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Abstract
In distributed in-memory computing systems, data distribution has a large impact on
performance. Designing a good partition algorithm is difficult and requires users to
have adequate prior knowledge of data, which makes data skew common in reality.
Traditional approaches to handling data skew by sampling and repartitioning often
incur additional overhead. In this paper,weproposed adynamic executionoptimization
for the aggregation operator, which is one of the most general and expensive operators
in Spark SQL. Our optimization aims to avoid the additional overhead and improve
the performance when data skew occurs. The core idea is task stealing. Based on the
relative size of data partitions, we add two types of tasks, namely segment tasks for
larger partitions and stealing tasks for smaller partitions. In a stage, stealing tasks
could actively steal and process data from segment tasks after processing their own.
The optimization achieves significant performance improvements from16%up to 67%
on different sizes and distributions of data. Experiments show that involved overhead
is minimal and could be negligible.
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1 Introduction

In recent years, as memory capacity continues to increase and DRAM price continues
to decrease, the distributed in-memory computing systems represented by Apache
Spark [22] have appeared. Spark provides an analytical library named Spark SQL [2]
to handle structured and semi-structured data. This paper focuses on the aggregation
operator in Spark SQL. It is one of the most common and expensive operators in
data processing systems [4,18]. In Spark SQL, the aggregation operator adopts the
classic two-phase implementation [14], which is expressed as two stages. In the first
stage, tasks read data from partitions and locally execute the partial aggregation to
reduce the input size transferred to the next stage. After the first stage is completed,
tasks in the second stage will fetch data from the previous stage and perform the final
aggregation. The partial aggregation and the final aggregation can be treated as two
reduce operations.

Caching data into memory in advance can significantly speed up the processing of
aggregation. However, in the course of our practice, we found that the performance
of aggregation largely depends on data distribution even after caching. Resilient Dis-
tributed Dataset (RDD) [28] is Spark’s core data abstraction. In anRDD, each partition
is the basic unit of parallelism. Spark assigns one task for each partition. When data
skew occurs, most data is distributed in specific partitions. In the first stage of aggrega-
tion, tasks for these larger partitionswill be finished later than tasks for other partitions.
They will become the performance bottleneck of aggregation because most data is
aggregated in this stage.

To prevent the data skew problem, users often need to have sufficient prior knowl-
edge of data to distribute it uniformly, which is unpractical in reality. In Spark SQL,
the classic method to handle data skew is using the repartition operator to redistribute
data in a round-robin fashion. Although the repartition operator could increase the
performance of aggregation, it is an extra operation that causes much unnecessary
overhead since it needs to access and shuffle all the data. This operation moves large
amounts of data across the cluster, which leads to serious performance degradation.
Therefore, we should avoid the operation.

In this paper, we propose a dynamic execution optimization to handle data skew for
aggregation operators. It is transparent to users and improves the performance with
little additional overhead. First, we design an algorithm to detect data skew based
on the information about partitions provided by Spark. According to the relative size
of partitions, we label tasks for the larger ones as segment tasks and label tasks for
the smaller ones as stealing tasks. If data is skewed, stealing tasks will steal data
from segment tasks to process after they have processed their own data. To allow
multiple tasks run concurrently on partitions, segment tasks process data in units of
fine-grained segments by logically splitting their partitions. Our optimization works in
thefirst stage of aggregation.Traditional approaches to handlingdata skewby sampling
[3,9,10] and repartitioning [11,12] often incur additional overhead. The optimization
we proposed in this paper not only avoids the overhead, but also utilizes idle resources
of stealing tasks which are finished earlier than segment tasks. In this way, it balances
the computational burden between segment tasks and stealing tasks and eventually
improves the performance when data skew occurs.
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Fig. 1 Spark architecture

Overall, we make the following contributions in this paper:

• We find that aggregation operators subject to different performance degradation
on varying degrees of data skew. According to the partition information provided
by Spark, we design an algorithm to detect data skew and classify partitions into
the larger ones and the smaller ones. Compared to traditional approaches, it avoids
the overhead of sampling.

• Segment tasks for larger partitions process data in units of fine-grained segments
by logically splitting partitions. Stealing tasks for smaller partitions actively steal
and process data from segment tasks after processing their own data. They are
implemented in a stage to prevent repartitioning data.

• Our proposal improves the performance with little additional overhead in the pres-
ence of data skew. From the evaluation results, it increases the performance for
aggregation ranged from 16% to 67%.

The rest of the paper is organized as follows. Section 2 provides background knowl-
edge and discusses the problem. To solve the problem, we propose dynamic execution
optimization in Sect. 3. Section 4 expands the optimization in detail. Section 5 evalu-
ates the effectiveness of our optimization by experiments. Related works are revisited
in Sect. 6, and conclusions are given in Sect. 7.

2 Background andMotivation

In this section, we provide the necessary background regarding Spark and discuss the
problem we need to solve.

2.1 Spark Overview

A Spark cluster consists of one master node and multiple worker nodes. Each node
has its components that play different roles in the cluster (see Fig. 1).
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In native Spark, it uses theDirected Acyclic Graph (DAG) tomodel the dependency
of RDDs. DAGScheduler creates stages based on DAG, generates tasks for each stage
and submits them to TaskScheduler for processing. Each task retains information
about the partition it needs to process. TaskScheduler distributes the received tasks
to executors located in worker nodes through different kinds of SchedulerBackend. A
worker node has one or more executors. Each executor has its own BlockManager,
which stores data and provides a data access interface for tasks running on it. Resource
allocation is performed by the master node’s SchedulerBackend, which allocates the
computing resources of executors for every task before execution. Tasks will take up
these resources until the end of their stage.

2.2 Problem Statement

To improve the performance, we tend to cache data inmemory as partitions in advance.
However, the performance gains of caching depend on data distribution. When data is
not uniformly distributed in partitions, it will have a significant impact on performance,
as shown in Fig. 2. The workload is TPC-H [24]. The size of the dataset is 7.8 GB and
detailed configurations can refer to Sect. 5.

Spark generates two stages for aggregation. When data skew occurs, we use the
repartition operator to handle data skew and redistribute data uniformly. It requires
Spark to create a new stage to handle it. The stage is executed before the aggregation. In
Fig. 2, if data distribution is uniform, the aggregation operator spends 1.3 s. However,
the cost is up to 5.2 s when data skew occurs. Repartitioning takes 6 s to increase the
performance of the aggregation operator to 1.3 s. Overall, the total execution time is
7.3 s. Therefore, repartitioning is an expensive operation we should avoid.

The main reason for the performance degradation of the aggregation operator is
presented in Fig. 3. Suppose that there are two worker nodes, and each node has one
executor. Every executor in worker nodes caches two partitions. The degree of filling
in partitions indicates the size of data. DAGScheduler generates tasks for every stage
and simply assigns one task for each partition. When data skew occurs, the workload
of tasks will be different. In Stage1, tasks read data from partitions (in RDD1) and
locally execute the partial aggregation (in RDD2) to reduce the input size transferred
to Stage2. After Stage1 is completed, tasks in Stage2 will fetch data from RDD2 (in
RDD3) and perform the final aggregation (in RDD4). Since most data is aggregated in
RDD2, Stage1 has the largest computational overhead in the aggregation operator. In
Stage1, Task2 and Task3 have more data to process. They are finished later than Task1
and Task4 because computing resources allocated for each task are fixed. Overloaded
tasks like Task2 and Task3 will become the performance bottleneck.

3 The Design of Optimization

In this section, we propose a dynamic execution optimization for aggregation, which
aims to improve the performance and avoid the additional overhead when data skew
occurs. It works in the first stage of aggregation. The core idea of our optimization

123



International Journal of Parallel Programming (2020) 48:941–956 945

Fig. 2 Performance profiling of aggregation in native Spark

Fig. 3 Execution of aggregation in native Spark

is task stealing. It consists of three steps: (1) add two types of tasks based on the
relative size of partitions, namely segment tasks for larger partitions and stealing tasks
for smaller partitions; (2) make segment tasks process data in units of segments by
logically splitting their partitions; and (3) let stealing tasks steal and process data from
segment tasks after stealing tasks process their partitions. Compared to processing data
in units of partitions, Step (2) allows multiple tasks to run on partitions concurrently.

Based on the architecture of native Spark, we implement our optimization as Spark-
M and modify the components in color, as shown in Fig. 4.

DAGScheduler-M detects data skew in the first stage of aggregation and assigns one
Task-M to each cached partition. Task-M has three categories namely ordinary task,
segment task and stealing task. They have their own execution mechanism and access
their partition via BlockManager-M.

The aggregation operator in Spark-M is executed as shown in Fig. 5. In RDD2, once
Task1 and Task4 finish processing their partitions, they will steal data from Task2 and
Task3 to aggregate, respectively. It is represented by dashed lines. In our optimization,
all stealing tasks will actively steal and process data from partitions that are processed
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Fig. 4 Spark-M architecture

Fig. 5 Execution of aggregation in Spark-M

by segment tasks. It harnesses idle resources of stealing tasks and reduces theworkload
of segment tasks. In this way, the optimization avoids the overhead of repartitioning.
Besides, it is transparent to users so that they do not need to know the characteristics
of the distribution.

4 Implementation

This section details the implementation of our dynamic execution optimization from
three aspects.

4.1 Partition Classification Algorithm

To detect data skew in every executor and classify partitions, we design Algorithm 1
in DAGScheduler-M based on partition information. The information is fetched from
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a Key-Value (KV) store in Spark, which collects information about task execution and
partition storage.

Algorithm 1: Partition classification algorithm
Input: Information from the KV store about partitions in every executor, hostT oCached Parts; A

factor to detect data skew, φ;
Output: Larger partitions that need to be segmented, spli t ting Parts; Dependencies between

smaller partitions and larger partitions, small PartsT oLargeParts;
1 foreach (host, parts) in hostToCachedParts do
2 sortedParts = sortByPartSize(parts);
3 rearPoint = sortedParts.size - 1;
4 if sorted Parts(rear Point).si ze/sorted Parts(0).si ze ≥ φ then
5 for i=0:sortedParts.size do
6 if sorted Parts(rear Point).si ze/sorted Parts(i).si ze ≥ φ then
7 smallPartsToLargeParts.insert(sortedParts(i), sortedParts(rearPoint));
8 splittingParts.insert(sortedParts(rearPoint));
9 rearPoint -= 1;

10 else
11 for j=sortedParts.size–1:rearPoint do
12 if sorted Parts( j).si ze/sorted Parts(i).si ze > φ then
13 smallPartsToLargeParts.insert(sortedParts(i), sortedParts(j)) ;
14 rearPoint = j - 1 ;
15 break ;

According to the partition size, all partitions on every executor are sorted in an
array named sortedParts in ascending order (line 2). We detect data skew by the size
of the smallest partition and the largest partition (lines 3–4). φ is a factor to determine
whether the data is skewed, with a default value of 1024. A larger φ generates less
stealing tasks and wastes resources. A smaller φ makes stealing tasks fail to steal data,
because most segment tasks have finished processing their data when stealing tasks
finish their works and try to steal data from segment tasks. If data skew is detected,
we establish dependencies named smallPartsToLargeParts from smaller partitions to
larger partitions according to the size of partitions (lines 5–15). The splittingParts
stores all the larger partitions that need to be split.

When DAGScheduler-M creates tasks for each stage, it will execute Algorithm 1 to
check the degree of data skew. If a task’s partition is a larger partition in splittingParts,
the task is labeled as a segment task. If a task’s partition is a smaller partition in
smallPartsToLargeParts, the task is labeled as a stealing task. Tasks for partitions that
are not in smallPartsToLargeParts keep the execution mechanism of native Spark,
namely ordinary tasks. Besides, DAGScheduler-M will find and assign one larger
partition to every stealing task based on smallPartsToLargeParts. It means that each
stealing task keeps information about two partitions. One is the smaller partition it
needs to process, and the other is the larger partition it needs to steal. In this way, a
stealing task can steal and process data from the larger partition after processing its
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smaller partition. It is based on a basic observation that tasks for larger partitions are
often finished later than tasks for the smaller ones.

4.2 Segment Task

In Spark, the executing units of tasks are partitions. It is not suitable for multiple tasks
running concurrently on the same partition. Therefore, for segment tasks, we logically
split their larger partitions into multiple fine-grained segments and make them process
data in units of segments.

Every cached partition in BlockManager is an array including multiple Cached-
Batches. The default size of a CachedBatch is 10000 rows and can be specified
by the Spark configuration. In our BlockManager-M, we make a new class named
cached Parti tion for every larger partition. The class is unique in every stage and is
createdwhen the first task in a stage accesses the partition. It guarantees the correctness
of applications that concurrently access the partition.

private case class cachedPartition() {
values = array[CachedBatch]
frontIndex = 0
rearIndex = values.size
jumpNum = if (values.size % k != 0) {

size / k + 1
} else {

size / k
}
done = false

}

k is the number of segments, with a default value of 10. A larger k increases
the overhead of function calling, while a smaller k cannot decrease the workload of
segment tasks. The attribute done is a flag that tells all tasks running on the partition
that data has been processed. The attribute values stores data from a larger partition.
The f ront I ndex , the rear I ndex and the jumpNum are integers which are used to
read CachedBatches from values.

Based on the class cached Parti tion, we design a split processing algorithm for
segment tasks. First, we check if the segment task is the first task in a stage to access
its partition (lines 1–2). Next, the task will read and process data in units of segments
until all data is processed (lines 3–17).

The cached Parts stores all cached Parti tions of a stage. If a segment task does
not find the cached Parti tion in cached Parts, it is the first task to access the l Part
and needs to construct a new cached Parti tion in cached Parts (lines 1–2). The lock
is used to make sure tasks running on the cached Parti tion are synchronized (line 5).
With the help of f ront I ndex , jumpI ndex and rear I ndex , the segment task directly
reads and processes data from the cached Parti tion in units of segments rather than
splitting them first (lines 7–11). Data is processed from f ront I ndex to rear I ndex .
When the remaining data is not enough to form a segment, it means that this is the last
segment the task needs to process. In this case, the segment task will read the segment
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and tell other stealing tasks running on the cached Parti tion that the partition has
been processed (lines 13–14).

4.3 Stealing Task

Every stealing task holds the information about a smaller partition and a larger parti-
tion. After stealing tasks process their smaller partitions, they could directly find the
larger partitions they need to steal without additional overhead.We design a data steal-
ing algorithm for stealing tasks. Every stealing task processes data from its smaller
partition first (line 1). Then the task will steal and process data from the larger partition
(lines 2–14).

Similar to the segment task, the stealing task constructs a cached Parti tion in
cached Parts if it is the first task in a stage to access the l Part (lines 2–3). When the
segment task has not finished processing the cached Parti tion, the stealing task will
steal data from it (line 5). As the amount of processed data increases, the rear I ndex
is gradually decreased and the f ront I ndex is gradually increased. Therefore, the
stealSegment is also decreased (line 8). δ determines howmuch data would be stolen
based on the remaining data. A too small δ cannot balance the workload between
stealing tasks and segment tasks, while a too large δ makes stealing tasks become the
new bottleneck. As far as our practice, 3 is the most efficient value. To prevent stealing
tasks from becoming the new bottleneck, we also make them only steal data once
on the same partition. Unlike the processing order of segment tasks, stealing tasks
process data in the cached Parti tion from rear I ndex to f ront I ndex . It minimizes
the conflicts between stealing tasks and segment tasks. When the cached Parti tion
has been completely processed by the segment task, the stealing task only processes
its s Part and saves the processing result. Otherwise, the stealing task will save the
processing results from the s Part and part of the l Part (line 14).

To ensure the concurrent updates of cachedPartition, Algorithm 2 and Algorithm
3 both lock it when reading data and unlock it before processing. Because structured
data cached by Spark SQL is deserialized, the time of reading data almost could be
negligible. In this way, the overhead of synchronization is minimal.

5 Experiments

In this section, we evaluate the performance of the aggregation operator with our
dynamic execution optimization on different datasets and degrees of data skew. We
implemented our optimization in Spark-2.3.2. It is deployed on a cluster connected by
a 10 GigE switch, of which 3 nodes are used for worker nodes, and 1 node is used for
themaster node. Each node has two 2.1GHz Intel Xeon Silver 4110 8-core processors,
156GBmemory, and runs 64-bits CentOS 7.5.1804. We use two subqueries from Q18
and Q15 in TPC-H workload:

(1) SELECT orderkey, SUM(quantity) FROM lineitem GROUP BY orderkey;
(2) SELECT suppkey, SUM(extendedprice*(1-discount)) FROM lineitem WHERE

shipdate ≥ ’1994-01-01’ GROUP BY suppkey;
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Algorithm 2: Split processing algorithm
Input: The larger partition that the task needs to process, l Part ; A map from partition Id to

cached Parti tion in a BlockManager-M, cached Parts;
1 if cachedParts.contains(lPart.Id) == false then
2 constructing a new cached Parti tion in cached Parts based on l Part ;

3 part = cachedParts.find(lPart.Id);
4 while part.done == false do
5 part.lock();
6 cachedBatches = part.values;
7 if part.frontIndex + part.jumpNum < part.rearIndex then
8 segment = cachedBatches.slice(part.frontIndex, part.frontIndex + part.jumpNum);
9 part.frontIndex = part.frontIndex + part.jumpNum;

10 part.unlock();
11 processing data from segment;
12 else
13 segment = cachedBatches.slice(part.frontIndex, part.rearIndex);
14 part.done = true;
15 part.unlock();
16 processing data from segment;

17 saving the processing result and finishing the task;

Algorithm 3: Data stealing algorithm
Input: The smaller partition that the task needs to process, s Part ;

The larger partition that the task needs to steal, l Part ;
A map from partition Id to cached Parti tion in a BlockManager-M
cached Parts;
A factor to control the size of data stealing, δ;

1 finding the s Part from BlockManager-M and processing data from it;
2 if cachedParts.contains(lPart.Id) == false then
3 constructing a new cached Parti tion in cached Parts based on l Part ;

4 part = cachedParts.find(lPart.Id);
5 if part.done == false then
6 part.lock() ;
7 cachedBatches = part.values;
8 stealJumpNum = (part.rearIndex - part.frontIndex) / δ ;
9 if stealJumpNum > 0 then

10 stealSegment = cachedBatches.slice(part.rearIndex - stealJumpNum, part.rearIndex);
11 part.rearIndex = part.rearIndex - stealJumpNum ;
12 part.unlock();
13 processing data from stealSegment;
14 else
15 part.unlock();

16 saving the processing result and finishing the task;

Query (1) includes an aggregation operator with the high-cardinality attribute
orderkey. The orderkey has a large number of different data values. In the first stage,
data is grouped by the values. It means that data transferred to the second stage is
large. Query (2) consists of a filter operator and an aggregation operator with the low-
cardinality attribute suppkey. Almost all computations happen in the first aggregation
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Table 1 Data distribution

Node 1 Node 2 Node 3

Small Medium Large Small Medium Large Small Medium Large

Distr. 1 30 0 2 29 0 3 30 0 2

Distr. 2 18 14 0 18 14 0 19 13 0

Distr. 3 32 0 0 32 0 0 32 0 0

(a) (b)

(c)

Fig. 6 Performance evaluation in different distributions for Query (1)

stage. It is a compute-intensive query. Considering the size of datasets, we configure
80GB of memory for each Spark executor. Stealing tasks may open too many files
during the shuffle phase, which could exceed the maximum of file handles set by
the Linux kernel. According to the number of CPUs in our cluster, we set the Spark
configuration spark.sql.shuffle.partitions from 200 to 96.

Three sets of experiments with different data distributions and datasets for each
query are designed. Data distribution is shown in Table 1. There are 32 partitions
cached on each node. They are classified into three categories: small, medium and
large partitions. The small partition indicates that the size of it accounts for 0% to 5%
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(a) (b)

(c)

Fig. 7 Performance evaluation in different distributions for Query (2)

of the total data size on the node. The medium partition accounts for 5% to 20% and
the large partition accounts for more than 20%.

Distribution 1 simulates the high data skew andmost data is distributed in only a few
partitions. Distribution 2 has a lower degree of data skew. There are no large partitions
in it, which is more common in reality. Distribution 3 is the ideal distribution, where
data is uniformly distributed.

Figures 6 and 7 show the performance of the aggregation operator for different
datasets under varying data distributions. We use four lineitem tables with different
sizes, 7.8GB (scale factor 10–60M tuples), 23.6GB (scale factor 30–180M tuples),
39.5GB (scale factor 50–300M tuples) and 79.6GB (scale factor 100–600M tuples).
Spark in figures is native, which is used for comparison. Spark-M is the modified
Spark with our dynamic execution optimization. For each experiment, X(1) and X(2)
represent two stages of the aggregation operator, respectively.

As shown in Fig. 6, the performance improvement in Fig. 6a is higher than that
in Fig. 6b. It is because a large number of stealing tasks are generated in extreme
distribution, andour optimizationmakes full use of these tasks. In addition to the degree
of data skew, the performance improvement that task stealing brings is also related to
the size of data partitions. As the total size of data increases, the size of data partitions
also increases. It improves the success rate of task stealing. If the partitions assigned
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to segment tasks are small, some of segment tasks may have finished processing their
partitions when stealing tasks try to steal data from them. Therefore, SF50 and SF100
have a higher speedup thanSF10 andSF30nomatter inDistribution 1 or inDistribution
2. Spark-M could achieve the performance improvement of up to 67.06% when the
scale factor is equal to 100 in extreme distribution, which is presented in Fig. 6a.

Compared to Query (1), Query (2) has a filter operator and a multiplication com-
putation in SUM(). The filter operator keeps most data, which further increases the
computational overhead of each task. For stealing tasks, the success rate of task steal-
ing is also improved because segment tasks need more time to process their data.
In Fig. 7, because the low-cardinality attribute suppkey aggregates most data in the
first stage, almost all the overhead is in this stage. The execution time of the second
stage could be negligible. In this case, our optimization has significant performance
gains across all distributions and datasets. Figures 6c and 7c illustrate that Spark-M
has little impact on performance when data is uniformly distributed. It means that the
dynamic execution optimization we proposed in this paper improves the performance
with slight overhead.

6 RelatedWork

In this section, we briefly introduce researches in the following categories: (1) opti-
mizations for aggregation and (2) optimizations for load balancing.

6.1 Aggregation

In recent years, there are a lot of optimizations for aggregation operators. Wang et
al. [25] optimized aggregation operators from two aspects in NUMA architectures:
the NUMA-aware data partition algorithm and the efficient aggregation algorithm.
Although the partition algorithm considers inter-socket and intra-socket load balanc-
ing, it still needs to repartition data. Our approach makes idle tasks steal and process
part of data from tasks with higher workloads during aggregation. It avoids the over-
head of repartitioning. Polychroniou et al. [20] and Jiang et al. [8] utilized SIMD and
MIMD instructions to accelerate the processing of aggregation. It optimizes the aggre-
gation operator from the perspective of data parallelism. Müller et al. [18] proposed
an aggregation algorithm to dynamically switch hash-based and sort-based aggrega-
tion in the process of execution. It increases the performance from the perspective
of the algorithm. Culhane et al. [5,6] proposed LOOM, which builds an aggregation
tree with some fixed configurations. It requires prior knowledge of data to get the
optimal performance. Liu et al. [14] considered similarity between partitions and pro-
posed GRASP. It combines with static network bandwidth information to design a
multi-phase execution framework. However, static resource statistics are not accurate
and calculating the similarity of partitions needs additional overhead. Therefore, we
choose to optimize the performance of aggregation operators from the perspective of
data distribution.
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6.2 Load Balancing

Load balancing is a classic research topic in parallel computing. Work stealing [1,13,
17,27] is a traditional solution to load imbalance caused by multiple applications. In
this way, thewhole task in a CPUqueue could be stolen to other idle CPUs. Essentially,
it is more like task migration. Speculative execution provided by native Spark is based
on the idea. Spark periodically checks the running tasks. When the running time of a
task is larger than a threshold, Spark will copy and start the task on another idle node.
The finish time is based on the first finished one of the two tasks.

However, work stealing could not deal with the load imbalance caused by data
skew. It produces a lot of large data partitions and have a large impact on perfor-
mance [7]. Most prior works which try to avoid and handle data skew are based on
data statistics. Okcan et al. [19] and Kwon et al. [9,10] launch procedures to collect
statistics before job execution. Chen et al. [3] collect statistics during job execution.
Because of expensive sampling and repartitioning, these works often incur additional
overhead. Besides, the accuracy of sampling is difficult to guarantee. Liu et al. [16]
handle date skew by dynamically adjusting the resource of tasks. Wang et al. [26]
introduce a scheduler in every node to dynamically allocate resources for query exe-
cution segments in the pipelines, which still incurs additional overhead of scheduler.
SkewTune [11,12] detects straggler tasks which process the larger partitions at runtime
and repartitions their data. However, SkewTune needs to stop the straggler tasks first
when repartitioning data. We detect skewed partitions via the information provided by
Spark and propose dynamic execution optimization based on task stealing to handle
data skew. Our approach makes tasks with lower workloads actively steal data from
larger partitions to achieve load balancing. It avoids the overhead of detecting proce-
dures and repartitioning. In Spark, Bertolucci et al. [21] researched how different data
partitioning strategies affect the performance of graph computations. Liu et al. [15]
proposed a partition method to handle data skew for Spark Streaming. Zhuo et al. [23]
proposed a partitioning strategy to handle data skew for Spark on the shuffle phase.
These works rely on sampling. In this paper, we optimize the stage before shuffling,
and fetch partition information from a KV store in Spark to avoid sampling data.

7 Conclusions

Data distribution has a crucial impact on the performance of aggregation. When data
skew occurs, tasks with higher workloads in the first stage of aggregation become the
performance bottleneck. In this paper, we propose a dynamic execution optimization to
balance the workload among tasks. It works in the first stage of aggregation and makes
tasks for smaller partitions steal and process data from tasks for larger partitions. Our
optimization avoids the overhead of sampling and repartitioning. Experiments show
that it could achieve significant performance improvements on varying degrees of data
skew with little additional overhead. Because we have modified the task scheduling
in Spark, the challenge of extending our optimization to general Spark or other Spark
libraries is redesigning the splitting scheme based on different data structures of par-
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titions. Besides, it can also be extended to other operators and systems to handle data
skew, which is one of our future work.
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