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Abstract
Adaptive routing algorithms can improve performance by balancing load across net-
work channels in the presence of non-uniform traffic patterns. However, out-of-order
packets can be introduced due tomulti-path transmission of adaptive routing.With out-
of-order transmission in the network, packets need to be reordered at the destination
before being absorbed. Increasing network size with adaptive routing makes the time
when a packet arrives at the destination extremely uncertain, which requires a large
buffer to reorder the packets and this can exceed design space. Therefore, the challenge
is to balance the trade-off between multi-path transmission and packet reordering. In
this paper, we propose a novel packet reordering metric-OOD to quantify the degree
of out-of-order. To minimize the OOD of packets, we propose DancerFly, an order-
aware network-on-chip router that mitigates out-of-order packets caused by adaptive
routing. DancerFly achieves this goal by providing two-level reordering. First, it per-
forms in-buffer reordering by reordering packets queuing in the input buffer. Second,
packets from different input ports are reordered before traversing through the router.
We evaluate our design and the results show that the OOD can be reduced by 36.3%
with comparable performance to the baseline.

Keywords Network-on-chip · Adaptive routing · Router architecture · Multi-path ·
Packet reordering

1 Introduction

As the number of cores keeps increasing on multi-core chips, the design of an effi-
cient on-chip interconnection network is becoming more and more essential. Given
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the topology of the network, its performance is significantly determined by the routing
algorithm. Adaptive routing algorithms balance load across the network channels to
improve network performance and provide fault tolerance. However, parallel trans-
mission in multiple paths can cause severe out-of-order packet delivery. The point is
that the packets should be absorbed in order at the destination node. Therefore, faced
with out-of-order packets, a reorder buffer is needed to reorder packets at the destina-
tion. Considering the uncertain arrival time of out-of-order packets, the reorder buffer
usually needs to be designed very large, which brings a significant amount of hard-
ware overhead. In fact, if packets arrived at the destination in order, the large reorder
buffer can be omitted. Therefore, this paper is dedicated to reordering the out-of-order
packets generated by adaptive routing.

Out-of-order packets are mainly caused by multi-path transmission in the adaptive
routing. Routing algorithm can be classified as deterministic, oblivious and adaptive
routing algorithms [3]. Deterministic routing algorithms route packets along the same
path, regardless of the network status. Oblivious routing algorithms route packets
without regard for the state of the network. In contrast, adaptive routing selects an
appropriate path for the packet based on the network state. Adaptive routing algo-
rithms facilitate load balancing and thus improve the network performance even in
non-uniform traffic. What’s more, the property of path diversity of adaptive routing
algorithm enhances the robustness of the network and allows the network to tolerate
faulty channels and nodes. Routing algorithms can also be classified as either min-
imal or non-minimal routing algorithms. Minimal routing algorithms always select
the shortest path from source to destination, while non-minimal routing algorithms
choose paths from the set of all minimal and non-minimal routes. Non-minimal rout-
ing algorithms improve load balance to some extent theoretically, but are hard to be
applied in practice due to significant increase in delay and vulnerable to livelock and
deadlock. Therefore, in this paper, we focus on minimal adaptive routing.

Recently, a large number of adaptive routing algorithms have been proposed to
improve network performance [5,6,10,12,14,15]. However, adaptive routing causes
severe packets disorder due to multi-path transmission, especially for non-uniform
traffic patterns. With unbalanced traffic pattern, a packet at the front of a flow can
arrive at the destination node after other packets in this flow, because a congested
path is selected for the front packet. Despite out-of-order packets, in-order packet
delivery is a widely assumed basis for a wide range of applications such as multi-
media, file transfer protocols and cache coherence protocols [7,8]. Implementations
of direct-communication computation models such as stream computing also require
that packets be delivered in the order they were sent, as do explicit message-passing
applications.

Adaptive routing algorithms whose granularity of adaptivity is packet cannot
achieve in-order packet delivery due to multi-path transmission. To ensure in-order
delivery, previous works choose deterministic or oblivious routing [4,13,16] rather
than adaptive routing. To enable adaptive routing, we must abandon in-order delivery.
If the order is required, we can only perform reordering at the destination dynamically.
As far as we know, there is no other solution except for setting a large reorder buffer at
the destination. What we can do is to mitigate packet reordering as much as possible
to reduce the buffer and latency overhead of reordering.
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In this paper, we innovatively view the out-of-order problem from the perspective
of router architecture, rather than routing strategy or flow control. This ensures that
there is no performance loss while reordering. We first propose an elaborate packet
reordering metric: Out-of-Order Degree (OOD). It is defined as the maximum reorder
buffer occupancy among all nodes.With the goal ofminimizingOOD, an orDer-aware
network-on-chip router on-the-Fly mitigating multi-path packet reordering (Dancer-
Fly) is proposed.With DancerFly, packets routed through the router are reordered, and
the reordering is performed in two aspects. First, DancerFly reorders packets queuing
in the input buffer through the proposed reordering logic once a packet is inserted.
Second, DancerFly reorders packets from different input port in switch allocation
stage, which is accomplished by the proposed order-aware switch allocator. Through
the two-level reordering, packets can maintain order when ejected from the router.
More remarkable, DancerFly is highly effective and does not degrade network perfor-
mance. This is because DancerFly perceives the order of packets passing through and
reorders them, rather than restricting their transmission. That is to say, we can retain
the advantages (e.g., performance improvement, load balancing and fault tolerance)
of adaptive routing algorithms and minimize the OOD of packets meanwhile.

In particular, the contributions of this work are as follows.

– We propose a new packet reordering metric which quantifies the degree of packets
disorder.

– To the best of our knowledge, this is the first work to address packets disorder
while truly retaining adaptive routing.

– A novel router design, DancerFly, is proposed, which minimizes packets disorder
without performance loss.

The rest of this paper is organized as follows. Section 2 describes the out-of-order
delivery problem with adaptive routing and discusses the prior solutions to this prob-
lem. Section 3 presents a new packet reordering metric. In Sect. 4, the design of
DancerFly is introduced. For evaluating the performance of DancerFly, we present
extensive experimental results in Sect. 5 to compare DancerFly with the canonical
router. The implementation overheads are discussed in Sect. 6. More in-depth studies
relating to the implementation and scalability of DancerFly are presented in Sect. 7.
We conclude in Sect. 8.

2 Motivation

Adaptive routing, which allows packets follow multiple path from the same source
and destination, leads to severe packets disorder. To highlight this problem, a scenario
of packets disorder caused by adaptive routing is shown in Fig. 1, for a 4×4 2D mesh
with 3 VCs per physical channel. Packet A and packet B are two sequential packets of
a flow from source s=01 to destination d=11. Packet A is transmitted along the path
represented by red solid arrows. The latter packet B is routed along the path denoted
by red dashed arrows. Since adaptive routing always selects the smoothest path, packet
B passes node 07 before A and reaches the destination d=11 earlier.
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Fig. 1 A scenario of packets
disorder caused by adaptive
routing

Inmany cases, we are required tomaintain ordering among certain packets traveling
through the network. Parallel memory accesses require in-order delivery to improve
network performance [11]. Some protocols, such as file transfer protocols and cache
coherence protocols, depend onmessage order being preserved for correctness. Stream
computing (e.g., StreamIt [18]) and explicit message-passing applications also require
in-order packet delivery.

Although basic dimension-order routing (DOR) without virtual channels (VCs) [2]
naturally deliver packets in order, it offers limited efficiency.Murali et al. [16] use flow
control to ensure in-order delivery for oblivious multi-path routing. The basic idea is
to only allow non-intersecting1 paths between each source destination pair and force
out-of-order packets to wait at the input port of the destination router. The destination
router is forced to pick up the packets in order from different input port buffers before
delivering them to the core. This scheme suffers from three important problems. First,
it increases network latency and decreases network throughput because of restrictions
on the transmission of packets. Second, it strongly affects the path diversity of the
underling routing function as all intersecting routing paths are not allowed. Third, it
is not deadlock free due to the condition for ejecting packets from the network.

EDVCA [4] targets the ordering problems incurred by dynamic virtual channel
allocation. It proposes a technique in which a packet is only restricted to a certain
next-hop VC if it contains some packet of the same flow. However, this scheme only
applicable to deterministic routing algorithms. Based on the idea of EDVCA, POIOR
[13] ensures that at any snapshot packets flow through only one path even though the
path may be different at different times. This way, the flow only travels along one
path at any given instant. Apparently, this scheme suffers from two problems. First, it
limits the parallel transmission of packets which degrades the network performance.
Second, it is only applicable to oblivious routing.

The scheme proposed in [17] aims to ensure in-order packet deliverywhile retaining
the performance advantages of adaptive routing. The basic idea is to force the packets
of a flow to use the same path which is adaptively determined by the first packet. That
is to say, the adaptive of the routing algorithm is allowed in terms of flows and not in
terms of packets. There is a major problemwith this scheme. It does not respond to the
state of the network in a timely manner. In other words, the load cannot be accurately
balanced, which will decrease the network performance.

1 A set of paths are defined to be non-intersecting if the paths originate from the same source vertex but do
not intersect each other in the network, except at the destination vertex.
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Prior works that provide in-order guarantee are achieved by modifying or abandon-
ing the adaptive routing algorithms. Limiting the adaptivity or parallel transmission of
adaptive rouging algorithms permits in-order packet delivery, but at the expense of per-
formance loss. Conversely, it is impossible to realize in-order delivery without limiting
adaptivity and parallel transmission. This is due to the fact that, for instance, some
packets which started earlier in the sequence get routed through heavily congested
paths and reach the destination later than packets which started after them. Therefore,
we can only strive to reduce the degree of out-of-order to reduce the required reorder
buffer in the destination. The absence of effective and practical techniques able to
mitigate packet reordering in the context of NoC design is the main argument which
motivates this work.

3 Packet ReorderingMetric

In this section, we propose a novel packet reordering metric called Out-of-Order
Degree (OOD). Thenwe present amethodology for OODmeasurement at the receiver,
including the theory and its implementation algorithm.

3.1 The Definition of OOD

Before to explain OOD,we first give the definition of some terms. Consider a sequence
of packets (0, 1, 2, . . ., N) transmitted from a source node to a destination node.

Expected packet (E) Expected packet ‘E’ is the largest sequence number such that
all the packets with sequence number less than E have already arrived.

Buffer-occupancy (B) An arrived packet with a sequence number greater than that
of expected packet is considered to be stored in a hypothetical buffer long enough to
recover from reordering. At any instance of packet arrival, the buffer occupancy is
equal to the number of such out-of-order packets in the buffer including the arrived
packet (assuming one buffer for each packet).

The buffer occupancy ‘B’ is recorded following each arrival. For a set of packets,
we define the maximum buffer occupancy as OOD of the packets. This is because the
maximum buffer occupancy determines the lower bound of the required reorder buffer
in the receiver. Similarly, the OOD of a flow is the maximum buffer occupancy in the
receiving process and the OOD of the whole network is maximum OOD of all flows.

To explain OOD explicitly, we give a sample example. For sequence of arrivals
(4, 3, 2, 0, 1) shown in Table 1, the corresponding expected packet values are (0,
0, 0, 0, 1). The buffer occupancy value immediately following the arrival of packet
with sequence number 4 is 1; it has to be buffered as an earlier packet is still being
expected. Similarly, following the arrivals of packet 3 and 2, the buffer occupancy
becomes 3. Then, the packet with sequence number 0 arrives, while buffer still cannot
be released since packet 1 is expected. Finally, when packet 1 arrives, packets 4, 3 and
2 can be recovered from reordering buffer and the buffer-occupancy changes to zero.
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Algorithm 1 OOD Measurement Algorithm Description
1: // STEP 1: Convert arrival sequence to natural number sequence
2: seqcon = Convert(seq)
3: // STEP 2: OOD Measurement
4: // exp = expected value; si ze = maximum sequence number; deg = temporary degree; beg = position

of the first packet buffered
5: exp = 0; beg = 0; degmax = 0
6: while exp < si ze do
7: deg = 0
8: if seqcon [beg] == exp then
9: beg + +
10: exp + +
11: else
12: deg + +
13: for i = beg + 1 to si ze do
14: if seqcon [i] == exp then
15: if deg > degmax then
16: degmax = deg
17: end if
18: exp + +
19: break
20: else if seqcon [i] > exp then
21: deg + +
22: end if
23: end for
24: if i == si ze then
25: // expected packet is lost, break the process
26: if deg > degmax then
27: degmax = deg
28: end if
29: break
30: end if
31: end if
32: end while
33: OOD = degmax

Table 1 Buffer-occupancy
computation for arrival sequence Cycle 1 2 3 4 5

Arrival sequence 4 3 2 0 1

Expected packet 0 0 0 0 1

Buffer-occupancy 1 2 3 3 0

So, the OOD of those packets is 3 in this case. OOD is applicable not only for natural
number identified sequence of packets, but also for cases where the sequence number
is incremented discontinuously. All we have to do is to convert the irregular sequence
into natural number sequence.

3.2 The Implementation of OODMeasurement

To implement themeasurement ofOODat the receiver,we provide an efficientmethod-
ology based on the observation as follows:
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OOD = max((Possmall − Poslarge) − Numless)

Possmall and Poslarge are the positions of two inverse numbers of an arrival sequence.
Possmall is the position of the packet that has a small sequence number but arrives
late. Poslarge is the position of the packet that has a large sequence number but
arrives early. So, Possmall − Poslarge is the interval between the two inverse numbers.
Since the packets with a sequence number less than the smaller one have already
recovered from reorder buffer, we exclude Numless as shown in the equation. The
maximum ((Possmall − Poslarge) − Numless) for all inversions is the maximum
buffer-occupancy, i.e., OOD.

For the example described in the previous subsection (i.e., sequence of arrivals (4,
3, 2, 0, 1)), the buffer-occupancy for the inversion between 4 and 3 is 1. Similarly,
the buffer-occupancy for the inversion between 4 and 0 is 3 according to the formula
above. In particular, for the inversion between 4 and 1, packet 0 should be excluded
and the buffer-occupancy is 3. Overall, the OOD of the arrival sequence is 3 which is
equal to the theoretical result analyzed in the previous subsection.

The algorithm of OOD measurement is described in Algorithm 1. The algorithm
first converts the arrival sequence to natural number sequence. For each expected value,
we traverse from beg to the end of the sequence. The variable beg is the position of
the first packet buffered. All the packets before it in the sequence become in order and
are recovered from reorder buffer. If the expected packet is found, the expected packet
value exp is increased and the temporary out-of-order degree deg is updated. Else, the
program is interrupted since the expected packet is lost and thus the following packets
in the sequence cannot be processed.

4 Design Concept of DancerFly

4.1 The Basic Idea

There are two kinds of parallelism leading to packets disorder. The first is multi-VC
transmission which can cause disorder even if the packets take the same path. The
second is multi-path transmission which causes more serious disorder. In order to mit-
igate the degree of disorder as much as possible without limiting the path diversity and
parallel transmission, we start with the router architecture. In the first case, we propose
to reorder the packets queuing in the input buffer. In the second case, we propose to
reorder packets through switch allocation strategy at the path intersection node.What’s
more, all the routers passed by a traffic flow mitigate the packets disorder collectively.
This scheme is deadlock-free since it does not introduce new dependency circles. As
long as the routing algorithm is deadlock-free, the proposed scheme is deadlock-free.

4.2 Baseline Router Microarchitecture

The proposed DancerFly is based on a canonical virtual-channel router. A typical
virtual-channel router has multiple VCs per input port and virtual channel flow control

123



International Journal of Parallel Programming (2020) 48:730–749 737

Fig. 2 DancerFly architecture

Algorithm 2 Reordering Algorithm Description
1: // cur_ f li t = pointer to the incoming flit; tmp = pointer to linked list node
2: tmp = head−>next
3: while tmp �= NULL do
4: // traverse the linked list
5: if tmp−> f li t . f id == cur_ f li t . f id then
6: if tmp−> f li t .pid > cur_ f li t .pid then
7: // if out-of-order, swap position
8: tmp_ f li t = cur_ f li t
9: cur_ f li t = tmp−> f li t
10: tmp−> f li t = tmp_ f li t
11: end if
12: end if
13: tmp = tmp−>next
14: end while
15: tmp = new node
16: tmp−> f li t = cur_ f li t
17: tmp−>next = NULL
18: tail−>next = tmp

is applied [1]. The components of a virtual-channel router can be partitioned into
two groups based on functionality: the datapath and control plane. The datapath of
the router handles the storage and movement of a packet and consists of a set of
input buffers, a switch, and a set of output buffers. The remaining blocks implement
the control plane of the router and are responsible for coordinating the movement
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of packets through the resources of the datapath. For the virtual-channel router, the
control blocks perform route computation, VC allocation, and switch allocation.

Input buffers hold flits while they are waiting for VCs, switch bandwidth, and
channel bandwidth. Input buffers are evenly partitioned across VCs, which enables
input speedup in the switch and thus increases the throughput of the router. Linked
list [3] data structure is utilized for each VC buffer, which gives flexibility in buffer
allocation andmanagement. The switch is the heart of a router. General crossbar switch
which makes efficient use of internal bandwidth is exploited in the canonical router.
Since there is no need to partition the output buffer storage across VCs, a single FIFO
buffer is used for each output.

The pipeline of the canonical router is composed of four stages: Routing Computa-
tion (RC), VC Allocation (VA), Switch Allocation (SA) and Switch Traversal (ST) [3].
We assume each pipeline stage takes one clock cycle. Prior works on improving the
throughput of router are orthogonal to the proposed packet reordering router design,
so our idea can be integrated into most modern router architectures.

4.3 Order-Aware Input Buffer

To reorder packets in the input buffer, we expand the flit insertion logic into more
powerful logic called reordering logic as shown in Fig. 2. To help understand the
operation of reordering logic, single-flit packet is assumed. Compared with original
flit insertion logic, which just adds flit to the tail of the linked list simply, the reordering
logic inserts the flit into an appropriate position and keeps packets in order. This is
achieved by perceiving the order of packets by utilizing the flit information. Generally,
a flit contains f id and pid fields. f id is flow identifier to which it belongs. pid is
the packet sequence number in the flow. When a flit is about to enter a VC, the
reordering logic will find all the flits in this VC buffer that belong to the same flow as
the incoming flit, by comparing the f id field. Then, these flits, including the incoming
flit, are reordered by comparing the pid field. Note that the reordering logic just swaps
position among these flits. Other flits do not move. For multi-flit packet, packets are
reordered in the similar manner. Since the reordering only triggers when a tail flit
arrives, the integrity of packets is guaranteed.

Algorithm 2 illustrates the pseudo-code of reordering logic. For ease of under-
standing, the reordering operation is described in an iterative way. Since reordering
is triggered every time a packet enters a VC, the packets are always in order for
each VC buffer. Thus, we only need compare the incoming flit with the flits in the
linked list once. cur_ f li t is a pointer to the incoming flit. Each flit whose fid is equal
to cur_ f li t . f id is compared and swapped with cur_ f li t if its pid is greater than
cur_ f li t .pid. Finally, a new node needs to be created and added to the tail of the list.
The flit stored in the new node can be either the incoming flit or the flit swapped out. In
fact, the reordering process can be implemented in parallel. f id and pid of incoming
flit can be compared with those of flits in the linked list simultaneously. Then, all
the flits, which belong to the same flow as the incoming flit and have a greater pid,
are moved backward at the same time. The incoming flit is inserted in the vacancy
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Fig. 3 Example of reordering in order-aware input buffer

meanwhile. Overall, the reordering operation can be executed in two cycles. Note that
only the non-head packets in a VC are reordered. The additional cycle can be hidden.

Figure 3 shows an example that illustrates the difference between traditional input
buffer and the proposed order-aware input buffer. We assume there are 4 VCs for an
input. The grey cells are packets from the same flow. The white cells are packets from
other flows. A packet with pid equal to 2 is about to enter VC0 as shown in the figure.
For traditional input buffer, this flit is added to the tail of the queue simply. The input
buffer cannot realize these packets are out-of-order. In contrast, the flit is inserted into
the right place and kept in order with order-aware input buffer. This is accomplished
by the lightweight and powerful reordering logic.

4.4 Order-Aware Switch Allocator

In this subsection, we present a novel order-aware switch allocator which can reorder
packets fromdifferent input port.Comparedwith traditional switch allocator, the order-
aware switch allocator can sense the order of packets by utilizing the flit information,
as shown in Fig. 2. Before to display the operation of order-aware switch allocator,
we first give a brief introduction about switch allocation and its representation.

Allocation In a switch, each input may request one or more outputs, and each output
may be requested by one or more inputs. An allocator performs a matching between
the input ports and output ports. The allocator considers the requests and performs
allocation subject to three rules:

– A grant can be asserted only if the corresponding request is asserted.
– At most one grant for each input may be asserted.
– At most one grant for each output can be asserted.

For a group of requests, there may be many valid allocation results. A solution that
contains themaximumpossible number of assignments is called amaximummatching.
A solution in which no additional requests can be serviced without removing one of
the existing grants, is called a maximal matching. Apparently, a maximummatching is
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Fig. 4 Example of order-aware switch allocation

certainly a maximal matching, but a maximal matching is not necessarily a maximum
matching conversely.

Representation The requests can be represented by a request matrix R, and the
corresponding grants can be represented by a grant matrix G. Each cell of the matrix
represents an input-output pair. R is an arbitrary binary-valued matrix. G is also a
binary-valued matrix that only contains ones in entries corresponding to non-zero
entries in R. In addition, G has at most one ’1’ in each row, and at most one ’1’ in
each column.

It is common that packets, which belong to the same flow, from different input
ports contend for an output port due to adaptive routing. This is what happens at node
07 shown in Fig. 1. The proposed order-aware switch allocator resolves this conflict
by prioritizing the packet with lower pid. In contrast, the traditional switch allocator
selects packet blindly when facing conflict.

To have an intuitive understanding, we give an example as shown in Fig. 4. We
assume a 4-port router and the number of VC per physical channel is set to 2. In
the figure, the matrix on the left is the request matrix and the matrix on the right is
the corresponding grant matrix generated by order-aware switch allocator. The circles
stand for the requests. The grey circles represent that the corresponding requesting
packets are from the same flow and the number inside is the pid. The grey cells in the
grant matrix are granted requests. There are four requests in the request matrix, i.e.,
(0, 0), (1, 3), (2, 1), (3, 1), of which request (2, 1) conflicts with the request (3,1). With
order-aware switch allocator, the request (2, 1) is prioritized as the corresponding
requesting packet has smaller pid. In contrast, traditional switch allocators cannot
perceive the order of packets and select request blindly. The resulting grant matrix
with order-aware switch allocator is shown at the right part of the figure. Note that the
proposed switch allocator achieves maximum matching. Actually order-aware switch
allocator provides better selection when output conflicts occur and does not affect the
number of assignment.
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Table 2 Network simulation parameters

Parameters Values

Routing algorithm Footprint [5], Dyxy [12]

Traffic pattern Shuffle, Bit reverse, Badperm, Uniform

Flow control mechanism Virtual Channel, Credit-Based

Packet size single-flit packet, 2-flit packet, 4-flit packet

Flow size 100 packets, 300 packets, 500 packets, 700 packets

VC number 2, 4, 8 VCs per physical channel

Network size 4 × 4, 8×8, 16 × 16

The default values are marked in bold

(c) (d)

(b)(a)

Fig. 5 OOD comparison with different traffic pattern for Footprint

5 Evaluation

In this section, we compare the performance of the proposed DancerFly with the
canonical virtual channel router. The traditional flit insertion logic and iSLIP switch
allocator are used in the baseline router. Other configurations of baseline router are the
same as those of DancerFly. The evaluation is twofold. First, we focus on the OOD
of the network and we synthesize several conventional traffic patterns to evaluate
the effect of different router design. The OODs of network with different routing
algorithms and flow sizes are also measured to evaluate the reliability of DancerFly.
Second, we focus on the network performance (latency and throughput). Similarly,
the impact of different traffic patterns and routing algorithms are evaluated.

123



742 International Journal of Parallel Programming (2020) 48:730–749

(d)(c)

(a) (b)

Fig. 6 OOD comparison with different traffic pattern for Dyxy

5.1 Methodology

Wemodified the Booksim simulator [9] to model the router architecture and intercon-
nection network. The router pipeline is three cycles plus one cycle for link traversal.
The detailed configurations are listed in Table 2. If the configurations are modified in
a specific experiment, they will be mentioned for avoiding confusion. The baseline
network topology is a 8 × 8 2D mesh. Footprint [5] and Dyxy [12] are chosen for
adaptive routing algorithms. The default VC number per physical channel is 2 and
VC buffer size is 20 flits. Different VC number and VC buffer size are also evaluated.
To understand the impact of the router architecture and isolate the impact of the flow
control, single-flit packets are used as default in the evaluation. The impact of multi-
flit packets is also evaluated. Flow size defaults to 100 packets. Different synthetic
traffic patterns are used in the evaluation such as uniform, shuffle, bit reverse and bad-
perm. The simulator is warmed up for 15,000 cycles and then the OOD and network
performance are measured over another 30,000 cycles.

5.2 Evaluation for OOD

5.2.1 Different Adaptive Routing Algorithm

Figures 5 and 6 show the OOD comparison of Baseline andDancerFly as injection rate
increases in different synthetic traffic patterns with Footprint and Dyxy routing algo-
rithm. Considering practical significance, only the results within saturation throughput
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are given. As shown in Fig. 5a, the OOD is very small at low load but increases rapidly
as injection rate increases. In this case, the OOD can be up to 32% of the flow size at
saturation throughput. This is because at low load the network is unimpeded and thus
it is rare for later packets to arrive before the earlier packets. However, at high load,
congestion occurs in some areas due to load imbalance and it is very likely that the
earlier packets are blocked and the later packets choose other unblocked path, leading
to faster arrival. Based on this observation, the maximum OOD for a specific network
configuration is determined by the OOD at saturation throughput.

Apparently, DancerFly always achieves smaller OOD than Baseline under different
traffic patterns for Footprint and Dyxy. With Footprint routing algorithm, DancerFly
shows 28.1%, 14.6%, 22.7% and 9.1% OOD reduction over Baseline in saturation
throughput for shuffle, bit reverse, badperm and uniform traffic pattern. With Dyxy
routing algorithm, DancerFly improves the OOD in saturation throughput for shuffle,
bit reverse, badperm and uniform versus Baseline by 23.7%, 27.2%, 12.5% and 8.3%.
These traffic patterns cause regional congestion in high load, and adaptive routing
algorithms which enable multi-path transmission to avoid congestion, lead to severe
out-of-order. Previous router designs cannot be aware of the disorder of packets. With
DancerFly, the packets are reordered as soon as they enter the input buffer. In addition,
packets in different input ports are reordered through order-aware switch allocator.

Note that the OOD reductions with uniform traffic are less than that with non-
uniform traffic. That is because the load is already balanced across the network with
uniform traffic pattern. It rarely happens that the latter packets route around conges-
tion area, selecting the less congested path, and arrive at the destination earlier finally.
Therefore, the OOD in uniform traffic is relatively low and there is little room for
DancerFly to improve. Nevertheless, DancerFly still achieves about 10% improve-
ment.

5.2.2 Impact of Packet Size

The effect of packet size is shown in Fig. 7a. ThemaximumOOD is theOOD in satura-
tion throughput which determines the reorder buffer size in the destination. DancerFly
always achieves OOD reductions, but the reductions decrease when increasing packet
size. Specifically, DancerFly achieves 28.1%, 18.8% and 19.1% OOD reduction over
Baseline for 1, 2, 4-flit packet respectively. The OOD reduction decreases from 1-flit
packet to 2-flit packet. The reason is that there are fewer packets that can be accom-
modated for the same VC buffer. Thus, the effect of reordering is weakened in the
order-aware input buffer. However, the effect of order-aware switch allocator is not
affected by packet length because the switch allocator operates on flits.

5.2.3 Impact of Flow Size

In addition to 100 packets flow, we also evaluate the effect of DancerFly with different
flow size. Figure 7b shows the OOD comparison between Baseline and DancerFly
with 300 packets flow, 500 packets flow and 700 packets flow. As shown in the figure,
DancerFly outperforms Baseline for different flow sizes. In particular, the OOD reduc-
tions of DancerFly against Baseline in saturation throughput are 36.3%, 14.8% and
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(b)(a)

Fig. 7 Impact of packet size (a), flow size (b), VC number (c) and network size (d)

27.8% for 300 packets flow, 500 packets flow and 700 packets flow respectively. This
is achieved because DancerFly provides order awareness and keeps packets transmit-
ting in order compared to Baseline. Furthermore, all DancerFlys in the network work
collectively and reduce OOD of the network dramatically.

5.2.4 Impact of Number of VCs

In this evaluation, we explore the impact of VC number onDancerFly. Figure 7c shows
the OOD comparison of Baseline and DancerFly with 2, 4 and 8 VCs per physical
channel. Since the input buffer size remains the same, the corresponding VC buffer
sizes are 20, 10 and 5 flits. It is expected that the number of VC can have some impact
on the effect of DancerFly. The reason is that the proposed lightweight order-aware
buffer reorders packets in each VC independently. Considering that reordering packets
across VCs will cause a lot of area, power and latency overhead, and get few or even
no improvement in return, the method in this paper is more cost-effective. In addition,
the VC buffer size decreases as VC number increases. Thus, the effect of reordering
is weakened due to fewer packets in the VC buffer. Nevertheless, DancerFly always
outperforms Baseline for any VC number. Specifically, DancerFly achieves 28.1%,
17.2%and16.0%OODreduction compared toBaseline for 2, 4 and8VCs respectively.
This shows that DancerFly can significantly reduce the OOD with different number
of VCs. Similarly, this is the result of two-level reordering of DancerFly.
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(a) (b)

Fig. 8 Latency-throughput comparison with different traffic pattern for Dyxy

5.2.5 Impact of Network Size

Weanalyze the scalability ofDancerFly by evaluating theOODon a 4×4 and a 16×16
mesh topology. The results are shown in Fig. 7d. In general, DancerFly outperforms
Baseline regardless of the network size. Specifically, theOOD reductions ofDancerFly
over Baseline are 23.8% and 26.7% for 4×4 and 16×16 mesh respectively. Note that
the OOD reductions are comparable to that of 8× 8 mesh. This demonstrates that the
proposed scheme, DancerFly, is scalable. This is achieved because each DancerFly
performs reordering independently.

5.3 Evaluation for Network Performance

In this section, we evaluate the network performance with DancerFly and Base-
line. Theoretically, the network performance with DancerFly is identical to that with
Baseline under any network configurations. We prove it from two aspects. First, for
order-aware buffer, we does not change the routing path (port and VC) of the packets.
Since the reordering logic just swaps the position of packets of a flow, it does not affect
the flow latency and does not affect the packets of other flows. Second, for order-aware
switch allocator, it does not change the maximummatching, since it just provides bet-
ter choice when output conflicts occur compared to previous switch allocators which
select input port blindly.

Figures 8 and 9 give the latency results for Dyxy and Footprint routing algorithms
using shuffle and bit reverse traffic pattern. The blue curve shows the Baseline and the
orange curve represents the DancerFly. As shown in the figures, the two curves are
almost completely coincident. This means that the average latency and throughput are
the same for Baseline and DancerFly. There is a little difference in average latency
at 0.35 for the first figure in Fig. 8. Similarly, the difference exists at 0.32 for the
first figure in Fig. 9. This is due to different selection strategy when output conflicts
occur, as described in Sect. 4.4. Since only one output can be granted to each input,
whichever input you choose will cause other requests from this input to be unsatis-
fied. It is entirely a matter of probability. Sometimes DancerFly gets more matches
and sometimes Baseline. Overall, the experiment results verify the theoretical result
stated above. According to the evaluation, the proposed DancerFly not only retains
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(a) (b)

Fig. 9 Latency-throughput comparison with different traffic pattern for Footprint

the advantages of adaptive routing (e.g., lower latency, higher saturation throughput,
load balancing and fault tolerance), but also reduces the OOD dramatically.

6 Overhead

For order-aware input buffer, the flit insertion logic is substituted by a lightweight
reordering logic which ensures that packets are ordered after insertion. This process
does not introduce additional registers since we only need change several pointers
which already exist in pointer memory [3]. The reordering logic can be executed in
two cycles. Since only non-head packets in the VC buffer are reordered, the additional
cycle can be hidden. Thus, no additional cycles are introduced to the critical path. For
order-aware switch allocator, we use flit information to select the front packet of a flow
when output conflict occurs. This only introduces sample compare logic and does not
lengthen the clock of switch allocation stage. In summary, the proposed DancerFly
just adds some simple logic in control plane, but does not introduce additional cycles
and registers in critical path.

7 Discussion

7.1 Scalability

The DancerFly is topology agnostic. It can be applied to other topologies without
alteration. In addition, the reordering system composed of all DancerFlys in the net-
work performs reordering in a fully local manner, allowing it to scale well to large
networks. DancerFly only involves router architecture design and does not change
routing strategy. That makes DancerFly applied for any routing algorithms, includ-
ing adaptive and deterministic routing algorithms. In addition to on-chip network, the
idea of DancerFly can be applied to off-chip network as long as packets reordering is
needed.
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7.2 Reordering BetweenVCs

Reordering between VCs needs complex logic unit, additional resisters, a lot of wiring
and power overhead, but gets little or no OOD reduction in return. Since reordering
between VCs involves adjustment of elements in multiple linked lists, additional reg-
isters are required to store temporary data. The reordering logic will be more complex
and may need multiple cycles. Additional cycles may be added to the critical path
accordingly. Actually, the disorder between VCs has little impact on OOD of the
whole flow which is dominated by multi-path (port) transmission. The reason is that
the disorder between VCs is local, while OOD reflects the maximum degree of dis-
order. In addition, the number of VCs is de facto small. More VCs can increase the
circuit complexity and power consuming considerably.

7.3 Other Instances in Switch Allocation

We considered the case that different inputs request different outputs for packets from
the same flow. However, this is almost impossible to happen. Route computing for
a packet is based on the local information and the destination address. Since these
packets perform route computing almost at the same time, the local information and
their destination are the same and thus the resulting outputs are the same. Even if this
happens, we should not just choose the packet with small pid and discard the packet
with large pid. It is because this will decrease the number of assignment and result in
performance loss. Thus we just leave it as it is.

8 Conclusion

Packet reordering is a thorny problem that mainly caused by adaptive routing. Setting
a huge reorder buffer which is rare in NoC for each receiver node is infeasible in
practice. To minimize packets disorder, we have to abandon adaptive routing and back
to deterministic routing previously. In this work, we address this problem from the
perspective of router architecture innovatively. We first propose a packet reordering
metric and its implementation. Then, we propose DancerFly, a novel order-aware and
packet reordering router. To the best of our knowledge, it is the first work minimizing
packet reordering for adaptive routing.We achieve this by utilizing the flit information
and sensing the order of packets in the router. Then, the packets are reordered in
the router pipeline. This is implemented by adding some simple logic to the control
plane of the conical router and there is no additional buffer overhead in datapath.
Experiments show that DancerFly achieves significant OOD reduction for various
adaptive routing algorithms and traffic patterns.DancerFly is topology-agnostic; future
work will extend DancerFly to additional topologies beyond mesh networks. We also
plan to apply DancerFly to off-chip networks.
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