
International Journal of Parallel Programming (2020) 48:98–118
https://doi.org/10.1007/s10766-019-00651-0

CSMqGraph: Coarse-Grained andMulti-external-storage
Multi-queue I/O Management for Graph Computing

Shuo Chen1 · Zhan Shi1 · Dan Feng1 · Shang Liu1 · Fang Wang1 ·
Lei Yang1 · Ruili Yu1

Received: 11 August 2019 / Accepted: 11 November 2019 / Published online: 15 November 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
As graphs continue growing, external storage graph processing systems serve as a
promising alternative to distributed in-memory solutions for low cost and high scal-
ability. To obtain high I/O throughput, these systems usually use multiple external
storage devices. They adopt the operating system I/O management method based on
striped volume, resulting in unsatisfactory performance, such as low sequential band-
width utilization of each external storage device, limited I/O parallelism and expensive
management overhead. In this paper,we analyzed the problems of the operating system
I/O management method based on striped volume. Then we designed CSMqGraph, a
graph processing system adopts coarse-grained striping method matching sequential
large I/O to fully utilize the maximum sequential bandwidth of each external storage
device and an I/O management strategy based on multi-external-storage multi-queue
making I/O threads dedicated to each external storage device to further improve I/O
throughput and fully exploit the parallelism of multiple external storage devices. For
different graph algorithms and datasets, our evaluation shows that CSMqGraph con-
sistently outperforms state-of-the-art engines GridGraph by up to 40%, and has better
I/O scalability.

Keywords Graph processing system · External storage processing · Multiple external
storage devices · Coarse-grained · I/O management

1 Introduction

Graphs are powerful data structures that have been used broadly to represent the
relationships among various entities, and are being widely used in data modeling in
various fields, such as social networking [2,4], web search [7,10,17], road networks
[16], protein networks [3,9], healthcare [8], information and cyber-physical systems.

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-019-00651-0&domain=pdf
http://orcid.org/0000-0002-7798-1121

International Journal of Parallel Programming (2020) 48:98–118 99

Therefore, large-scale graph analysis has emerged as a fundamental computing pattern
in both academia and industry.

Generally speaking, many graph algorithms, such as breadth-first search, PageRank
need to access the adjacency lists of the vertices. While graph algorithms that perform
edge traversals on graphs induce many small, random I/Os [29] because edges are
encoded non-local structure among vertices. It will make even the simplest graph
traversal algorithm become extremely slow when the graph is massive and has to
be stored in slow external storage devices. So I/O becomes a major performance
bottleneck in external storage graph processing systems.

To tackle the I/O challenges in large-scale graph processing, Many distributed
graph processing systems like HybridGraph [26], Chaos [20] have been proposed
in the past few years. They are able to handle large-scale graphs by exploiting the
powerful computation resources of clusters. However, load imbalance [11,19], syn-
chronization overhead [27] and fault tolerance overhead [25] are still challenges for
graph processing in distributed environment.

Recent studies have shown that single machine external storage graph processing
systems can process large-scale graphs with billions of vertices and hundreds of bil-
lions of edges, and achieve the performance comparable with a distributed system.
They focus on accelerating data access on external storage devices. However, a sin-
gle external storage device cannot provide enough bandwidth, which performance is
limited by slow external storage access. Therefore, multiple external storage devices
serve as a better alternative when external storage graph processing systems require
high I/O throughput for processing large-scale graphs. Existing multiple external stor-
age graph processing systems such as GridGraph [30] adopt the operating system
I/O management method based on striped volume. The ideal result of using multiple
external storage devices is that the graph processing systems can use each device in
full parallel and balance, and make full use of the maximum sequential bandwidth of
each external storage device. However, the operating system I/O management method
based on striped volume suffers not only from complex I/O management but also the
lower I/O throughput. It cannot make full use of the maximum sequential bandwidth
of each device and give full play to the parallelism ofmultiple external storage devices.

In order to solve the above problems, First, we analyzed the problems of the oper-
ating system I/O management method based on striped volume. Second, we analyzed
the graph data access characteristics of state-of-the-art out-of-core graph engines. We
presented a coarse-grained striping method matching sequential large I/O to fully uti-
lize the maximum sequential bandwidth of each external storage device. Third, for
I/O requests still across two or more external storage devices, we proposed an I/O
management strategy based on multi-external-storage multi-queue, which performs
I/O management in the application layer, such as address mapping, decomposition,
prefetch merging and dispatching of I/O requests, and makes I/O threads dedicate to
one external storage device. Then we have designed and developed CSMqGraph, a
graph processing system based on coarse-grained and multi-external-storage multi-
queue I/O management strategy.

For different graph algorithms and datasets, the results show that comparing with
GridGraph, CSMqGraph’s performance is improved in all cases.It outperforms exter-
nal storage graph processing system GridGraph by up to 40% and has better I/O

123

100 International Journal of Parallel Programming (2020) 48:98–118

scalability. Then we perform the comparison test of device I/Os and I/O throughput,
which proves that the I/O management strategy can effectively reduce device I/Os and
improve I/O throughput.

The remainder of this paper is organized as follows. Section 2 discusses the motiva-
tion of this work. Section 3 outlines our approach, followed by experimental evaluation
in Sect. 4. Section 5 gives a survey of related work. Finally, we conclude this paper in
Sect. 6.

2 Problem Presentation andMotivation

The operating system I/O management method based on striped volume is a common
method for themultiple external storage graph processing systems, such asGridGraph,
G-Store [12], NXgraph [1], etc. They take fine-grained stripes, which doesn’t consider
the characteristics of the processed graph data. The distribution of data completely
relies on transparent volume I/O management. The parallelism of multiple external
storage devices and themaximumsequential bandwidth of each external storage device
cannot be fully utilized to achieve ideal I/O performance. Figure 1 shows the average
throughput and bandwidth utilization of each external storage device while GridGraph
runs different graph algorithms on Twitter [13]. The average throughput of each exter-
nal storage device is in the range of 138–156MB/s. It does not reach its maximum
sequential bandwidth. The bandwidth utilization is 66–75%, there is still a lot of room
for improvement. Figure 2 shows the average throughput and bandwidth utilization of
each external storage device when GridGraph executes theWCC algorithm on Twitter
with different numbers of external storage devices. The maximum bandwidth utiliza-
tion of each device is 73% and decreases as the number of external storage devices
increases. And the minimum of that is 66%.

Fig. 1 Average I/O throughput and bandwidth utilization on Twitter graph with different graph algorithms

123

International Journal of Parallel Programming (2020) 48:98–118 101

Fig. 2 Average I/O throughput and bandwidth utilization of WCC on Twitter graph with different numbers
of external storage devices

External storage graph processing systems adopts the operating system I/O man-
agement method based on striped volume. The distribution of data completely relies
on transparent volume I/O management. The boundaries of partitions and each I/O
request will not be guaranteed to be aligned with the boundary of the stripe unit. So
it is inevitable that one I/O request is distributed to multiple external storage devices.
And each I/O thread cannot be dedicated to a single external storage device. It can-
not effectively utilize optimization strategies such as I/O sorting and merging in the
operating system. The parallelism of multiple external storage devices and the maxi-
mum sequential bandwidth of each external storage device cannot be fully utilized to
achieve higher I/O performance. It also causes unnecessary I/O service overhead and
locks contention overhead. However, in the multiple external storage devices graph
processing systems, the sequentiality of each external storage device and the paral-
lelism of multiple external storage devices are not contradictory. By analyzing the
access characteristics of the graph data, we can adjust the size of the stripe depth to
better utilize the sequential bandwidth of each external storage device and the paral-
lelism of multiple external storage devices. These observations motivate us to develop
a solution for efficient use of multiple external storage devices and the data access
channel to achieve higher throughput.

3 Coarse-Grained I/OManagement Strategy Based on
Multi-External-StorageMulti-Queue

When using multiple external storage devices to improve the performance of I/O
and alleviate I/O pressure, there are some problems, such as insufficient utilization
of sequential bandwidth, limited parallel I/O capability, various locks contention
overhead and synchronization overhead. Therefore, the I/O performance is not ideal

123

102 International Journal of Parallel Programming (2020) 48:98–118

Coarse-Grained
striping module

Graph
partition
module

Preprocessing

Original
Graph
data

Graph processing engine

Algorithm
state data

Preprocessed
graph data

Preprocessed
graph data

Preprocessed
graph data

...

I/O buffer

I/O thread

I/O thread

...

I/O thread

I/O thread

...

I/O thread

I/O thread

...

I/O buffer

I/O buffer

I/O buffer

I/O buffer

I/O buffer

I/O task queue

I/O task queue

I/O task queue

Graph
processing
main thread

Worker
thread

Multi-external-storage multi-queue I/O manager

Algorithm
state data

Algorithm
state data

Algorithm
state data

Algorithm
state data

Algorithm
state data

Worker
thread

Worker
thread

Worker
thread

Worker
thread

Worker
thread

Fig. 3 CSMqGraph architecture overview

enough. We proposed a coarse-grained striping method matching sequential large I/O
to maximize the sequential bandwidth of each external storage device. Aiming at the
problems of limited parallel I/O capability and various locks contention overhead for
multiple external storage devices, we proposed an I/O management strategy based
on multi-external-storage multi-queue. Then we designed and implemented CSMq-
Graph, a graph processing system based on coarse-grained striping method matching
sequential large I/O and multi-external-storage multi-queue I/Omanagement strategy.
The architecture is shown in Fig. 3.

CSMqGraph does preprocessing in the followingway: First, it partitions the original
unordered edge list using the 2D grid partitioning method. This 2D grid partitioning
provides not only flexibility but also efficiency since the higher level partitioning is
virtual and CSMqGraph is able to utilize the outcome of lower level partitioning thus
no more actual overhead is added. Second, it strips the partitioned files into multiple
external storage devices according to the predefined coarse-grained stripe depth.

CSMqGraph does computation in the following way: First, the main thread pushes
tasks to the I/O task queue, containing the file, offset, and length to issue each I/O
request. Second, I/O threads fetch tasks from the queue until empty, read data to the
I/O buffer and write data from a specified location. Third, worker threads fetch data
from the I/O buffer and process each edge.

3.1 Coarse-Grained StripingMethodMatching Sequential Large I/O
Characteristics

In order to saturate the external storage bandwidth as much as possible, the graph
processing systems adopt multiple I/O threads for concurrent access and maintain a
large I/O buffer for each I/O thread (24MB in the GridGraph, 16MB in X-Stream) to
access edge blocks. When the vertex partition size P satisfies the locality requirement,

123

International Journal of Parallel Programming (2020) 48:98–118 103

0 5000 10000 15000 20000 25000

I/O request size(KB)

0

20

40

60

80

100

C
um

ul
at

iv
e

di
st

rib
ut

io
n(

%
)

Subdomain
Twitter

Fig. 4 I/O request size distribution

most of the edge blocks are large. The I/O requests also have the characteristics of
large and don’t exceed the I/O buffer size.

Through experiments, we further verify that the external storage graph processing
systems, which execute graph algorithm based on the 2D partitioning and sequential
external storage access optimization principle have the characteristics of large I/O.
Figure 4 shows the distribution of I/O requests size when GridGraph performs a round
of iteration of the graph algorithm. The Twitter graph uses 36*36 partitions and the
Subdomain graph uses 70*70 partitions. It can be seen that in the Twitter graph, 92%
of I/O requests are larger than 1MB, and the average size is 11MB. 99%of I/O requests
in the Subdomain graph are larger than 1MB, and the average size is 7MB.

Studies have shown that stripe depth affects the system I/O performance. The choice
of stripe depth is closely related to the application I/O characteristics [15]. The stripe
depth of the operating system based on the striped volume is usually 2–512KB. This
stripe depth is very fine-grained relative to the I/O request of the external storage
graph processing system. It can’t fully exploit the bandwidth of the external storage
device. However, the current graph processing system relies on the operating system
I/O management method based on the striped volume to use multiple external storage
devices. Instead of selecting the appropriate stripe depth based on the graph data access
characteristics and the number of I/O threads, it directly uses the Linux operating
system default 512KB stripe depth. By analyzing the data access characteristics of the
graphprocessing system,wepropose a coarse-grained stripingmethod thatmatches the
large I/O features to perform the sequential distribution of graph data across multiple
external storage devices.

Choosing the size of the strip depth is the key. If the stripe depth is smaller than the
I/O request size, it will result in an I/O request spanning two or more external storage
devices. It is hard for external storage devices to achieve full sequential bandwidth
sincemore timewill be spent on seeking to potentially different positions.Andmultiple
block positioning requires multiple logical address to physical address mapping. The
overhead generated by multiple address mappings is not negligible. If the stripe depth
is larger than or equal to the I/O request size, the I/O request will span no more than
two external storage devices. When the stripe depth is N times the size of the I/O
request, if each I/O request start offset is aligned with the stripe unit x/N (x = 0, 1, ...

123

104 International Journal of Parallel Programming (2020) 48:98–118

File system

Application layer

Operating system layer

I/O buffer

Worker
thread

I/O buffer

Worker
thread

External
storage
device0

Striped volume

External
storage
device1

External
storage

deviceN-1

I/O thread I/O thread

Fig. 5 I/O model of operating system based on striped volume

N-1), which ensures that each I/O request served by only one external storage device.
But when the I/O concurrency is high, if I/O requests data is only distributed on one
external storage device, concurrent I/O requests result in centralized access to the hot
device. And if the stripe depth is too large, it may cause the imbalance distribution of
graph data among multiple external storage devices and increase the computing time
that cannot overlap with I/O.

Therefore, we make a compromise approach to choose the average I/O request
size ∼ maximum I/O request size as the stripe depth. This approach tries to avoid
I/O requests spanning three or more external storage devices to reduce data block
positioning overhead. It also reduces the I/Os of each external storage device. It relieves
the potential problems of the imbalanced distribution of data and hot external storage
devices centralized access caused by the excessive stripe depth. For I/O requests still
across two or more external storage devices, we perform I/O request decomposition
and prefetch merging in the application layer to realize the dynamic adjustment of the
I/O request size and align stripe unit boundaries. It ensures that each I/O thread has
launched an I/O request only on one external storage device.

3.2 I/OManagement Strategy Based onMulti-External-StorageMulti-Queue

As shown in Fig. 5, the external storage graph processing systems use the operating
system I/O management method based on striped volume to expand the I/O perfor-
mance. In this I/O model, I/O threads transparently initiate I/O requests to the striped
volume composed ofmultiple external storage devices. It is unavoidable that the data of
one I/O request initiated by one I/O thread is across multiple external storage devices
and the data of I/O requests initiated by multiple I/O threads may be on the same
external storage device, resulting in contention overhead for external storage devices
and file locks. In the context of an I/O thread, the I/O service tasks are performed in

123

International Journal of Parallel Programming (2020) 48:98–118 105

main thread

I/O thread

 I/O thread

 I/O thread

I/O
task

I/O
task

I/O
task

I/O
task

I/O
task

I/O
task

I/O task queue

Fi
le

 sy
st

em

Ex
te

rn
al

sto

ra
ge

de

vi
ce

0

Ex
te

rn
al

sto

ra
ge

de

vi
ce

1

Ex
te

rn
al

sto

ra
ge

de

vi
ce

N
-1

St
rip

ed
 v

ol
um

e

Fig. 6 Multi-external-storage single-queue thread pool model

a sequential polling manner, which limits the parallel capability of multiple external
storage devices. After the I/O request decomposition by the volume manager of the
operating system, the pluglist corresponding to an I/O thread in the block layer con-
tains small I/O requests to different external storage devices. It is not efficient for the
operating system to perform sorting and merging in such a pluglist. When the stripe
depth is fine-grained, concurrent I/O threads cause sequential small I/O requests on
each external device to be unpredictable out of order arrival, causing merge invalid.
In some graph algorithms, only part of the data is active data. The merge is more
inefficient, which increases the number of device I/Os.

Based on the operating system I/O management method of the striped volume, the
external storage graph processing systems use the thread pool model of the single I/O
task queue to initiate I/O requests concurrently in order to maximize the saturation
bandwidth of themultiple external storage devices. As shown in Fig. 6, themain thread
doesn’t apply any I/Omanagement strategies to multiple external storage devices. The
main thread simply pushes the original I/O requests to the shared single I/O task queue,
and then the multiple I/O threads fetch the tasks from the shared queue and initiate the
corresponding I/O to the striped volume. The I/O requests are completely dependent
on the operating system for management, such as I/O request decomposition, merging,
and dispatching. It is not efficient for I/O sorting and merging. This thread pool model
causes various lock conflicts in the operating system. For example,multiple I/O threads
in the application layer compete for locks on a single shared I/O task queue.

To solve the above problems, we propose an I/O management strategy based on
multi-external-storage multi-queue. The multi-external-storage multi-queue thread
pool model is implemented, as shown in Fig. 7. It maintains a dedicated I/O task queue
for each external storage device and performs I/O request decomposition, prefetch
merging, and dispatching at the application layer. The decomposed new I/O request
that doesn’t span multiple devices is added to the corresponding I/O task queue. And
bind the I/O threads to the I/O task queue, so that each I/O thread is dedicated to a
specific external storage device. Figure 8 shows the I/Omodel based onmulti-external-
storage multi-queue. This I/O model avoids the case where an I/O request initiated by
an I/O thread is served bymultiple external storage devices.Whenmultiple I/O threads

123

106 International Journal of Parallel Programming (2020) 48:98–118

main thread

I/O thread

I/O thread

 I/O thread

Ex
te

rn
al

 st
or

ag
e

de
vi

ce
0

Ex
te

rn
al

 st
or

ag
e

de
vi

ce
N

-1

I/O task queue N-1

I/O
task

I/O
task

I/O
task

I/O task queue 0

I/O
task

I/O
task

I/O
task

 I/O thread

Fi
le

 sy
st

em
Fi

le
 sy

st
em

Fig. 7 Multi-external-storage multi-queue thread pool model

External storage deviceN-1

I/O buffer

Worker
 thread

I/O buffer

Worker
 thread

File system

Application layer

Operating system
layer

External storage device0

I/O buffer

Worker
thread

I/O buffer

Worker
 thread

File system

I/O thread I/O thread I/O thread I/O thread

Fig. 8 I/O model based on multi-external-storage multi-queue

are concurrently access, multiple external storage devices can truly play their respec-
tive I/O performance in parallel. This I/O model not only fully exploits the parallelism
of multiple external storage devices but also improves the I/O sorting and merging
efficiency at the operating system level. It also reduces the contention overhead of I/O
task queue locks in the application layer. By binding multiple I/O threads to each I/O
task queue, we can fully exploit the maximum sequential bandwidth of each external
storage device. Each I/O task queue is bound to the same number of I/O threads for
I/O load balancing.

123

International Journal of Parallel Programming (2020) 48:98–118 107

Fig. 9 I/O Manager module

A
dd

re
ss

m

ap
pi

ng

Pr
ef

et
ch

m

er
gi

ng

D
is

pa
tc

h

I/O

de
co

m
po

si
tio

n

Multiple external-storage-device
multi-queue I/O manager

3.3 Implementation

The I/O manager implements I/O management, such as address mapping, decomposi-
tion, prefetch merging and dispatch of I/O requests at the application layer, as shown
in Fig. 9.

For the convenience of description, we assume that all edge block files are grouped
into a large graph data file in the update order. The starting linear offset address of
each edge block file in the merged graph data file is recorded. Striping maps a large
linear address space to the N address spaces which is corresponding to the striped
files. Define the following symbols:

S is the stripe depth, which equals to the size of stripe unit.
N is the number of striped files, which equals to the number of external storage

devices.
Dl is the data length of an original I/O request.
O is the starting offset of the original I/O request in the original large linear address

space.
SIi is the starting striped file number of the i th new I/O request after the original

I/O request address mapping and decomposition
SOi is the starting offset in the striped file of the i th new I/O request after the

original I/O request address mapping and decomposition.
Among i = 0, 1…
Address mapping formula:

SIi = �O/S�%N (1)

SOi = �O/S/N� ∗ N + O%S (2)

Address mapping stage The main thread is used to map the original I/O requests
according to the address mapping formula. It obtains the starting striped file number
of the new I/O request and the starting offset in the starting striped file.

I/O decomposition stage The main thread determines whether to decompose the orig-
inal I/O requests according to the starting offset address, the I/O request data length,
and the stripe unit boundary in the starting striped file.

Dl ≤ S − O%S. The original I/O request length doesn’t exceed the remaining
length of the stripe unit in the first stripe file. In this case, the original I/O request

123

108 International Journal of Parallel Programming (2020) 48:98–118

O D SI0 SO0 SD 0

Address
mapping

O D

SI0 SO0 SD 0

Address
mapping,

decomposition

SIi SOi SD i

(a) A original I/O request data is in a single stripe unit D = SD

(b) A original I/O request data spans multiple stripe units D = SD 0+ +SD i

assemble

assemble

assemble

fin_sfiles[SI0] SO0 SD 0

fin_sfiles[SI0] SO0 SD 0

fin_sfiles[SIi] SOi SD i

New I/O request
structure after mapping

decomposition

original
I/O request structure multi_task_queues[SI0]

I/O
task

I/O
task

I/O
task

multi_task_queues[SI0]

I/O
task

I/O
task

I/O
task

multi_task_queues[SIi]

I/O
task

I/O
task

I/O
task

...

Fig. 10 An original I/O request address mapping and decomposition process

doesn’t need to be decomposed. The striped file number of the corresponding new I/O
request is SIi . The starting offset address in the striped file is SOi and the length is
Dl .

DL > S − O%S. The original I/O request length exceeds the remaining length of
the stripe unit in the first stripe file, spanning multiple external storage devices. In this
case, the original I/O request needs to be decomposed multiple new I/O requests. An
original I/O request address mapping and decomposition process is shown in Fig. 10.

Prefetchmerging stageThemain threadmaps anddecomposes the original I/O requests
so that each new I/O request is located in a stripe unit of an external storage device.
However, the boundary of each edge block after partition cannot be guaranteed to
be aligned with the boundary of the stripe unit. Therefore, there must be a situation
where a stripe unit contains two or more small new I/O requests data. Therefore, when
processing an original I/O request that spans multiple stripe units or falls in the stripe
unit but doesn’t exceed the right boundary of the stripe unit, we consider mapping next
I/O requests that are left-aligned with the original I/O request. We preprocess address
mapping and decomposition of the I/O requests that are corresponding to the adjacent
active edge blocks. The current I/O request can be merged with some new I/O requests
that fall into the same stripe unit into a large, continuous new I/O request. The upper
bound of the merging is MAX_I OSI Z E . (MAX_I OSI Z E is the size of the I/O
buffer, which is the maximum size of the original I/O request.) Figure 11 shows the
possible distribution of new I/O requests after address mapping and decomposition.
Dispatch stages The merged new I/O request is dispatched to the corresponding I/O
task queue. Then I/O threads fetch I/O tasks from the I/O task queue.

4 Experimental Evaluation

We evaluate CSMqGraph on several real world social graphs and web graphs. And
CSMqGraph shows significant performance improvement compared with current out-
of-core graph engines. The hardware platform used in our experiments is a server
containing 2-way 8-core 2.10GHz Intel Xeon CPUE5-2670 and each CPU has 20MB

123

International Journal of Parallel Programming (2020) 48:98–118 109

IOj IOj+1 IOj+2 IOj+3

Blocki Blocki+2Blocki+1

...

SIOk+1SIOk

...SIOk+2

SIOk+3 SIOk+4

SIOk+5

Blocki+3

IOj+4

IOj IOj+2

Blocki+1

...
SIOk SIOk+2

SIOk+3 SIOk+4

Blocki+3

IOj+4

SUm SUm+1

Striped_filen Striped_filen+1

IOj+1

SIOk+1

Blocki+2

IOj+3

Striped_filen

SUm

Blocki

(a)

(b)

Fig. 11 Distribution of new I/O request after address mapping and decomposition

last-level cache, running a Linux operation system with kernel version 4.13.8-1. Its
memory is 125GB.We limit the available memory to 8GB to illustrate the out-of-core
performance. It has 6 899.6GB hard disk drives and the sequential bandwidth of each
HDD is approximate 210MB/s.

It spawns a worker for each core to run benchmarks. In experiments, four popular
graph algorithms fromweb applications and datamining are employed as benchmarks:
(1) weakly connected component(WCC); (2) PageRank; (3) breadth first search(BFS);
(4) sparse matrix Vector multiplication(SpMV). For the WCC and BFS algorithms,
we run them until they converge. For PageRank, we specify run 10 iterations and
SpMV runs only one iteration to compute the product. The dataset used for these
graph algorithms are described in Table 1.The performance of CSMqGraph is com-
pared with GridGraph. CSMqGraph is open-sourced for public access. The detailed
configurations are currently available at https://github.com/shuochenok/CSMqGraph.

4.1 Overall Performance Comparison

To verify the effectiveness of the coarse-grained striping method that matches the
characteristics of sequential large I/O and the I/Omanagement strategy based onmulti-
external-storage multi-queue, we compare CSMqGraph against GridGraph when
running various algorithms. Both CSMqGraph and GridGraph take the same graph

123

https://github.com/shuochenok/CSMqGraph

110 International Journal of Parallel Programming (2020) 48:98–118

Table 1 Graph datasets used in evaluation

Dataset Vertexes Edges Directed Type

Twitter 61.6 million 1.47 billion Directed Social network

Friendster 124.8 million 1.8 billion Undirected Social network

Subdomain 101.7 million 2.0 billion Directed Web graph

partitioning method, so the preprocessing time of CSMqGraph does not increase com-
pared toGridGraph.BothCSMqGraph andGridGraph systems use the sameparameter
configuration. Thememory budget parameter is 8GBand the number of threads is 3*N.
N is the number of external storage devices. CSMqGraph strips multiple graph data
files to multiple external storage devices with the stripe depth of 12MB. Figure 12
shows the speedup of CSMqGraph over CridGraph for four algorithms. CSMqGraph
performs better than GridGraph under different numbers of external storage devices.
For different datasets and different numbers of external storage devices, the speedup
of WCC is by up to 1.4. For BFS, the speedup is by up to 1.28. For PageRank, the
speedup is by up to 1.24. For SpMV, the speedup is by up to 1.25. We identify that
the improvement of the execution time of CSMqGraph mainly due to maximizing the
sequential bandwidth of each external storage device and fully exploiting the paral-
lelism of multiple external storage devices.

4.2 Comparison of Device I/Os

We evaluated the average number of device I/Os per external storage device when
the CSMqGraph and GridGraph execute the algorithm over multiple external storage
devices. As shown in Fig. 13, the average number of I/Os to each external storage
device in CSMqGraph is significantly lower thanGridGraphwhen theWCC algorithm
is executed onTwitterwith 2 external storage devices. Overall, the total number of each
external storage device I/Os in GridGraph during the entire WCC algorithm execution
is 577K, while the total number of each external storage device I/Os in CSMqGraph
is 419K. When both graph processing systems access the same amount of graph data,
the total number of I/Os in CSMqGraph is significantly reduced and I/O performance
is significantly improved.

4.3 I/O Throughput Comparison

We evaluated the I/O throughput when CSMqGraph and GridGraph run the graph
algorithm with different numbers of external storage devices. Figure 14 depicts the
average real-time I/O throughput of each external storage device when they run WCC
algorithm on Twitter. We observe that during each iteration of the WCC algorithm
execution, the average I/O throughput of each external storage device in CSMqGraph
is significantly higher than that inGridGraph. ForCSMqGraph, the average throughput
of each external storage device is 193.5MB/s. For GridGraph, that is only 143.8MB/s.
Figure 15 shows the average I/O throughput and promotion ratio of each external

123

International Journal of Parallel Programming (2020) 48:98–118 111

Fig. 12 The speedup of different algorithms on different graph datasets with different numbers of external
storage devices

Fig. 13 Average I/Os of each external storage device

storage devicewhenCSMqGraph andGridGraph runWCCgraph algorithmonTwitter
with different numbers of external storage devices. We observe that the average I/O
throughput of each external storage device in CSMqGraph is better than GridGraph.

123

112 International Journal of Parallel Programming (2020) 48:98–118

Fig. 14 Average I/O throughput of each external storage devices

Fig. 15 Average I/O throughput and promotion ratio of WCC on Twitter graph with different numbers of
external storage devices

The average I/O throughput of each external storage device in CSMqGraph is stable
at around 190.9MB/s and the I/O throughput increased by 22.0% to 38.7%. As the
number of external storage devices increases, the proportion of promotion increases
gradually.

4.4 Scalability of CSMqGraph

We evaluated the scalability of CSMqGraph by executingWCC algorithm and PageR-
ank on Friendster with different numbers of external storage devices. The WCC
algorithm is that some vertices are active vertices, and the PageRank algorithm is
that all vertices are active vertices. Figure 16 gives the results relative to the execution

123

International Journal of Parallel Programming (2020) 48:98–118 113

Fig. 16 CSMqGraph I / O
scalability

time of WCC and PageRank algorithm in CSMqGraph and shows an almost linear
decrease with the increase of external storage devices. The results indicate that CSMq-
Graph can make full use of the increasing bandwidth resources of multiple external
storage devices and has better I/O scalability.

4.5 Influence of Stripe Depth

When the application layer strips 2D graph partition files to multiple external storage
devices, the stripe depth will affect the system I/O performance. We evaluated the
effect of stripe depth on the performance ofCSMqGraph.Under different stripe depths,
CSMqGraph executes PageRank algorithm on Twitter with 2 external storage devices
and 6 I/O threads. As shown in Fig. 17, we can observe that when the strip depth is
12MB, the best performance is achieved. The average size of the original I/O requests
for Twitter is 11MB, and the optimal stripe depth is 12MB. The optimal stripe depth
is between the average of the original I/O request size and themaximum of the original
I/O request size. Because if the stripe depth is too small, it is hard for external storage
devices to achieve full sequential bandwidth since more time will be spent on seeking
to potentially different positions. And address mapping and decomposition are not
efficient enough, which leads to more data access overhead and system call overhead.
If the stripe depth is too large, it causes the problems, such as centralized access to the
hot external storage device, unbalanced load, increased computation time that cannot
overlap with I/O. In both cases, the I/O performance of multiple external storage
devices cannot be fully utilized.

4.6 Impact of I/O Threads

We evaluated the impact of the number of I/O threads on the performance of CSMq-
Graph. Figure 18 shows the execution time when CSMqGraph runs the PageRank
algorithmonTwitter as the number of I/O threads increases(2 external storage devices).
It can be seen from the Fig. 18, when the number of I/O threads is small, the bandwidth

123

114 International Journal of Parallel Programming (2020) 48:98–118

Fig. 17 Execution time of PageRank on Twitter at different stripe depths

of multiple external storage devices cannot be saturated, thus CPU is the bottleneck
of performance. As the number of I/O threads increases, the execution time of CSMq-
Graph is significantly reduced. When the number of I/O threads increases to 6, the
execution time doesn’t continue to decrease as the number of I/O threads increases.
The performance is due to the shift of the bottleneck from CPU to external storage
devices. Therefore, for different numbers of external storage devices, the total number
of I/O threads is set to the product of the number of external storage devices and the
number of I/O threads per external storage device when the saturation point is reached.

5 RelatedWork

With the explosion of graph scale, many systems [12,18,23] have focused on achieving
high efficiency for iterative graph analysis. They improve the efficiency either by fully
utilizing the sequential bandwidth of external storage devices or by achieving a better
data locality to reduce the redundant data accesses.

GraphChi [5] eliminates randomdata access fromdisks by scanning the entire graph
data in each iteration. By using a novel parallel sliding windows method to reduce
random I/O accesses, GraphChi [6] is able to process large-scale graphs in reasonable
time. GraphChi also supports selective scheduling, and its shard representation can
have even better effect than GridGraph on I/O reduction. Though I/O amount required
by GraphChi is rather small, it has to issue many fragmented reads across shards. Thus
the performance is not ideal enough due to limited bandwidth usage.

X-Stream[21] introduces an edge-centric scatter-gather processingmodel.Accesses
to vertices are random and happen on a high level of storage hierarchy which is small
but fast. And accesses to edges and updates fall into a low level of storage hierarchy

123

International Journal of Parallel Programming (2020) 48:98–118 115

Fig. 18 Execution time of PageRank on Twitter with different numbers of I/O threads

which is large but slow. However, these accesses are sequential so that maximum
throughput can be achieved. Although X-Stream can leverage high disk bandwidth by
sequential accessing, it needs to generate updates which could be in the same magni-
tude as edges, and its lack of support on selective scheduling could also be a critical
problem when dealing with graphs of large diameters.

GridGraph [22] proposes 2-Level hierarchical partitioning scheme to improve
the locality and reduce the amount of I/Os. It realizes the sequential access of the
external storage graph through the double sliding window. However, GridGraph uses
the operating system I/O management method based on striped volume and adopts
multi-external-storage single-queue thread poolmodel to usemultiple external storage
devices. It limits the sequential bandwidth of each external storage devices and the
parallelism of multiple external storage devices.

FlashGraph supports both pulling data from SSDs and pushing data with message
passing. FlashGraph does provide asynchronous execution of vertex programs to over-
lap computing with data access. But it needs user input to sort, merge, submit and poll
I/O requests, which is insufficient to the sequential bandwidth of each external storage
device. In addition, the semi-external mode naturally lacks the processing power of a
large graph that cannot be fully loaded into memory.

Graphene, a semi-external memory processing system that efficiently reads the
graph data on SSDs while managing the metadata in DRAM. Graphene incorporates
graph data awareness in I/O management behind an I/O centric programming model
and performs fine-grained I/Os on flash-based storage devices. It uses a Bitmap-based
approach to quickly reorder, deduplicate, and merge the requests and exploits asyn-
chronous I/O to submit as many I/O requests as possible to saturate the I/O bandwidth
of flash devices. It relies on expensive SSD arrays and large memory to provide high

123

116 International Journal of Parallel Programming (2020) 48:98–118

I/O bandwidth and cache all vertex data. While most of the out-of-core systems are
HDD-friendly and aim to achieve reasonable performance with low hardware costs.

These systems are primarily dedicated to optimize I/O performance. There are two
main optimization principles: sequential I/O [14,21,28] and on-demand I/O [16,24].
Sequential I/O inevitably leads to unnecessary I/O, resulting in the external I/O is
inefficient. Taking on-demand I/O to ensure I/O efficiency. It inevitably leads to a
large amount of random I/O, which is not conducive to the sequential bandwidth of
external storage devices. Therefore, CSMqGraph proposes coarse-grained striping
method matching sequential large I/O to maximize sequential bandwidth of each
external storage device and an I/O management strategy based on multi-external-
storage multi-queue making I/O threads dedicated to each external storage device to
further improve I/O throughput and fully exploit the parallelism of multiple external
storage devices. CSMqGraph shows significant performance improvement compared
with state-of-the-art out-of-core graph engines.

6 Conclusion

In this paper, we have designed and developed CSMqGraph that consists of two tech-
niques including a coarse-grained striping method matching sequential large I/O and
an I/O management strategy based on multi-external-storage multi-queue. It improves
the I/O throughput of each external storage device and fully exploit the parallelism of
multiple external storage devices. The experiments show that CSMqGraph achieves
significantly better performance than state-of-the-art out-of-core graph systems. The
performance of CSMqGraph is mainly restricted by I/O bandwidth. In the future, we
plan to further optimize our research for evolving graph analysis and also extend it to
the distributed platform.

Acknowledgements This work is supported byNSFCNo. 61772216, 61821003, U1705261,WuhanAppli-
cation Basic Research Project No. 2017010201010103, Fund from Science, Technology and Innovation
Commission of Shenzhen Municipality No. JCYJ20170307172248636, and Fundamental Research Funds
for the Central Universities.

References

1. Chi, Y., Dai, G., Wang, Y., Sun, G., Li, G., Yang, H.: Nxgraph: an efficient graph processing system
on a single machine. In: 2016 IEEE 32nd International Conference on Data Engineering (ICDE), pp.
409–420. IEEE (2016)

2. Coffman, T., Greenblatt, S., Marcus, S.: Graph-based technologies for intelligence analysis. Commun.
ACM 47(3), 45–47 (2004)

3. Del Sol, A., Fujihashi, H., O’Meara, P.: Topology of small-world networks of protein-protein complex
structures. Bioinformatics 21(8), 1311–1315 (2005)

4. Doerr, C., Blenn, N.: Metric convergence in social network sampling. In: Proceedings of the 5th ACM
Workshop on HotPlanet, pp. 45–50. ACM (2013)

5. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Powergraph: distributed graph-parallel
computation on natural graphs. In: Presented as part of the 10th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 12), pp. 17–30 (2012)

123

International Journal of Parallel Programming (2020) 48:98–118 117

6. Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw,D., Franklin,M.J., Stoica, I.: Graphx: graph processing
in a distributed dataflow framework. In: 11th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 14), pp. 599–613 (2014)

7. Huberman, B.A., Adamic, L.A.: Internet: growth dynamics of the world-wide web. Nature 401(6749),
131 (1999)

8. Jeong, H., Mason, S.P., Barabási, A.L., Oltvai, Z.N.: Lethality and centrality in protein networks.
Nature 411(6833), 41 (2001)

9. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabási, A.L.: The large-scale organization of
metabolic networks. Nature 407(6804), 651 (2000)

10. Kang, U., Tsourakakis, C.E., Faloutsos, C.: Pegasus: a peta-scale graphmining system implementation
and observations. In: Proceedings of the 2009 Ninth IEEE International Conference on Data Mining,
pp. 229–238. Washington, DC, USA (2009)

11. Khayyat, Z., Awara, K., Alonazi, A., Jamjoom, H., Williams, D., Kalnis, P.: Mizan: a system for
dynamic load balancing in large-scale graph processing. In: Proceedings of the 8th ACM European
Conference on Computer Systems, EuroSys ’13, pp. 169–182. ACM, New York, NY, USA (2013).
https://doi.org/10.1145/2465351.2465369

12. Kumar, P., Huang, H.H.: G-store: high-performance graph store for trillion-edge processing. In: SC’16:
Proceedings of the International Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 830–841. IEEE (2016)

13. Kwak,H., Lee,C., Park,H.,Moon, S.:What is twitter, a social networkor a newsmedia? In: Proceedings
of the 19th International Conference on World Wide Web, pp. 591–600. ACM (2010)

14. Kyrola, A., Blelloch, G., Guestrin, C.: Graphchi: large-scale graph computation on just a {PC}. In:
Presented as part of the 10th {USENIX}SymposiumonOperating SystemsDesign and Implementation
({OSDI} 12), pp. 31–46 (2012)

15. Lee, E.K., Katz, R.H.: An analytic performance model of disk arrays. In: ACM SIGMETRICS Perfor-
mance Evaluation Review, vol. 21, pp. 98–109. ACM (1993)

16. Liu, H., Huang, H.H.: Graphene: fine-grained IO management for graph computing. In: 15th USENIX
Conference on File and Storage Technologies (FAST 17), pp. 285–300. USENIX Association, Santa
Clara, CA (2017). https://www.usenix.org/conference/fast17/technical-sessions/presentation/liu

17. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.: Pregel:
a system for large-scale graph processing. In: Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data, pp. 135–146. ACM (2010)

18. Nguyen, D., Lenharth, A., Pingali, K.: A lightweight infrastructure for graph analytics. In: Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP ’13, pp. 456–471.
ACM, New York, NY, USA (2013). https://doi.org/10.1145/2517349.2522739

19. Randles, M., Lamb, D., Taleb-Bendiab, A.: A comparative study into distributed load balancing algo-
rithms for cloud computing. In: 2010 IEEE 24th International Conference on Advanced Information
Networking and Applications Workshops, pp. 551–556. IEEE (2010)

20. Roy, A., Bindschaedler, L., Malicevic, J., Zwaenepoel, W.: Chaos: scale-out graph processing from
secondary storage. In: Proceedings of the 25th Symposium on Operating Systems Principles, pp. 410–
424. ACM (2015)

21. Roy, A., Mihailovic, I., Zwaenepoel, W.: X-stream: edge-centric graph processing using streaming
partitions. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles,
pp. 472–488. ACM (2013)

22. Shiloach, Y., Vishkin, U.: An o(log n) parallel connectivity algorithm. J. Algorithms 3, 57–67 (1982)
23. Shun, J., Blelloch, G.E.: Ligra: a lightweight graph processing framework for sharedmemory. In: ACM

Sigplan Notices, vol. 48, pp. 135–146. ACM (2013)
24. Vora, K., Xu, G., Gupta, R.: Load the edges you need: a generic i/o optimization for disk-based graph

processing. In: 2016 {USENIX} Annual Technical Conference ({USENIX} {ATC} 16), pp. 507–522
(2016)

25. Wang, P., Zhang, K., Chen, R., Chen, H., Guan, H.: Replication-based fault-tolerance for large-scale
graph processing. In: 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, pp. 562–573. IEEE (2014)

26. Wang, Z., Gu, Y., Bao, Y., Yu, G., Yu, J.X.: Hybrid pulling/pushing for i/o-efficient distributed and
iterative graph computing. In: Proceedings of the 2016 International Conference on Management of
Data, pp. 479–494. ACM (2016)

123

https://doi.org/10.1145/2465351.2465369
https://www.usenix.org/conference/fast17/technical-sessions/presentation/liu
https://doi.org/10.1145/2517349.2522739

118 International Journal of Parallel Programming (2020) 48:98–118

27. Zhao, Y., Yoshigoe, K., Xie, M., Zhou, S., Seker, R., Bian, J.: Lightgraph: lighten communication in
distributed graph-parallel processing. In: 2014 IEEE International Congress on Big Data, pp. 717–724.
IEEE (2014)

28. Zheng, D., Burns, R., Szalay, A.S.: Toward millions of file system iops on low-cost, commodity
hardware. In: SC’13: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, pp. 1–12. IEEE (2013)

29. Zheng, D., Mhembere, D., Burns, R., Vogelstein, J., Priebe, C.E., Szalay, A.S.: Flashgraph: processing
billion-node graphs on an array of commodity ssds. In: 13th {USENIX}Conference on File and Storage
Technologies ({FAST} 15), pp. 45–58 (2015)

30. Zhu, X., Han,W., Chen,W.: Gridgraph: large-scale graph processing on a single machine using 2-level
hierarchical partitioning. In: 2015 {USENIX} Annual Technical Conference ({USENIX} {ATC} 15),
pp. 375–386 (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Shuo Chen1 · Zhan Shi1 · Dan Feng1 · Shang Liu1 · Fang Wang1 ·
Lei Yang1 · Ruili Yu1

B Zhan Shi
zshi@hust.edu.cn

Shuo Chen
shuochen@hust.edu.cn

Dan Feng
dfeng@hust.edu.cn

Shang Liu
1183358546@qq.com

Fang Wang
wangfang@hust.edu.cn

Lei Yang
1322337157@qq.com

Ruili Yu
2294236515@qq.com

1 Wuhan National Laboratory for Optoelectronics, School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan, China

123

http://orcid.org/0000-0002-7798-1121

	CSMqGraph: Coarse-Grained and Multi-external-storage Multi-queue I/O Management for Graph Computing
	Abstract
	1 Introduction
	2 Problem Presentation and Motivation
	3 Coarse-Grained I/O Management Strategy Based on Multi-External-Storage Multi-Queue
	3.1 Coarse-Grained Striping Method Matching Sequential Large I/O Characteristics
	3.2 I/O Management Strategy Based on Multi-External-Storage Multi-Queue
	3.3 Implementation

	4 Experimental Evaluation
	4.1 Overall Performance Comparison
	4.2 Comparison of Device I/Os
	4.3 I/O Throughput Comparison
	4.4 Scalability of CSMqGraph
	4.5 Influence of Stripe Depth
	4.6 Impact of I/O Threads

	5 Related Work
	6 Conclusion
	Acknowledgements
	References

