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Abstract
In-memory big data computing, widely used in hot areas such as deep learning and 
artificial intelligence, can meet the demands of ultra-low latency service and real-
time data analysis. However, existing in-memory computing frameworks usually use 
memory in an aggressive way. Memory space is quickly exhausted and leads to great 
performance degradation or even task failure. On the other hand, the increasing vol-
umes of raw data and intermediate data introduce huge memory demands, which 
further deteriorate the short of memory. To release the pressure on memory, those 
in-memory frameworks provide various storage schemes options for caching data, 
which determines where and how data is cached. But their storage scheme selec-
tion mechanisms are simple and insufficient, always manually set by users. Besides, 
those coarse-grained data storage mechanisms cannot satisfy memory access pat-
terns of each computing unit which works on only part of the data. In this paper, we 
proposed a novel task-aware fine-grained storage scheme auto-selection mechanism. 
It automatically determines the storage scheme for caching each data block, which 
is the smallest unit during computing. The caching decision is made by consider-
ing the future tasks, real-time resource utilization, and storage costs, including block 
creation costs, I/O costs, and serialization costs under each storage scenario. The 
experiments show that our proposed mechanism, compared with the default storage 
setting, can offer great performance improvement, especially in memory-constrained 
circumstances it can be as much as 78%.
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1 Introduction

In-memory computing directly caches data into memory for future reusing and gets 
rid of burdensome disk access. As a result, In-memory big data computing frame-
works, compared with disk-based computing frameworks like MapReduce [1], 
Hadoop,1 and Dryad [2], can provide orders of magnitude improvement in terms of 
response time and processing efficiency [3]. Spark,2 which is one of such in-memory 
computing frameworks originating from AMP, provides an immutable distributed 
collection of objects named Resilient Distributed Datasets (RDDs) [4] for mem-
ory state reserving and data sharing across the jobs. As data sharing in memory is 
10–100 times faster than network and disk, Spark can process data up to 100× faster 
than Hadoop on occasions, especially in iterative and interactive computing. There-
fore, Spark has been extensively used in companies/organizations, such as Tencent, 
Alibaba, Databricks, Amazon, and so on, and takes care of core service like adver-
tisement recommendation and graph data mining. We can see the big trend that big 
data computing is shifting from on-disk processing toward in-memory computing 
speedy [5].

However, memory capacity, for an in-memory computing framework, would be 
a serious effect on computing performance. If memory demands of a task can not 
be met, its execution will be severely delayed by frequent garbage collections, task 
re-computing, and so on. Studies have shown that memory has become a perfor-
mance bottleneck in Spark [6, 7]. Despite the continuous dropping in RAM prices 
and the increasing availability of high RAM servers, memory cache remains a con-
strained resource in large clusters and memory-constrained systems are always ubiq-
uitous [5]. On the other hand, data production is growing at a rate that doubles every 
2 years, and makes the applications’ data volume explosion. As a result, the gap 
between input data and memory capacity is widening. In execution, the system pro-
duces large amounts of intermediate data, which makes the problem further worse. 
For example, for PageRank (3 iterations) and ConnectedComponents from twitter-rv 
dataset, the peak size of their RDDs will be 155.8 GB and 357.1 GB, respectively, 
much larger than input (24.3 GB) [8]. Such overhead is attributed to memory con-
sumption of Java meta-data storage and objects’ internal pointers [9].

In order to alleviate memory pressure, serialization is a popular solution to reduce 
the memory size of an RDD. After serialization, the size of an RDD is to 0.2×–0.5× 
of the original object which is approximately the size of the raw data [9]. On the flip 
of a coin, it introduces no negligible computing overhead, spending about 5% execu-
tion time for operation serialization. Another solution is using flexible storage mech-
anisms. Data are not only cached in memory but also cached on disk. In Spark, the 
cache RDDs are specified by users and the scheme for an RDD is manually specified 
either in the configuration file, which is a global way for storage scheme settings, 
or codes. Although the above approach is simple and convenient, it has three draw-
backs as follows.

1 Apache Hadoop Project, http://hadoo p.apach e.org/.
2 Apache Spark Project, http://spark .apach e.org/.

http://hadoop.apache.org/
http://spark.apache.org/
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First, it is difficult and time-consuming to obtain the optimal storage scheme for 
each cache data block. For a system with m kinds of storage schemes, the number of 
storage schemes option can be mn for all n blocks of cache data. The optimum search 
cost is exponentially increased to amount of data blocks in the application. And, it may 
become complicates when there are multiple applications running simultaneously. 
Moreover, jobs are sensitive to storage schemes. The execution time for the same appli-
cation with different schemes setting differs a lot. An inappropriate storage scheme 
would result in poor system performance even application failure. So, it requires the 
user has a wealth of knowledge of data access pattern to avoid inappropriate storage 
schemes.

Second, data storage scheme is static throughout the execution of the job. After set-
ting, storage schemes of all data are fixed during the entire application running. A new 
storage scheme can take effect only after the user recompiles and restarts the appli-
cation. Memory state, including free memory size and in memory data, etc., which 
determines the success of a job, is variable. The scheme should capture the real-time 
memory state and makes an adjustment in time. If not, the job may fail.

Third, systems-support storage scheme setting takes a uniform way that each block 
of one RDD will follow the same storage assignment. Such coarse grained setting 
ignores the disparity of running tasks. As a result, it may be expected to result in a 
straggler. For some systems, straggler is a major factor hindering the performance of 
the system.

In this paper, we present a novel storage scheme selection mechanism, Task-aware 
Fine-grained Storage scheme auto-selection (TFSS), which can automatically make 
a decision on a block storage scheme. With its cost-based selection policy, minimal 
execution cost storage scheme will be set for blocks in the application. Our approach 
provides benefits over existing storage scheme selection mechanism in four aspects:

First, TFSS selects storage scheme for a block automatically rather than manually.
Second, TFSS makes a decision on a cost model which can characterize real-time 

memory state.
Third, TFSS is fine-grained. Instead of assigning all blocks of the same RDD with 

the same storage scheme, TFSS makes the storage scheme decision for each block 
individually.

Fourth, TFSS is aware of future tasks assignment on an executor and makes deci-
sions by considering both current and future executive information.

The remainder of this paper is organized as following. Section  2 presents some 
backgrounds of data dependency and storage scheme selection mechanism in in-
memory big data computing frameworks. Motivation is discussed in Sect. 3. Section 4 
shows two models used in our auto-selection mechanism. The overall implementation 
details are presented in Sect. 5. Extensive experimental results are reported in Sect. 6. 
In Sects. 7 and 8, we survey related works and conclude this paper respectively.
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2  Background

Unless otherwise specified, we limit our discussion to Spark in the following sec-
tions. However, this discussion applies equally to other in-memory big data comput-
ing frameworks such as Tez [10], Storm,3 and Flink.4

2.1  Data Dependency

Typical big data computing applications, such as deep learning, artificial intel-
ligence, and stream processing, often perform well-defined workflows. For some 
prevalent in-memory big data computing frameworks, they use Directed Acyclic 
Graphs (DAGs) to represent these workflows. Although rich semantics of under-
lying data access patterns, which imply plenty of cache storage opportunities, are 
determined by the DAG, they are not well utilized in cache storage selection mecha-
nisms of these frameworks.

In Spark, DAG of an application consists of RDDs for fault-tolerant and in-mem-
ory parallel computing. RDDs are partitioned and stored across a group of nodes 
in the cluster through a distributed storage system (e.g., HDFS [11], Amazon S35). 
Each node holds not all but a subset of the blocks, each represents an RDD partition. 
A task is responsible for computing one block of the RDD. Before running, it is first 
assigned to one of the preferred nodes according to the scheduling policy (such as 
delay scheduler [12] based on the locality of the block) by Taskscheduler. All pre-
ferred locations of a task can be attained through preferLocation() API. So it makes 
it possible to obtain tasks that would run on an executor in advance.

DAG of an application is divided into stages by DAGScheduler in advance, and 
each stage holds a piece of code executed by tasks in it. During this process, shuf-
fle dependencies, a many-to-one relationship among RDDs, are cut across different 
stages by the way of depth-first search. And each stage only holds RDDs with nar-
row dependencies, a one-to-one relationship. So the data access pattern of each task 
can be gotten in advance.

2.2  Storage Scheme Selection Mechanism in Spark

Programmers write an application by defining RDDs and operations on them. If an 
RDD is selected to be cached, the programmer will explicitly specify the caching 
storage scheme using persist() API in the code. For convenience, Spark provides a 
default value of MEMORY_ONLY which means the RDD only be cached in mem-
ory. Under this scheme, the task will efficiently perform when storage memory is 
sufficient. On the contrary, it will run with poor performance as a result of frequent 
re-computing, garbage collection, and so on.

5 Amazon S3, https ://aws.amazo n.com/s3/.

3 Apache Storm Project, http://storm .apach e.org/.
4 Apache Flink Project, http://flink .apach e.org/.

https://aws.amazon.com/s3/
http://storm.apache.org/
http://flink.apache.org/
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As shown in Fig. 1, when computing a cache block, the BlockManager, lies 
on a worker, will firstly retrieve it on local or remote (if it not in local) from 
BlockManagerMaster which lies on the driver. If the block can be gotten, the 
BlockManager would return it. On the contrary, the BlockManager will cache 
it according to the storage scheme of the RDD to which it belongs. Except for 
memory, Spark also permits RDDs to be cached in other storage tiers, for exam-
ple, disk. A block also can be serialized before it is cached. In practice, Spark 
provides some flags to indicate whether an RDD uses disk, memory, serializa-
tion. BlockManager stores the block into memory or disk through MemoryStore 
or DiskStore under indicating of these flags. During the process, Spark will evict 
some blocks within storage memory based on its replacement policy when there 
is no enough free memory to hold the block. By default, it uses Least Recently 
Used (LRU) policy. Although LRU can work effectively in most cases, more in-
depth studies have shown that DAG-based cache replacement strategies, such as 
[5, 8], have better replacement patterns than LRU in Spark. Evicted blocks need 
to re-compute in the next access which may delay the task. Even worse, it may 
cause Out Of Memory (OOM) if there are no extra blocks to be evicted.

Further, during the execution of a block, Spark will perform different opera-
tions according to different situations (as shown in Fig. 2). In the initial state, 
a block is a sub-block after the RDD division. When it is accessed, Spark will 
recompute or directly read a block depending on the state of the block. The com-
puted blocks are serialized or directly cached according to the storage scheme, 
where the cache operation can be cached on memory, disk, or both. Among 
them, the blocks cached to memory will be evicted from memory due to memory 
space. There are also two options for evicted blocks: to be discarded directly or 
stored on disk. Blocks that are directly discarded need to be recalculated when 
they are accessed again.

Fig. 1  Cache storage selection mechanism of Spark
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3  Motivation

In this section, we illustrate the need for a novel storage selection mechanism in 
an in-memory big data computing framework from two perspectives. First, we 
compare the performance difference of the same benchmark under different stor-
age schemes through experiments. Then, we also characterize the data access 
patterns in typical workloads through empirical studies. Experiments show that 
the workloads are sensitive to schemes, and a static storage scheme cannot cap-
ture the real-time memory state and make adjustments in time under a memory-
constrained circumstance.

Fig. 2  State transition diagram for a block

Table 1  An overview of 
SparkBench suite

Application type Workload

Machine learning Logistic regression
Linear regression
Support vector machine (SVM)
KMeans
PCA

Graph computation Page rank
SVD Plus plus
Triangle count

Other workloads Connected component
Decision tree
Shortest paths
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3.1  Methodology

We ran SparkBench [13], a popular workload suite, in a cluster of 4 heterogene-
ous instances (a master and three workers). We firstly measured the execution time 
under different cache storage schemes of 11 applications in SparkBench (as shown 
in Table 1), including machine learning, graph computation, etc. Furthermore, we 
characterized the data access patterns in executors through comparing their memory 
footprints.

3.2  Performance Comparison Under Different Storage Schemes

As described in the previous section, Spark combines one or more flags to form dif-
ferent schemes, such as MEMORY_AND_DISK scheme is a combination of disk 
flag and memory flag. As shown in Fig. 3, we compare the performance difference 
of 7 workloads in different storage schemes under a memory-constrained environ-
ment. And we draw two conclusions: First, there is a significant performance dif-
ference among different storage schemes. For LinearRegression, execution time in 

Fig. 3  Performance comparison of workloads in different storage schemes, execution time normalized by 
MEMORY_ONLY scheme
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scheme MEMORY_ONLY is almost 450% (from 21.8 to 100%) of scheme MEM-
ORY_AND_DISK_SER. SVDPlusPlus failed in both MEMORY_AND_DISK_
SER and MEMORY_ONLY_SER two schemes but succeeded in other schemes. 
Second, the scheme MEMORY_ONLY, as default, is not always prominent in all 
schemes. For example, MEMORY_ONLY scheme has the longest execution time in 
KMeans, LogisticRegression, and LinearRegression.

3.3  Data Access Patterns

Figure 4 shows the memory footprints of all executors on a heterogeneous, memory-
constrained cluster. And we can identify the following two common access patterns 
across the workloads: 

1. Memory footprints in all executors go peak quickly, then they become different 
from each other Figure 4a shows memory footprints of LinearRegression and 
SVDPlusPlus two typical workloads in each executor. We find that memory foot-

(a)

(b)

Fig. 4  a Heap usage of each executor in LinearRegression and SVDPlusPlus. b Heap usage of two exec-
utors with different storage schemes in LinearRegression
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print differs in each executor. For LinearRegression, which has the largest mem-
ory sensitivity in all workloads, the memory footprint of each executor reaches 
its peak soon after startup. And then, E_1 shows a different footprint with others 
for insufficient memory. In detail, the memory footprint of E_1 has two lasting 
peaks, while footprints of other executors still maintain a sharp wave shape. 
SVDPlusPlus, which crashes in multiple executors, shows the same characteristic. 
Different from LinearRegression, the memory footprint of a crash executor would 
reach peak again soon. The footprint of SVDPlusPlus shows that E_1 crashes in 
two locations of 52% and 81% respectively. Here, we consider a re-launch execu-
tor is the same as the previous executor.

2. Memory footprints under different storage schemes have an apparent difference 
As shown in Fig. 4b, the memory footprints of the same executor with differ-
ent schemes have obvious differences in both heap usage and wave shape. The 
DISK_ONLY scheme has the lowest heap usage in all schemes. While the MEM-
ORY_ONLY scheme has the fastest speed to get a peak in all schemes. Figure 4b 
further shows that the memory footprint of each executor is different not only in 
MEMORY_ONLY scheme but also in other schemes.

To summarize, we can draw three conclusions from the above experiments: 

1. The workloads are sensitive to schemes, and the default scheme is not always the 
best one;

2. The framework has a greedy way to consume memory, and MEMORY_ONLY 
scheme has the fastest speed on consuming memory space in all schemes. When 
memory is insufficient, footprint becomes different in each executor for the delay 
causing by re-computation and garbage collection. So a static scheme would not 
catch the difference;

3. The memory footprints of the same workload under different schemes are different 
in all executors. So we can adjust the footprint of a workload through a flexible 
storage scheme.

Therefore, we propose a fine-grained task-aware storage scheme auto-selection 
mechanism to solve these problems.

4  Storage Cost Modeling

4.1  Cost Model

Before introducing the cost model of a block, we give some definitions in advance.
Cache Block A block, denoted as b(i,j) , if it has been selected to be persisted for 

reusing, we call it a Cache Block. Here, i is the ID of the RDD it belongs to, and j is 
the index number of the RDD partition.

Cached Block A Cache Block b(i,j) , if it has been resident in some storage tiers in 
access, we call it a Cached Block, denoted as cb(i,j).
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Uncached Block A Cache Block b(i,j) , if it is outside of all tiers of storage in 
access, we call it a Uncached Block, denoted as ub(i,j).

In access, a Cached Block must be kept in some storage tiers; it can be found in 
memory or disk. While an Uncached Block cannot be found in both memory and 
disk. It may not have been created yet or it has been evicted from storage. During 
the entire lifetime, a block can transform from one state into another under certain 
conditions. For example, a Cached Block will become an Uncached Block when it is 
discarded from memory. And an Uncached Block will become a Cached Block after 
being persisted into memory.

Execution Cost For a Cache Block b(i,j) , its Execution Cost in its whole entire 
lifetime consists of two parts: Creation Cost and Visiting Cost. It can be defined as:

where m is the number of times that block b(i,j) is in Uncached Block state, and n is 
the number of times that it is in Cached Block state when it is visited. Ccreate

(i,j)
 repre-

sents cost on creating the blocks in its longest path. And Cvisit
(i,j)

 represents cost on 
accessing the block when it is in cached.

Creation Cost For a Cache Block b(i,j) , its Creation Cost is defined as the time 
spent on creating b(i,j) . It can be defined as :

where V is a set of Cache Blocks which lie in longest path to create b(i,j) in the DAG. 
And Ccompute

(i�,j�)
 and Creplace

(i,j)
 are defined in the following.

Computing Cost For a Cache Block b(i,j) , its Computing Cost, denoted as Ccompute

(i,j)
 , 

is defined as the time spent on computing b(i,j) under the circumstance that all its 
ancestors are Cached Blocks.

Replacement Cost For a Cache Block b(i,j) , its Replacement Cost is defined as the 
time spent on replacing other blocks from memory to make room for it. The cost can 
be expressed as:

where Ω is a set of Cached Blocks which are dropped for making room for b(i,j) . Ω 
is a function of the replacement policy, as well as the free memory space in time. 
For example, it needs more blocks to be evicted from memory when less memory 
available.

Eviction Cost For a Cached Block bc(i,j) , its Eviction Cost, denoted as Cevict
(i,j)

 , is 
defined as the time spent on dropping it from memory and/or persisting it on other 
storage tiers.

A block would be evicted in two cases. In the first case, a block is un-persisted 
and is selected by the arbiter for making room for coming Cache Blocks. Program-
mers can simply use the API unpersist() to specify BlockManager to drop it from 

(1)Cexecute
(i,j)

= m ∗ Ccreate
(i,j)

+ n ∗ Cvisit
(i,j)

(2)Ccreate
(i,j)

=
∑

b(i� ,j�)∈V

C
compute

(i�,j�)
+ C

replace

(i,j)

(3)C
replace

(i,j)
=

∑

b(i� ,j�)∈Ω

Cevict
(i�,j�)
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memory. In the second case, a block would be simply dropped or be further per-
sisted to disk according to its storage scheme. For simplicity, we assume that the 
cost of dropping a block from memory is zero. Moreover, disk persistence needs 
to write the data into the disk and serialize data before writing (if needed), thus the 
cost here consists of disk I/O cost and serialization cost.

Visiting Cost For a Cached Block bc(i,j) , its Visiting Cost is defined as the time 
spent on visiting the block. It can be expressed as:

where Cmem
(i,j)

 is defined as Memory Cost, and Cdisk
(i,j)

 is defined as Disk Cost. They are 
I/O costs for visiting bc(i,j) if it locates in memory and on disk correspondingly. Cser

(i,j)
 , 

defined as Serialization Cost, is the cost on serializing bc(i,j) . Here, � is the flag indi-
cating whether the block is in memory or not. When a task visits a block, it first 
searches the block in memory. If the block is found, the task would read it directly 
from memory. Otherwise, the task would read the block from disk (if the block is in 
the disk). So Memory Cost and Disk Cost are exclusive in (4). � indicates serializa-
tion rate of b(i,j) . As described in [9], the serialization rates of different datasets are 
not identical. The range of them is among [0.20–0.50]. � indicates whether the block 
needs to be serialized or not. � will further affect the value of � . For example, if � is 
0, � would be 1; otherwise if � is 1, � is no more than 1.

For a Cached Block, its Disk Cost is 1–2 orders of magnitude higher than Mem-
ory Cost. Besides those two access costs are directly proportional to the size of the 
block, so Serialization Cost and Computing Cost are. Additionally, Serialization 
Cost of a block is relevant to its RDD type [8]. For simplification, we use the cost 
of per MB data (denoted as CPM) and block size to calculate the corresponding cost 
like Disk Cost, Memory Cost and Serialization Cost. The cost is equal to the product 
of CPM and block size. Moreover, Spark supports different serializers (such as Java-
Serializer and KryoSerializer6). In default, the framework uses the same serializer in 
the whole program running cycle. Additionally, Zhao [14] proposes a serialization 
mechanism that provides different serializers for different blocks to improve stor-
age performance. Although serialization rate and Serialization Cost of a block are 
different when using different serializers, it can be constant for the same serializer 
can be captured during task running. In our approach, we use the static serialization 
mechanism that Spark provides.

When a block has been cached, we can monitor the start time and end time then 
calculate those costs listed above: Computing Cost, Disk Cost, Memory Cost and 
Serialization Cost. If a Cache Block has not been cached, we can speculate its costs 
according to other blocks whose costs have been produced. As shown above, the 
costs of a block are proportion to its block size. CPM with the same RDD id can 
be the target blocks prefer to. If CPM with the same RDD id is absent, CPMs with 
other RDD id can be the candidate. If there are multi-CPMs, we use the CPM with 
the least computation. Additionally, the max, min, or mean value of the CPMs also 

(4)Cvisit
(i,j)

= � ∗ � ∗ Cmem
(i,j)

+ (1 − �) ∗ Cdisk
(i,j)

+ � ∗ Cser
(i,j)

6 Kryo, https ://githu b.com/Esote ricSo ftwar e/kryo/.

https://github.com/EsotericSoftware/kryo/
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can be used for reference. Further, we update the corresponding CPMs of an RDD 
after an operation completed. For serialization operation, we serialize a block of 
each RDD for the first time that it is cached. After serialization, the serialization 
rate and Serialization Cost per MB of each RDD are learned. Additionally, serializa-
tion and de-serialization are counterpart operations. To simplify the computation, 
we assume that serializing and de-serializing of the same block has an identical cost.

As shown in Sect.  2, Spark supports to cache a block in memory, or on disk, 
or serialization. We further discuss Visiting Cost of a block in the following four 
scenarios.

4.1.1  Memory Scenario

In this scenario, with the default setting, a block is cached in memory in object form. 
The corresponding storage scheme is MEMORY_ONLY. Although the memory 
space occupied by the block in this scenario is larger than in other scenarios, the 
computing access speed of the block is fastest when the memory space is sufficient. 
Here, the cost of revisiting a block mainly comes from memory I/O. This serves as 
the original motivation for in-memory computing framework design. On the con-
trary, when revisiting, some blocks may absent in memory since being replaced by 
other blocks. At this time, the cost of revisiting a block mainly comes from re-com-
puting. The number of blocks that need to be re-computed is inversely proportional 
to the size of available memory. In the worst case, it may cause task failure rooting 
from OOM.

4.1.2  Disk Scenario

In this scenario, a block is cached on disk in byte form, and the block needs serial-
izing before stored in the disk; and it needs de-serializing after loaded from disk 
vice versa. The corresponding storage scheme is DISK_ONLY. Obviously, the block 
does not take up memory space in this scenario, so it can work well in the case of 
memory insufficiency. The cost of revisiting a block consists of Serialization Cost 
and Disk Cost.

4.1.3  Memory and Disk Scenario

In this scenario, a block is cached either in memory or on disk. The correspond-
ing storage scheme is MEMORY_ AND_DISK. The place where a block is cached 
depends on free memory space at that time and block size. When the block could fit 
into memory, it would be cached in memory. Otherwise, it would be cached on disk. 
When the block is selected for eviction, it will be stored on disk as an alternative. On 
the contrary, when a block is being visited on disk, the decision on forwarding the 
block into memory depends on whether there is enough memory space to accom-
modate it.
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4.1.4  Serialization Scenario

In this scenario, a block is serialized by configured serializer before being cached 
in memory. At this time, the value of � in (4) is 1. And the value of � is less than 
1 rather than 1 in memory scenarios. The corresponding storage scheme is MEM-
ORY_ONLY_SER or MEMORY_AND_DISK_SER. As described in Sect. 1, it is 
an efficient way to reduce memory volume demands for data caching. As a con-
sequence, the memory in this scenario may hold more blocks than it in memory 
scenarios with the same free memory space. Therefore it can greatly reduce the cost 
of re-computing and memory eviction. However, it comes with additional overheads 
for serializing.

4.2  Worst Case Execution Cost Model

As discussed above, storage memory space in Spark has two states: sufficient state 
and insufficient state. When a task finished in a sufficient memory state, we just con-
sider Visiting Costs of all blocks in it. Otherwise, we should further consider Crea-
tion Costs of all blocks. Based on the above understanding, we present our worst-
case execution cost model below:

where k is the stage id. E is a set of blocks that can be computed in a sufficient 
memory state in stage k. And U is a set of blocks that would be computed in an 
insufficient memory stage. Both E and U are from Future Block Set which we will 
introduce below. Here, rj

i
 is the number of times that b(i,j) would be visited.

Future Block Set (FBS) For an executor l and a stage k, we define FBS as all un-
computed Cache Blocks which would be computed in l at stage k, denoted as FBk

l
.

Initially, blocks in FBS can be achieved through preferLocation() API. For a node 
with multi executors, we equally divide the blocks to each executor. From (5), we 
find that blocks in FBS can be classified into two kinds: memory enough blocks and 
memory shortage blocks. For memory enough blocks, except for first, we just con-
sider their Visiting Costs because these blocks would not be evicted before the stage 
finished. For memory insufficient blocks, they will be evicted before each revisiting. 
So these blocks need to be re-computed in each revisiting.

The worst-case execution cost of an application varies in different scenarios. 
Visiting Cost of a block is also different in each scenario. Similarly, memory 
space that a block demand is different. For example, a block occupies less mem-
ory space in serialization scenarios than in memory scenarios. So there will be 
more blocks that can be computed in a sufficient memory state in serialization 
scenarios. So they are in the disk scenario. As a consequence, we can conclude 
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that the worst-case execution costs of the same executor are different in each sce-
nario. So it is an opportunity for us to choose a proper storage scheme for blocks 
based on our predictions. The storage scheme, which has the least worst-case exe-
cution cost, will be chosen as the final scheme.

5  Implementation in Spark

We have extended Spark to support the TFSS mechanism presented in this article. 
And we will elaborate on our implementation details in this section.

5.1  Architecture Overview

TFSS can choose a storage scheme, based on worst-case execution cost and real-
time memory state, for a block to be cached. As shown in Fig. 5, our implementa-
tion consists of four models: (i) Analyzer, which lies in the driver, learns the data 
dependency of each RDD and bookkeeps cache RDDs in each stage; (ii) Cost 
Monitors, which lie in each executor, are responsible for collecting Cache Blocks’ 
costs information which is shown in Sect. 4 during the task running; (iii) Storag-
escheme Arbiters, which also lie in each executor, implement logic policies that 
make storage scheme decision for each block before it will be cached; (iv) Feed-
back components, which consist of Cost Monitors, FBS Monitors and an Update-
Master, are used for updating future executing blocks and costs information.
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or Master

BlockManager
MasterEndpoi
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Fig. 5  Overall architecture of TFSS. Our components are marked with dash outlines
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5.2  Analyzer

The Analyzer provides three functions: firstly, it obtains dependencies of RDDs 
according to DAG using a depth-first search; secondly, it also picks up cache RDDs 
in each stage; thirdly, it initializes FBS of each worker.

Figure 6 shows a segment of PageRank’s DAG. We can find that there are three 
stages. RDDs within each stage are connected through narrow dependencies. They 
stem from Distributed File System (DFS), Shuffled-RDDs, or other RDDs. Among 
them, files on DFS are on a local or remote node. The Shuffled RDDs are gener-
ated by tasks via fetching remote shuffle data. The workflow of a task may be the 
longest-running path when the task runs firstly. To avoid blocks being created with 
the longest path each time, Spark caches some RDDs. So there are two kinds of 
RDDs: cache RDDs, which can be directly revisited after the first computing, and 
non-cache RDDs which are only available in this calculation. Among them, cache 
RDDs are persisted in memory, disk, or both, according to their storage schemes 
which are assigned during programming, through BlockManager.

Cache RDDs can be further classified into three kinds: target CacheRDDs are the 
running cache RDDs in all stages; related CacheRDDs are RDDs that participate 
to create target CacheRDDs in the current stage, and other CacheRDDs are RDDs 
which are not including in the first two kinds. In Fig. 6, RDD 38 is a target Cach-
eRDDs in stage 6, and RDDs 9, 16, and 26 are its related CacheRDDs. As well as 
RDDs 3, 18, and 28 are other CacheRDDs. In practice, we can use target Cach-
eRDDs and its related CacheRDDs to infer Computing Cost and memory demands 
at a stage.

The Analyzer not only analyzes dependencies information between RDDs but 
also speculates future Cache Blocks that will be computed in each worker. After run-
nable tasks are submitted to the task scheduler, the task scheduler assigns each task 

Fig. 6  Segment DAG of job 1 in PageRank
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to the corresponding worker according to the scheduling policy. Usually, the task 
scheduler will put the tasks on the workers which have less burden, such as network 
I/O, to run. By default, Spark assigns tasks to workers using data locality policy. A 
worker has a high priority to get the task whose consuming blocks are on it. For a 
task, its preferred running workers will be returned by the scheduler through prefer-
Location() API. Therefore, we can infer all future tasks running on a worker, and 
further on an executor. We suppose that tasks are allocated evenly to each executor 
if there are multi executors running on the worker. So the executor’s FBS, which is 
used by Storagescheme Arbiter, can be got in this way.

5.3  Cost Monitors

Cost Monitors are distributed in each executor. A Cost Monitor collects local Cache 
Blocks real-time costs information. The information would be used by both Storag-
escheme Arbiter in this executor and UpdataMaster in the master. The Cost Monitor 
records the information of the costs when tasks perform related operations. As well 
as the information is passed to UpdateMaster with the help of the heartbeat. And 
the information of the costs would be recorded in a hash set, in which it is easy to be 
retrieved through a key of block Id.

5.4  Storage Scheme Arbiters

Storagescheme Arbiter gives Cache Blocks in this executor an appropriate storage 
scheme before they are cached. It makes a decision based on worst-case execution 
costs.

Fig. 7  Workflow of Storagescheme Arbiter



41

1 3

International Journal of Parallel Programming (2021) 49:25–50 

As shown in Fig.  7, Storagescheme Arbiter takes full consideration costs of 
Cache Blocks in FBS when it determines storage scheme for a Cache Block. As the 
discussion above, these blocks include those consumed by the tasks that are running 
and will run in the executor. The worst-case execution cost of the current stage in 
this executor is computed using  (5). The arbiter selects a storage scheme that has 
minimum worst-case execution cost value when BlockManager caches a block. For 
example, it would choose a serialization scheme to improve efficiency if the worst-
case execution cost under the serialization scenario is smaller than it under memory 
scenario. Otherwise, it would set the serialization flag to false. If the size of a block 
is larger than the size of free storage memory, it implies that the current memory is 
insufficient. If we cache the block in memory, it may fail to unroll due to OOM. At 
this time, a smart choice is putting the block on disk.

5.5  Feedback Components

As shown in Fig. 5, feedback components consist of Cost Monitor, FBS Monitor, 
and UpdateMaster. Among them, Cost Monitor has been introduced in the above, so 
we do not present it in this section.

5.5.1  UpdateMaster

FBS of each executor is initialized by Analyzer according to data locality, and is 
delivered by UpdateMaster when the executor is launched. Then there are three 
cases that we need to update FBS. Firstly, blocks in FBS would be consumed by 
itself or other executors during the job running. For example, executors on the same 
worker would consume some blocks for parallel execution; and executors on the 
other workers also consume some blocks for distributed multi-copy data storage. 
Secondly, the task scheduler may allocate other blocks, which are not in FBS, to the 
executor. Thirdly, some blocks need to be re-computed for executor crashing.

For consumed blocks, UpdateMaster maintains an Allocated Blocks Set (ABS) 
to record blocks having been allocated at current running stage. And the ABS is 
updated after a task allocation. Blocks, which are consumed by the new allocated 
task, are added in ABS. Then, master sends ABS to the executor through the heart-
beat mechanism. Finally, FBS monitor in the executor does subtraction operation 
between FBS and ABS after receiving the message.

For non-prefered-location blocks that are not in FBS of an executor, UpdateMas-
ter just delivers them to the executor when the task scheduler allocates the task. This 
updating process is relatively simple. The executor will do union operation between 
blocks that the new arrival tasks consume and FBS.

For re-computing blocks, UpdateMaster maintains a Lost Blocks Set (LBS) which 
records re-computing blocks consumed by lost tasks at current running stage. The 
corresponding blocks would be added into LBS after the executor crashed. Then, 
master sends LBS to the executor through the heartbeat mechanism. Finally, FBS 
Monitor in the executor does union operation between FBS and LBS after receiving 
the message.
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Furthermore, UpdateMaster also takes charge of delivering costs information to 
Cost Monitors. It collects costs information from all executors and feedbacks them to 
Cost Monitors to update local costs information.

5.5.2  FBS Monitor

FBS Monitor in an executor maintains FBS in a HashMap. It updates FBS in two cases. 
On the one hand, it gets rid of the block from FBS after the executor finished a Cache 
Block; On the other hand, it updates local FBS in different operations depending on 
message kinds. As discussed above, it adds non-prefered-location blocks and re-com-
puting blocks into FBS or removes consumed blocks from FBS when an updating mes-
sage from UpdateMaster comes.

5.6  Overheads Discussion

Communication Overhead To reduce the communication overhead, each worker main-
tains a costs profile locally and sends the minimum number of message exchanges to 
the master. Generally, UpdateMaster updates the information to the corresponding 
worker, only when necessary, through the periodical heartbeat. In particular, when a 
new job DAG is received from DAGScheduler, UpdateMaster needs to notify workers 
to update the FBS and costs of the corresponding RDD blocks.

Computation Overhead There are three cases that the computation is needed: (1) 
when a new job DAG arrivals, Analyzer analyzes dependencies among RDDs in DAG; 
(2) when the framework begins to launch an executor, Analyzer gets FBS for the exec-
utor; (3) when BlockManager starts to cache a block, Storagescheme Arbiter should 
compute worst-case execution cost of different scenarios under real-time memory 
circumstance.

Table 2  Summary of workload 
and input date size

Workload Input data 
size (GB)

KMeans 11
Linear regression 11.5
Logistic regression 16.6
Page rank 1.7
Connected component 4
Decision tree 6
Shortest paths 4
PCA 18.4



43

1 3

International Journal of Parallel Programming (2021) 49:25–50 

6  Performance Evaluations

6.1  Environment Platform

The experiment platform includes a cluster with four nodes, one acts as both mas-
ter and slave and the remaining nodes only act as slaves. They are different from 
each other. The first type node is equipped with one 8-core 2.8G Intel Core I7 CPU, 
12GB memory , the second type node is equipped with one 4-core 2.8G Intel Core 
I5 CPU, 8GB memory, the last type node is equipped with one 4-core 2.4G Intel 
Q6600 CPU, 8GB memory. And we adopt HDFS for storage, each partition has two 
replications. The JVM adopted is HotSpot 64-Bit Server VM, and the version is 
1.8.0_92. The version of Spark is 2.3.0.

The datasets are generated by SparkBench [13]. Workloads, which we use in our 
experiments, are listed in Table 2.

6.2  Overall Performance

From the 1.6 version, Spark has supported the unified memory manager to manage 
storage memory and execution memory. So, we use the unified memory manager 
model in our experiments. And each executor uses 4 Cores and 2G memory size. 
Table 2 shows the input data size of each workload. We run each workload using 
our approach (denoted as TFSS), approach proposed in [9] (denoted as ACSS) and 
Spark native system with default storage scheme respectively. And the runtime of 
each workload is depicted in Fig. 8.

As expected, TFSS can reduce runtime by adjusting the cache storage scheme of 
Cache Blocks in time to prevent system performance decay. As shown in Fig. 8, our 
approach consistently outperforms the Spark MEMORY_ONLY scheme and ACSS 

T

Fig. 8  Overall performance compares with different workloads
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across all workloads. In particular, compared to the default storage scheme, TFSS 
can reduce the runtime of KMeans by 78% (from 4518 to 995 s). For ACSS, except 
for ConnectedComponent which fails to finish, TFSS can reduce the runtime by up 
to 27% (from 212 to 154 s) in PageRank.

6.3  Performance in Different Memory Sizes

In order to demonstrate the adaptability of our method under different memory con-
straints, we run eight workloads using the Spark default storage scheme and our stor-
age scheme arbiter in different executor memory sizes. The memory size varies from 
2GB to 6GB in each executor. The executor with a small memory size has a heavy 
constraint memory. As discussed above, heavy constrained memory brings perfor-
mance decay for RDDs’ re-computing, garbage collection, and so on. As shown in 
Fig. 9, the execution time of workloads increases with the decrease of memory size.

Additionally, Fig.  9 also shows the performance difference between TFSS and 
Spark native system under different constrained-memory degrees. The benefits 
achieved by TFSS, in terms of the application speedup, vary with different executor 
memory sizes as well as most workloads. For example, TFSS can reduce 35.4–73.7% 
execution time compared to MEMORY_ONLY scheme in different executor sizes 
in LinearRegression. Moreover, the benefits, achieved by TFSS, decrease with the 
increase of the execution memory size. Storage memory which can be used by cache 
RDDs increases with the increasing of executor memory size under a fix input data 
size. At the same time, the frequency of garbage collection as well as re-computa-
tion, caused by replacement, reduces with the increase of executor memory size. 

T T T T

TTTT

Fig. 9  Performance comparison between TFSS and MEMORY_ONLY storage scheme in different exec-
utor memory sizes
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So the default scheme can work well under a slightly constrained-memory circum-
stance. TFSS also can catch this change. But performance improvement, made by 
TFSS, declines relative to a heavy constrained-memory circumstance.

6.4  Performance in Different Schemes

In order to demonstrate the adaptability of our method under different storage 
schemes, we run workloads using different storage schemes, which Spark provides, 
and in different executor memory sizes. The memory size also varies from 2 to 6 GB 
in each executor. We compare the workloads execution performance of TFSS with 
different storage schemes separately from two aspects.

First, we compare the performance of each workload under the different stor-
age schemes in the most severe case of memory constraint. As shown in Fig. 10, 

T

Fig. 10  Performance comparison between TFSS and Spark with different storage schemes in executer 
memory size 2 GB. Blank means failing

T T T T

Fig. 11  Performance comparison between TFSS and Spark with different storage schemes with different 
executor sizes. Blank means failing
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TFSS can work well in every workload. Instead, serialization schemes, MEM-
ORY_ONLY_SER and MEMORY_AND_DISK_SER, fail in PageRank and Con-
nectedComponent. Furthermore, in addition to PCA and ConnectedComponent, 
our method achieves the optimal or near-optimal performance in all workloads. The 
results show that our method can correctly allocate suitable storage schemes for 
blocks. The fine-grained storage scheme allocation strategy can achieve better per-
formance under certain circumstances, though the improvement is limited (almost 
20% in ShortestPaths).

Second, we compare the performance of four workloads under the different stor-
age schemes as well as different executor memory sizes. As shown in Fig. 11, TFSS 
can also work well in every workload with different executor memory sizes. The 
experimental results show that our method can choose the correct storage scheme 
not only under the serious constrained-memory circumstance but also under the suf-
ficient memory circumstance. For example, TFSS achieves the optimal or near-opti-
mal performance in PageRank across all executor memory sizes. And performance 
improves 21.58% against the best storage scheme, MEMORY_ONLY_SER, in size 
6GB.

7  Related Works

Cache Management Memory caching is a popular approach with the aim to improve 
memory efficiency. Over the years, a large number of caching policies have been 
proposed.

The traditional history-based policies, such as LRU [15] and LFU [16], are 
widely used in prevalent computer systems. These algorithms, taking advantage of 
temporal locality and spatial locality, make a replacement decision based on data 
access history. Although it is simple to implement, it knows nothing about the data 
access information from applications. Hint-based policies use hints, which indicate 
which and when data will be used, from applications [17, 18]. Although they can 
improve cache efficiency with the help of hints, it is difficult for programmers to 
directly mark hints in the codes.

However, the above policies for managing cache data bring a significant per-
formance loss in prevalent parallel computing frameworks [19, 20]. These sys-
tems exhibit different data access patterns compared with traditional systems. As 
described previously, workflows in these systems, mostly express in DAGs, are 
known before execution. So some policies take advantage of DAGs to infer data 
access patterns for guiding their decisions. For example, LRC [5] makes a decision 
according to blocks’ reference counts, which come from DAG of the application. 
The blocks which have fewer reference counts are replaced from memory in priority. 
Further, more information is used for cache replacement. Except for reference times, 
information of creation time, serialization/deserialization time, I/O time and size are 
considered in their policies [21–24]. In these policies, DAGs are used to evaluate 
an RDD’s future cost. RDDs with smaller cost value have precedence over being 
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evicted, and RDDs with greater cost value have precedence over being cached into 
memory.

Parameter Tuning There are many parameters in the parallel processing sys-
tem, and the relationship between parameters and performance is nonlinear. So it’s 
important to get the best parameter configuration by tuning. Existing approaches are 
divided into manual parameter tuning approaches [25] and automatic parameter tun-
ing approaches two categories. Manual tuning approaches should be trial and error 
before getting a set of satisfying parameters, as well as users, have to go deep into 
comprehending the program and system that it runs on. Therefore it is time-con-
sumed. Automatic tuning approaches have no such issues. Existing automatic tuning 
approaches are divided into three categories:

Approaches based on cost model. Cost-based approaches need users to create 
cost models based on the aim framework. For example, Wang et al. [26] creates a 
performance model with the job execution time of each stage based on the Spark 
workflow. Starfish [27, 28] employs a mixture of cost model and simulator to opti-
mize a job based on previously executed job profile information. Compute spaces 
in these approaches are usually huge. So these approaches provide various ways 
to reduce compute time. For example, Starfish divides the configuration parameter 
space into subspaces. And MR-COF [29] uses a genetic algorithm to search the 
parameter space.

Approaches based on machine learning. These approaches train the performance 
model and search parameters space using machine learning algorithms. For exam-
ple, Yigitbasi et al. [30] uses Support Vector Regression algorithm and Chen et al. 
[31] uses Tree Regression algorithm. Approaches in this category have good appli-
cability and can be used based on different applications and clusters. However, there 
are significant impacts on system performance caused by the machine learning 
model.

Approaches based on searching. Search-based approaches search parameter space 
based on a fitness function using different search algorithms. For example, PRNN 
[32] provides parameters for recommended tasks by searching for similar tasks 
from a history database. Approaches of this kind mainly use a genetic algorithm to 
express the relationship among various parameters and improve search efficiency. 
For example, GEP [33] represents the relationship among configuration parameters 
with Gene Expression Programming and searches optimal or near-optimal param-
eters by the Particle Swarm Optimization algorithm. In addition, there are some 
online approaches that can automatically adjust task parameters. MRONLINE [34] 
uses a specific set of tuning rules based on the combination of the Intelligent Climb-
ing algorithm to achieve online parameter adjustment. MRONLINE also supports 
fine-grained control of configuration parameters, using different configurations for 
each task. Ant [35] gets the optimal parameters after multiple waves of task execu-
tion. Parameters of the current tasks are generated through crossover and mutation 
on parameters of previous wave tasks. The online methods do not need to repeatedly 
perform and can dynamically adjust parameters according to the real-time tasks, so 
it is suitable for applications just running one or several times.

Storage Optimization MemTune [20] dynamically adjusts the heap share of 
execution memory and storage memory. However, it only considers dependencies 
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between currently running tasks. On the contrary, our approach takes full account 
of the entire DAG and dependencies. Koliopoulos [9] introduces a new view on 
improving the cache efficiency in Spark. It provides a storage scheme auto-selection 
mechanism basing on the relationship of data size and total memory size in a cluster. 
Different thresholds indicate corresponding storage scheme statically. Although it 
can successfully select a storage scheme for each RDD, the storage scheme is static 
in the whole running. In contrast, our approach can dynamically select a storage 
scheme for blocks.

8  Conclusions and Future Works

In this paper, we present a novel task-aware storage scheme selection mechanism 
named TFSS. When a job is running, TFSS calculates worst-case execution cost 
of different scenarios considering the current memory usage state and future com-
puting task which would be executed in one executor of the current stage. Then, 
it automatically recommends an appropriate cache storage scheme with minimal 
cost. Compared with the default static specified storage scheme, TFSS can mitigate 
memory pressure and speed up the application execution. And differing from the 
RDD-Grained storage scheme selection mechanism used by Spark, our approach 
implements a task-grained storage scheme selection. Experiments show that when 
the memory space is limited the proposed approach can effectively improve the per-
formance by up to 78%. Furthermore, our approach has better performance on the 
heterogeneous environment than the default mechanism. In the future, we plan to 
integrate a cost-based RDD cache replacement strategy to replace LRU which just 
uses history for replacement and does not take full advantage of known DAG execu-
tion flow.
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