactive refactoring. Another notable difference with our approach is the
integration of safety checks, which are not considered by PPAT. Additionally, while
PPAT uses instrumentation to perform dynamic analysis and then update annotations
used for refactoring, we avoid the need to instrument and rerun the application by
allowing developers to insert annotations in the form of pragmas that will be under-
stood by the refactoring framework.

7 Conclusions and FutureWork

In this paper, we presented new refactorings for C++ that transform sequential code
into fully parallel equivalent implementations using the GrPPI framework. These
refactorings are implemented in the ParaFormance tool. Targeting GrPPI allows the
programmer to refactor their sequential C++ code into one parallel version that targets
many different backends, such as C++ threads, TBB Fastflow, and OpenMP, without
having to be a domain expert in parallel programming, or have expertise or knowledge
in any of the available parallel libraries. We also presented safety checking mecha-
nisms that ensure the applied refactorings are correct; i.e. that they do not break the
semantics of the sequential code. We also demonstrated that we are able to derive
good parallel code with the refactorings, achieving speedups similar to the hand-tuned
parallel versions. This shows that we are able to produce, with little programming
effort, scalable and portable parallel code. In future, we plan to extend our refactor-
ings and safety checking techniques further, to support additional patterns, such as
stencil, divide and conquer and reduce. We also plan to evaluate the refactorings on
larger use-cases.

Acknowledgements This work was supported by the EU Horizon 2020 project, TeamPlay (https://www.
teamplay-xh2020.eu), Grant Number 779882, UK EPSRC Discovery, grant number EP/P020631/1, and
Madrid Regional Government, CABAHLA-CM (ConvergenciA Big dAta-Hpc: de Los sensores a las Apli-
caciones) Grant Number S2018/TCS-4423 .

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Aldinucci, M., Danelutto, M., Kilpatrick, P., Torquati, M.: Fastflow: high-level and efficient streaming
on multicore. In: Programming Multi-core and Many-core Computing Systems (2017)

2. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures: A Dependence-Based
Approach. Morgan Kaufmann, Burlington (2001)

3. Ancourt, C., Irigoin, F.: Scanning polyhedra with DO loops. In: PPOPP, pp. 39–50, ACM (1991)

123

https://www.teamplay-xh2020.eu
https://www.teamplay-xh2020.eu
http://creativecommons.org/licenses/by/4.0/

International Journal of Parallel Programming (2020) 48:603–625 623

4. Asanovic, K., Bodík, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J., Morgan, N., Patterson,
D.A., Sen, K., Wawrzynek, J., Wessel, D., Yelick, K.A.: A view of the parallel computing landscape.
Commun. ACM 52(10), 56–67 (2009)

5. Axelsson, E., Claessen, K., Sheeran, M., Svenningsson, J., Engdal, D., Persson, A.: The Design and
implementation of Feldspar—an embedded language for digital signal processing. In: IFL, Lecture
Notes in Computer Science, vol 6647, pp 121–136, Springer (2010)

6. Barwell, A.D., Brown, C., Hammond, K., Turek, W., Byrski, A.: Using program shaping and algo-
rithmic skeletons to parallelise an evolutionary multi-agent system in Erlang. Comput. Inform. 35(4),
792–818 (2016)

7. Bastoul, C.: Code generation in the polyhedral model is easier than you think. In: IEEE PACT, IEEE
Computer Society, pp. 7–16 (2004)

8. Boulet, P., Feautrier, P.: Scanning Polyhedra without do-Loops. In: IEEE PACT, IEEE Computer
Society, pp. 4–11 (1998)

9. Brown, C., Danelutto, M., Hammond, K., Kilpatrick, P., Elliott, A.: Cost-directed refactoring for
parallel Erlang programs. Int. J. Parallel Program. 42(4), 564–582 (2014)

10. Brown, C., Janjic, V., Barwell, A., Thomson, J., Castaneda Lozano, R., Cole, M., Franke, B., Garcia-
Sanchez, J., Del Rio Astorga, D., MacKenzie, K.: A hybrid approach to parallel pattern discovery
in C++. In: Proceedings of the 28th Euromicro International Conference on Parallel, Distributed and
Network-base Processing (2019)

11. Brown, C., Janjic, V., Hammond, K., Schöner, H., Idrees, K., Glass, C.W.: Agricultural reform: more
efficient farming using advanced parallel refactoring tools. In: PDP, IEEEComputer Society, pp. 36–43
(2014)

12. Burke,M.G., Cytron, R.: Interprocedural dependence analysis and parallelization (with Retrospective).
In: Best of PLDI, ACM, pp. 139–154 (1986)

13. Burstall, R.M., Darlington, J.: A transformation system for developing recursive programs. J. ACM
24(1), 44–67 (1977). https://doi.org/10.1145/321992.321996

14. Campbell, C., Miller, A.: A parallel programming with Microsoft Visual C++: design patterns for
decomposition and coordination on multicore architectures, 1st edn. Microsoft Press, Redmond (2011)

15. Corbett, J.C.: Evaluating deadlock detectionmethods for concurrent software. IEEETrans. Softw. Eng.
22(3), 161–180 (1996)

16. del Rio Astorga, D., Dolz, M.F., Fernández, J., García, J.D.: A generic parallel pattern interface for
stream and data processing. Concurr. Comput. Pract. Exp. 29(24), e4175 (2017)

17. del Rio Astorga, D., Dolz, M.F., Sánchez, L.M., García, J.D., Danelutto, M., Torquati, M.: Finding
parallel patterns through static analysis in C++ applications. IJHPCA 32(6), 779–788 (2018)

18. Dig, D.: A refactoring approach to parallelism. IEEE Softw. 28(1), 17–22 (2011)
19. Dolz, M.F., del Rio Astorga, D., Fernández, J., García, J.D., Carretero, J.: Towards automatic paral-

lelization of stream processing applications. IEEE Access 6, 39944–39961 (2018)
20. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
21. Ernstsson, A., Li, L., Kessler, C.: SkePU 2: flexible and type-safe skeleton programming for hetero-

geneous parallel systems. Int. J. Parallel Program. 46(1), 62–80 (2017)
22. Foundation, E.: Eclipse—an open development platform (2009). http://www.eclipse.org
23. Garcia, J.D., del Rio, D., Aldinucci, M., Tordini, F., Danelutto, M., Mencagli, G., Torquati, M.: Chal-

lenging the abstraction penalty in parallel patterns libraries. J. Supercomput. (2019). https://doi.org/
10.1007/s11227-019-02826-5

24. González-Vélez, H., Leyton, M.: A survey of algorithmic skeleton frameworks: high-level structured
parallel programming enablers. Softw. Pract. Exper. 40(12), 1135–1160 (2010)

25. Gorlatch, S.: Domain-specific optimizations of composed parallel components. In: Lengauer, C.,
Batory, D., Consel, C., Odersky, M. (eds.) Domain-Specific Program Generation. Lecture Notes in
Computer Science, vol. 3016. Springer, Berlin (2004)

26. Gorlatch, S., Wedler, C., Lengauer, C.: Optimization rules for programming with collective operations.
In: IPPS/SPDP, IEEE Computer Society, pp. 492–499 (1999)

27. Guo, J., Thiyagalingam, J., Scholz, S.: Breaking the GPU programming barrier with the auto-
parallelising SAC compiler. In: DAMP, ACM, pp. 15–24 (2011)

28. Hagedorn, B., Stoltzfus, L., Steuwer, M., Gorlatch, S., Dubach, C.: High performance stencil code
generation with lift. In: CGO, ACM, pp. 100–112 (2018)

123

https://doi.org/10.1145/321992.321996
http://www.eclipse.org
https://doi.org/10.1007/s11227-019-02826-5
https://doi.org/10.1007/s11227-019-02826-5

624 International Journal of Parallel Programming (2020) 48:603–625

29. Janjic, V., Brown, C., Mackenzie, K., Hammond, K., Danelutto, M., Aldinucci, M., García, J.D.: RPL:
a domain-specific language for designing and implementing parallel C++ applications. In: PDP, IEEE
Computer Society, pp. 288–295 (2016)

30. Lamport, L.: The parallel execution of DO loops. Commun. ACM 17(2), 83–93 (1974)
31. Leung, A., Lhoták, O., Lashari, G.: Automatic parallelization for graphics processing units. In: PPPJ,

ACM, pp. 91–100 (2009)
32. Li, H., Thompson, S.J.: Safe Concurrency Introduction through Slicing. In: PEPM, ACM, pp 103–113

(2015)
33. Lim, A.W., Lam, M.S.: Maximizing parallelism and minimizing synchronization with affine trans-

forms. In: POPL, ACM Press, pp. 201–214 (1997)
34. Matsuzaki, K., Kakehi, K., Iwasaki, H., Hu, Z., Akashi, Y.: A fusion-embedded skeleton library. In:

Danelutto, M., Vanneschi, M., Laforenza, D. (eds.) Euro-Par. Lecture notes in computer science, vol.
3149. Springer, Berlin (2004)

35. Mens, T., Tourwé, T.: A survey of software refactoring. IEEETrans. Softw. Eng. 30(2), 126–139 (2004)
36. Microsoft: Visual Studio IDE (2019). https://visualstudio.microsoft.com/vs/
37. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan Kaufmann, Burlington

(1997)
38. Opdyke, W.F.: Refactoring object-oriented frameworks. In: Ph.D. Thesis, University of Illinois at

Urbana-Champaign, Champaign (1992)
39. Pugh,W.: The omega test: a fast and practical integer programming algorithm for dependence analysis.

In: SC, ACM, pp. 4–13 (1991)
40. Radoi, C., Dig, D.: Effective techniques for static race detection in java parallel loops. ACM Trans.

Softw. Eng. Methodol. 24(4), 24:1–24:30 (2015)
41. Reyes, R., Lomüller, V.: SYCL: single-source C++ accelerator programming. In: PARCO, Advances

in Parallel Computing, IOS Press, vol 27, pp 673–682 (2015)
42. Robinson, A.: TBB (Intel Threading Building Blocks). In: Encyclopedia of Parallel Computing, p.

2029. Springer (2011)
43. Rul, S., Vandierendonck, H., Bosschere, K.D.: Extracting coarse-grain parallelism in general-purpose

programs. In: PPOPP, ACM, pp. 281–282 (2008)
44. Stefanovic, D., Martonosi, M.: Limits and graph structure of available instruction-level parallelism. In:

Bode, A., Ludwig, T., Karl, W. (eds.) Euro-Par. Lecture notes in computer science, vol. 1900. Springer,
Berlin (2000)

45. Tournavitis, G., Franke, B.: Semi-automatic extraction and exploitation of hierarchical pipeline paral-
lelism using profiling information. In: PACT, ACM, pp. 377–388 (2010)

46. Wang, Z., Tournavitis, G., Franke, B., O’Boyle, M.F.P.: Integrating profile-driven parallelism detection
and machine-learning-based mapping. TACO 11(1), 2:1–2:26 (2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://visualstudio.microsoft.com/vs/

International Journal of Parallel Programming (2020) 48:603–625 625

Affiliations

Christopher Brown1 · Vladimir Janjic2 · Adam D. Barwell1 ·
J. Daniel Garcia3 · Kenneth MacKenzie4

Vladimir Janjic
vjanjic001@dundee.ac.uk

Adam D. Barwell
adb23@st-andrews.ac.uk

J. Daniel Garcia
josedaniel.garcia@uc3m.es

Kenneth MacKenzie
kenneth.mackenzie@iohk.io

1 School of Computer Science, University of St Andrews, St Andrews, UK

2 School of Science and Engineering, University of Dundee, Dundee, UK

3 University Carlos III of Madrid, Leganes, Spain

4 IOHK, Hong Kong, China

123

http://orcid.org/0000-0001-6030-2885

	Refactoring GrPPI: Generic Refactoring for Generic Parallelism in C++
	Abstract
	1 Introduction
	2 Patterns, GrPPI and Refactoring
	3 Refactoring for Introducing a GrPPI Pipeline
	3.1 Refactoring Strategy
	3.2 Refactoring Observations

	4 Safety Checking
	5 Evaluation
	5.1 Mandelbrot
	5.2 Matrix Multiplication
	5.3 Image Convolution
	5.4 Ant Colony Optimisation

	6 Related Work
	7 Conclusions and Future Work
	Acknowledgements
	References

