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Abstract
Understanding the scalability of parallel programs is crucial for software optimization
and hardware architecture design. As HPC hardware is moving towards many-core
design, it becomes increasingly difficult for a parallel program tomake effective use of
all available processor cores. This makes scalability analysis increasingly important.
This paper presents a quantitative study for characterizing the scalability of sparse
matrix–vector multiplications (SpMV) on Phytium FT-2000+, an ARM-based HPC
many-core architecture. We choose SpMV as it is a common operation in scientific
and HPC applications. Due to the newness of ARM-based many-core architectures,
there is little work on understanding the SpMV scalability on such hardware design. To
close the gap, we carry out a large-scale empirical evaluation involved over 1000 rep-
resentative SpMV datasets. We show that, while many computation-intensive SpMV
applications contain extensive parallelism, achieving a linear speedup is non-trivial on
Phytium FT-2000+. To better understand what software and hardware parameters are
most important for determining the scalability of a given SpMV kernel, we develop a
performance analytical model based on the regression tree. We show that our model
is highly effective in characterizing SpMV scalability, offering useful insights to help
application developers for better optimizing SpMV on an emerging HPC architecture.
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1 Introduction

Multi-core and many-core architectures offer the potential of delivering scalable per-
formance through parallelism. Realizing such potential is, however, not trivial due to
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multiple factors, including available application parallelism, limited working sets, and
communication overheads. Among these factors, the share memory resources, such
as shared caches, is often a performance bottleneck for many application domains due
to memory contention [22].

The memory bandwidth is increasingly becoming a limiting factor for the high-
performance computing (HPC) domain. On the one hand, there are more and more
processor cores that are integrated into a single chip, to provide more computation
power. On the other hand, using a larger number of processor cores is likely to raise
memory contention and increase the pressure on the memory bus. As a result, it is
not always beneficial to use a large number of cores even if abundant parallelism is
available [17]. To unlock the potential of multi- and many-core architectures and to
justify the further specialization of processor design, it is important to understand the
impact of the shared memory resources on application scalability.

In this paper, we present a quantitative approach to characterize the scalability
of sparse matrix–vector multiplications (SpMV) on HPC many-core architectures.
SpMV is one of the most common operations in scientific and HPC applications [36].
It is highly challenging to optimize SpMV on parallel architectures [47], due to sev-
eral reasons like irregular indirect data accessing, sensitivity to the sparsity pattern
of the input matrix, and the subtle interaction of the matrix storage format, the prob-
lem size, and hardware. While there is considerable work on finding the right sparse
matrix storage format [3,18,19,23,29], little effort has been spent on characterizing
and understanding the scalability of SpMV on multicore architectures. As the HPC
hardware is firmly moving towards many-core design, it is crucial to know when it is
beneficial to use the available cores and how the SpMV performance will scale as we
increase the number of cores to use.

Our work specifically targets the ARMv8-based Phytium FT-2000+ many-core
architecture. Because ARM-based processors are emerging as an interesting alterna-
tive building block for HPC systems [20,37,48], it is important to understand how the
hardware microarchitecture design affects the SpMV scalability. Having such knowl-
edge is useful not only for better utilizing the computation resources, but also for
justifying a further increase in the processor core provision on a single chip.

In this work, we conduct a comprehensive evaluation and analysis to study the
scalability of SpMV on the latest FT-2000+ many-core. Our study mainly targets
the Compressed Sparse Row (CSR) storage format. We choose CSR because it is a
widely used representative storage format for sparse matrices in scientific computing.
Since there aremany variations of the CSR format, our optimization has great practical
significance and can easily be extended to other CSR-extended formats.

Our experiment shows that despite many SpMV applications contain extensive par-
allelism, they often fail to achieve a linear speedup on FT-2000+. To character what
affects the scalability of SpMV, we collect extensive profiling information (through
hardware performance counters) from a large-scale experiment involved over 1,000
representative sparse datasets. With this extensive set of profiling data in place, we
develop a regression-tree based analytical model to capture what information is useful
for reasoning about the scalability of SpMV. We show that our analytical model is
highly accurate in revealing what affects the SpMV scalability on FT-2000+. We
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Fig. 1 A simple example of
SpMV with a 4 × 4 matrix
(nnz = 8) by a 4 × 1 vector. The
product of this SpMV is a 4 × 1
vector

demonstrate that our model can provide useful insights to guide the application devel-
opers to better optimize SpMVon an emergingARMv8-basedmany-core architecture.

To summarize, this paper makes the following contributions. It is the first to

– Characterize the scalability performance of SpMV on FT-2000+, an emerging
ARMv8-based many-core architecture for HPC;

– Use machine learning techniques to correlate and analyze how hardware micro-
architecture features affect the SpMV scalability.

– Show how machine learning can be used to develop a performance profiling tool
to guide the optimization of SpMV on ARM-based HPC architectures.

2 Background andMotivation

In this section, we first introduce the SpMV and its sparse matrix storage formats and
then explain the motivation of this work.

2.1 Sparse Matrix–Vector Multiplication

A SpMV operation can be defined as y = Ax where the input is a sparse matrix A
(m × n) and a dense vector x (n × 1), and the output is a dense vector y (m × 1).
Figure 1 shows an illustrative example of SpMV, wherem = n = 4, and the nonzeros
nnz = 8.

2.2 Sparse Matrix Storage Formats

In our work, we mainly consider the SpMV based on CSR, the most commonly used
format for storing sparse matrices, and its improved counterpart, CSR5 [23]. The
example matrix mentioned above in these two formats is shown in Table 1.

CSR The compressed sparse row (CSR) format explicitly stores column indices and
nonzeros in arrays indices and data, respectively. It uses a vector ptr, which
points to row starts in indices and data, to query matrix values. The length of
ptr is n_row + 1, where the last item is the total number of the nonzero elements of
the matrix.

CSR5 The CSR5 format aims to obtain a good load balance for matrix value
queries [23]. It achieves this by partitioning all nonzero elements into multiple 2-
dimensional tiles of the same size. corresponding to the width and the height of the
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Table 1 The sparse matrix storage formats targeted in this work and the corresponding data structures for
the example shown in Fig. 1

Representation Specific values

CSR ptr = [0, 2, 5, 6, 8]
indices = [1, 2, 0, 2, 3, 2, 1, 2]
data = [5, 2, 6, 8, 3, 4, 7, 1]

CSR5 ptr = [0, 2, 5, 6, 8] tile_ptr = [0, 1, 4]
t ile_des : bit_ f lag = [T , T , F, F |T , T , T , F],
y_of f = [0, 1|0, 2], seg_of f = [0, 0|0, 0]
indices = [1, 0, 2, 2|3, 1, 2, 2]
data = [5, 6, 2, 8|3, 7, 4, 1]

Fig. 2 Performance comparison
of SpMV on two multicore
processors. The x-axis represents
the number of threads and the
y-axis represents the obtained
performance (in Gflops)

title respectively. Later in this paper, we show how CSR5 gain better scalability than
CSR by more uniform and reasonable task assignment in multi-threaded SpMV.

2.3 Motivation

We run the multi-threaded SpMV in CSR on a x86-based Xeon multi-core (Intel
Xeon E5-2692) and a ARMv8-based Phytium multi-core (FT-2000+). Figure 2
shows the SpMV performance for the bone010 dataset when using threads ranging
from 1 to 16.

We observe that, on Xeon the speedup increases linearlywhen using 1 thread upto 4
threads, while the performance increase is very slight when using furthermore threads.
At this moment, the SpMV performance on Xeon is limited by the off-chip memory
accesses. By contrast, the SpMV scalability is rather different on FT-2000+. We
see a very slight performance increase when using 1, 2, and 4 threads. Thereafter, we
notice a quasi-linear speedup until using 16 threads.We believe that these performance
behaviours are determined by the interactions of the SpMV code, the input sparse
matrix, and the underlying micro-architecture. In this work, we will look into the
factors which impact the SpMV scalability on FT-2000+.

Given that the performance ‘odds’ appear when using fewer than 8 threads, we will
focus on scalability characterization on a core-group within a panel of FT-2000+
(see Fig. 3 and Sect. 3).
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Fig. 3 A high-level view of the FT-2000+ architecture. Processor cores are groups into panels (left) where
each panel contains eight ARMv8 based Xiaomi cores (right)

3 Experimental Setup

In this section,wewill introduce the hardware platforms, the installed system software,
and the datasets used in this work.

Hardware Platforms As depicted in Fig. 3, FT-2000+ integrates 64 ARMv8 based
Xiaomi cores. Its Mars II microarchitecture offers a peak performance of 588.8
Gflops for double-precision operations, with a maximum power consumption of
96 W. The CPU chip has eight panels with eight 2.3 GHz cores per panel. Each
core has a private 32 kB L1 data cache, and a 2 MB L2 cache is shared among four
cores (core-group). The panels are connected through two directory control units
(DCU) [13].

Systems Software We run a customized Linux OS with Linux Kernel v4.4 on
FT-2000+. For compilation, we use gcc v6.4.0 with the “-O3” compiler option.
We use the OpenMP threading model, using 1–4 threads on FT-2000+.

DatasetsWeuse 1008 squarematrices (with a total size of 80GB) from the SuiteSparse
matrix collection [9]. The number of nonzero elements of the matrices ranges from
100K to 200M [21]. The dataset includes both regular and irregularmatrices, covering
domains from scientific computing to social networks [24].

4 SpMV Scalability Results andModelling

In this section, we show the overall scalability performance of SpMV. To identify
the impacting factors of SpMV scalability on FT-2000+, we build a regression-tree
based model, which automated relates features to speedup (normalized to a single
thread). We use key features collected from hardware performance events and the
input sparse matrix datasets.
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Fig. 4 The overall speedup of SpMV in 1–4 threads on FT-2000+. The x-axis labels different sparse
matrices

Table 2 The average speedup(x)
of SpMV with multi-threads
over a single-thread

#threads 1 2 3 4

speedup 1.0× 1.50× 1.77× 1.93×

4.1 Overall Performance Results

Figure 4 shows the overall speedup of SpMV with 1–4 threads on a core-group of
FT-2000+. The x-axis represents different sparse matrices. Although the achieved
speedup for most matrices increases over the number of threads, we note the perfor-
mance is far less than the linear speedup. Most speedup numbers lie between 1 and
2, and a very small portion of numbers are beyond that. Also, the obtained speedup
is hyper-linear for some datasets. This is because the dataset is so small that it can be
hold within the shared L2 data cache. Table 2 shows a statistical profile of the average
speedup when using multiple threads (normalized to that of a single thread). We see
that the average performance of SpMV only improves 50% from 1 thread to 2 threads
and does even not double the number when using 4 threads. The scalability of SpMV
on FT-2000+ is far less than our expectation, which motivates us to identify the
impacting factors behind it.

4.2 Scalability Modelling

To find the impacting factors for scalability, we use an empirical approach to manually
analyze the performance behaviours. As an alternative, we use a machine-learning
based approach to build a model and then let the model tell us which feature plays a
role in scaling SpMVon FT-2000+. Instead of hand-crafting an analytical model that
requires expert insight into low-level hardware details, we employ machine learning
techniques to automatically learn the correlation between features and the SpMV
(speedup) performance.

Building and using the regression tree model follows three main steps: (1) generate
training data, (2) train a regression model, and (3) find the factors with a large weight.
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Given that ourmodel is used as a tool for analysis rather than for predicting the speedup
of SpMV, we make the best use of the collected data by selecting 90% samples for
training, instead of the usual (80%, 20%) data splitting between model training and
model testing.

4.2.1 Collecting Training Data

To generate training data for ourmodel, we used 1008 sparsematrices from the SuiteS-
parse matrix collection. We run the CSR-based SpMV a number of times until the gap
of the upper and lower confidence bounds is smaller than 5% under a 95% confidence
interval setting. The code is run with 1, 2, 3, and 4 threads, with each pinned to a fixed
core. We then record the SpMV execution time for computing speedup (normalized
to a single thread) and obtain hardware performance counters by using PAPI (Perfor-
mance Application Programming Interface [38]) for each training sample. As the last
step, we collect key values for each input dataset to capture its features.

Table 3 shows our selected features from both sparse matrix structure and hardware
events. These important matrix features introduced in [4] are proved to be effective in
capturing the spatial patterns of the matrix. The raw hardware counters we collected
are related to performance [27]. To improve the model performance, we calculate a set
of derived features based on raw counter values and use them as the input of the model.
There are two customized features:L2_DCMR_change and job_var. The former
indicates the changes of L2_DCMR from one to four threads. As for the L2_DCMR
with four threads, we use the L2_DCMR on the slowest thread instead of the total one;
the job_var represents the degree of nonzero distribution imbalance across threads
(the theoretical value is 0.25 for 4 threads).

4.2.2 Building the Model

For simplicity, we only use performance counters collected when using one thread
and four threads. The achieved speedup and the corresponding feature set is taken as
the input of the supervised learning algorithm built in scikit-learn. The learning
algorithm tries to find a correlation between the features, performance values and
achieved speedups. The output of this training process is a regression-tree basedmodel,
which helps to reveal the factors that affect SpMV scalability.

4.2.3 Identifying the Impacting Factors

By using the feature importance module of scikit-learn for the new-
built regression tree model [32], we can obtain the top three factors that most affect the
SpMV scalability: the nonzero allocation, the shared L2 cache, and the nnz variance
across rows, where nnz denotes the number of nonzero. Figure 5 shows how these
factors impact the SpMV speedup. In the next section, we will give a detailed analysis
of the scalability with our trained model.
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Table 3 The selected features and their descriptions

Features Description

Matrix features n_rows Number of rows

nnz_max Maximum # nonzeros per row

nnz_avg Average #nonzeros per row

nnz_var Variance # nonzeros per row

Raw hardware counters L2_DCM L2 data cache misses

L2_DCA L2 data cache accesses

L1_DCM L1 data cache misses

L1_DCA L1 data cache accesses

FR_INS Floating point instructions executed

TOT_INS Total instructions executed

TOT_CYC Total cycles

Derived hardware counters L1_DCMR L1 data cache miss rate

L2_DCMR L2 data cache miss rate

IPC Instructions per cycle

L2_DCMR_change The change of L2_DCMR

job_var Maximum # allocated nnz ratio per thread

Fig. 5 A tree picked from the
regression forests intuitively
shows how the factors impact
the speedup of SpMV

L2_DCMR_change<0.04

1.48

True False

job_var<0.26

job_var<0.48

1.33

2.2

nnz_var<16.82

2.06 1.68

5 Scalability Analysis, Insights and Optimizations

In this section, we first examine how individual factor suggested by the model
(Sect. 4.2.3) impacts the SpMV speedup. We then conduct an in-depth analysis of
how the factors have an impact on the SpMV scalability with four representative
matrices. We choose the four datasets because their speedups are mainly limited by
separate factors. At last, we introduce several potential optimizations inspired by the
scalability results.
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(a) job var (b) job var

(c) L2 DCMR change (d) L2 DCMR change

(e) nnz var (f) nnz var

Fig. 6 The correspondence between the three identified factors and speedup of SpMV. The y-axis in b, d
and f is interval average values of speedup. In e and f, the x-axis represents the value of nnz_var after
normalization processing

5.1 The Factors Impacting SpMV Scalability

Based on the data obtained from executing SpMV on datasets, we draw scatter plots
between each impacting factor and the speedup, which are shown in Fig. 6. It is clear
that the speedup generally shows a gradual decline trend when the nonzero allocation
across threads becomes more unbalanced, the L2_DCMR increases from one thread
to four threads, or the nonzero variance of sparse matrices go larger.

The three bar charts in Fig. 6 show the statistical results of integral histogram of
the speedup results, which is consistent with the results in the left part of Fig. 6. There
are also some cases that do not meet our expectations. For example, Fig. 6d shows
that the speedup even decreases when L2_DCMR_change is less than 0. We argue
that it is a comprehensive product of multiple impacting factors, which needs further
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Table 4 The concise description of four representative matrices

Matrix job_var L2_DCMR_change nnz_var Sparsity structure Speedup

exdata_1 0.992 0.000 649.627 1.018×

conf5_4-8x8-20 0.250 0.056 0.000 1.351×

debr 0.250 − 0.001 0.003 2.241×

appu 0.252 − 0.001 36.494 1.479×

investigation. In this following, we will analyze how each factor has an impact on the
SpMV scalability.

The balance of the nonzero allocationWhen running the conventional SpMV code in
the CSR format, the nonzero allocation across threads depends on the sparse matrix
structure. As shown in Fig. 6b, when job_var is greater than 0.45, which means that
the nonzeros are clustered within some rows to be dispatched to a specific thread, load
imbalance will occur and this thread will take substantially more time than the other
threads. Thus, the unbalanced nonzero allocation among threads will put a limit on
the achieved speedup, because the SpMV performance is determined by the slowest
thread.

Taking exdata_1 in Table 4 for instance, the second thread will consume more
than 99% of the nonzeros when using 4 threads, and thus the achieved speedup stays
around 1.02× in such a case.

The shared L2 data cache Leveraging shared resources on multi-core architectures
improves the utilization of a hardware component and can improve overall system
throughput. On the one hand, such a design as cache sharing can lead to positive
interference, i.e., one thread brings data into the shared cache which is accessed by
other threads [12]. The debr in Table 4 gives an intuitive example for the benefits of
shared memory. Recalling the SpMV algorithm, y = Ax, where the dense vector x is
the data structure to be reused across threads. This occurs because different threads
deal with distinct matrix rows of A, while x is shared by all threads. When running
SpMV on debr with 4 threads on FT-2000+, with the L2 cache sharing within
a core-group, threads[1, 3] and threads[2, 4] can share the dense vector x so as to
increase the data reuse and improve the performance of multi-threaded SpMV.
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On the other hand, cache sharing can have a negative impact on the per-thread
performance from the perspective of resource competition. The L2 cache sharing on
FT-2000+ may cause threads to evict data of other threads when running SpMV,
which means that the ‘victim’ threads will experience more cache misses than their
isolated execution. And we find that the degree of the negative impact from cache
sharing is related to the average nonzeros per row (nnz_avg). In general, a larger
nnz_avg leads to more competitions. We argue that this is because nnz_avg rep-
resents the need for dense vector x per row when running SpMV, which means that
the data evicting increases as nnz_avg goes up. As shown in Fig. 6c, as L2_DCMR
increases for most matrices, we note a corresponding decrease in speedup.

To summarize, we note that the impact of cache sharing on SpMV relates to specific
input matrices and their structures. In Table 4, the SpMV gains a much larger speedup
on debr (2.241×) than on conf5_4-8x8-20 (1.351x) with 4 threads. On the one
hand, the data reuse that benefits from the distribution of nonzerosmakes contributions;
on the other hand, the average nonzeros per row of conf5_4-8x8-20 is larger than
its counterpart (39 vs. 4), which means that runnig SpMV on conf5_4-8x8-20
generates more contention with shared L2 cache. These two reasons both lead to a
higher increase on L2_DCMR of conf5_4-8x8-20 than debr from one thread to
four threads.

The nonzero variance across rowsThe utilization of the dense vector x has a significant
impact on the SpMV scalability. However, to obtain the correlation of nonzero distri-
bution row by row is time-consuming for large-scale sparse matrices. As a result, we
choose the nonzero variance across rows instead. This metric can reflect the regularity
of input matrices and capture how the dense vector x will be reused.

Note that the speedup is calculated by dividing the single-thread execution time
by the that of multiple threads, and the latter depends on the thread that spends the
most time. Thus, an even distribution of the SpMV execution across threads typically
leads to satisfactory SpMV scalability. However, we observe that the balanced nonzero
allocation across rows does not necessarily lead to a large speedup like matrix debr
listed in Table 4. This is because the different nonzeros distribution across rows (and
threads) equally has an impact on the execution time. For debr, despite the fact that
nonzeros are evenly allocated across threads, the large nnz_var results in different
reuse of vector x, and leads to different execution behaviours across threads and an
unsatisfactory speedup. As shown in Fig. 6f, matrices with smaller nnz_var tend to
bring a larger speedup. This can be equally explained that a smaller nonzero variance
across rows can ensure that the workloads can be more evenly distributed and better
exploit the locality of vector x.

5.2 Potential Optimizations

5.2.1 Using Storage Formats with Balanced Nonzero Allocation

The load imbalance ismainly related to the adoptedCSR format and the thread schedul-
ing policy. In most cases, we use the static scheduling policy because the overhead
of thread communication with dynamic scheduling is nonnegligible. To overcome the
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Fig. 7 The comparison of
job_var and speedup
(normalized to that of a single
thread) of SpMV in different
storage formats. The input
matrix is exdata_1

Fig. 8 The SpMV scalability
improvement benefited from our
optimizations on
conf5_4-8x8-20

issue of load imbalance, we choose to use storage formats that divide nonzeros equally
among threads. The CSR5 format is selected because it is designed to solve the load
imbalance in CSR-based SpMV, and its data structure is shown in Sect. 2.2.

We choosematrices whose scalability suffers from load imbalance by itsjob_var
value (≥ 0.45), and then run CSR5-based SpMV on the matrices. The results show
CSR5 achieves an average improvement of speedup from 1.632× to 2.023×. Fig-
ure 7 shows the performance result on exdata_1. Compared with the CSR format,
load imbalance is significantly mitigated by running the CSR5-based SpMV with
job_var decreasing from 0.992 to 0.298. As a consequence, the speedup gains an
improvement from 1.018× to 1.468×. CSR5 performs better because the nonzeros
are divided and organized in small tiles instead of the row manner. Therefore, when
dealing with irregular matrices, despite that the rows with a large number of nonzeros
may be concentrated like exdata_1, they will not be assigned to the same thread.
Thus, the workloads can be dispatched in a much more even manner across threads
and improve the scalability of SpMV.

5.2.2 Avoiding the Contention from Shared Memory Resources

Basedon the analysis inSect. 5.1,weknow that the sharingL2cacheof FT-2000+has
a great impact on the scalability of SpMV.Undermost circumstances, the sharing cache
causes more contention, which leads to a speedup decline. To alleviate the pressure
from cache sharing, we bind threads to multiple cores that are located in different
core-groups (Sect. 3). In this way, we can ensure that each thread occupies a
complete L2 cache without data interference from other threads.

When running SpMV on all the matrices in the private-L2 mode, we can achieve
a considerable average speedup of 3.40× on 4 threads, compared with 1.93× on
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Fig. 9 The synthesized sparsematrixwith poor locality utilization of the vectorx (left) and the corresponding
matrix in ideal locality-aware SpMV storage format (right)

one core-group (Table 2). As can be seen from Fig. 8, the speedup with private
L2 caches significantly outperforms its counterpart of sharing an L2 data cache on
conf5_4-8x8-20, with a speedup increasing from 1.35x to 3.61x. This is because
using private L2 caches can effectively reduce the L2 cache miss from 30 to 25%. But
this approach of using a private L2 data cache will not bring a performance increase
for all matrices. Taking another matrix asia_osm for example, the speedup only
increases by 2.6% from 3.170× to 3.254× with private L2 caches. We reckon that
the average nonzeros per row of this matrix is less than 3, so that the shared L2 cache
can meet with their memory accessing need.

5.2.3 Exploiting Locality-Aware SpMV Storage Formats

Based on the aforementioned analysis, we know that merely achieving balanced
nonzero allocation is insufficient, and the locality of x in SpMV needs to be exploited
to achieve better scalability. Here is our idea to design a novel storage format that
can make good use of the locality: we bring together the rows with a similar nonzero
distribution, so that the vector x can be reused.

To explore the feasibility of designing the locality-aware SpMV storage format, we
generate a series of matrices of different sizes as shown in Fig. 9. This original matrix
has a poor locality of vector x when running SpMV. And we then transform such
matrices to locality-friendly forms by partial reordering. Table 5 shows the result of
running CSR-based SpMV on a specific pair of matrices on FT-2000+. Both single-
threaded and multi-threaded performance gain significant improvement. Particularly,
the 64-thread performance improves by 71.7% from 15.907 Gflops to 27.306 Gflops.
At the same time, better scalability of SpMV is achieved from 37.96× to 46.68×.

To conclude,we introduce several potential optimizations inspired by the scalability
results, but these are not one-fit-all solutions. This is because there is an overhead
for format conversion, and using multiple private L2 caches waste extra memory
resources. For future work, we will extract a detailed profile of a given sparse matrix
before performing the SpMV computation. Hopefully, these features will indicate
the number and distribution of nonzeros. Based on this information, we can decide

123



International Journal of Parallel Programming (2020) 48:80–97 93

Table 5 The performance and scalability of SpMV by exploiting the locality of x

Single-thread Perf. 64-Thread Perf. Speedup

Synthesized matrix 0.419 Gflops 15.907 Gflops 37.96×
Transformed matrix 0.585 Gflops 27.306 Gflops 46.68×
The rows of the matrix is set to 64*6400, with the average nonzeros per rows being 4

whether to apply these optimizations or not. Besides, we will try to find an accurate
and efficient matrix reordering that can be applied to design the locality-aware SpMV
storage format.

6 RelatedWork

Substantial previous work has been conducted to study the SpMV performance on
parallel systems [6,28,33,47]. Mellor-Crummey et al. use a loop transformation to
improve the performance of SpMV on multiple parallel processors, and this optimiza-
tion is aimed at the matrices that arise in SAGE [28]. Pinar et al. propose alternative
data structures, along with reordering algorithms to reduce the number of memory
indirections when running SpMV on a Sun Enterprise 3000 [33]. Williams et al. apply
several optimization strategies especially effective for the multicore environment to
SpMVon fourmulticore platforms. Theseworks have a significant effect on improving
the performance of parallel SpMV [47]. However, very few works focus on its scal-
ability performance on many-core architectures. Our work fills this gap by providing
an in-depth scalability analysis on FT-2000+. The obtained insights will facilitate
us to design more efficient parallel HPC software and hardware in the future.

Efforts have been made in designing new storage formats for various parallel pro-
cessor architectures including SIMD CPUs and SIMT GPUs [3,19,23,26,29]. Bell et
al. use standard CUDA idioms to implement several SpMV kernels which can exploit
fine-grained parallelism to effectively utilize the computational resources of GPUs,
including SIMD-friendly ELL, the most popular general-purpose CSR and hybrid
ELL/COO format that exploits the advantages of both [3]. The CSR5 proposed by Liu
et al. is efficient both for regular matrices and for irregular matrices and is also used
in our work to address the issue of unbalanced loads [23]. Maggioni et al. propose
the design of an architecture-aware technique for improving the performance of the
SpMV on GPU, and based on a variation of the sliced ELL sparse format, they present
a warp-oriented ELL format that is suited for regular matrices [26]. The SELL-C-σ
format is designed by Kreutzer et al. and this SIMD-friendly data format is well-suited
for a variety of hardware platforms (Intel Sandy Bridge, Intel Xeon Phi, and Nvidia
Tesla K20) [19]. These sparse matrix formats aim to address the issue of unbalanced
load and increase SpMV parallelism, but they fail to take advantage of the locality
of vector x. Our work attempts to answer this question by providing comprehensive
analysis and new insights.

A large number of works have analyzed the sources of poor scalability in various
parallel applications, rather than SpMV [2,10,22]. Alam et al. propose an appropriate
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selection ofMPI task andmemory placement schemes to improve performance for key
scientific calculations on multi-core AMDOpteron processors [2]. Liu et al. introduce
the notion of memory access intensity to facilitate quantitative analysis of program’s
memory behavior on multicores [22]. For the work of Diamond et. al, it not only
examines traditional unicore metrics and but also presents an in-depth study of per-
formance bottlenecks originating in multicore-based systems. Besides, it introduces a
source-code optimization called loop microfission to alleviate multicore-related per-
formance bottlenecks [10]. Bhattacharjee et al. [5] predict critical threads, or threads
that suffer from imbalance. They tend to offer more resources to critical threads so that
they run faster. Most of these related works focus on the traditional x86 multi-core
architectures, and very few works are towards the ARMv8-based many-cores or the
SpMV kernel, which is rather promising for the future of the HPC domain.

Numerous performance analysis tools have been proposed, includingCounterMiner
and HPCTOOLKIT [1,25]. By using data mining and machine learning techniques,
CounterMiner enables the measurement and understanding of big performance
data [25]. HPCTOOLKIT can pinpoint and quantify scalability bottlenecks of fully
optimized parallel programs. Based on statistical sampling, this tool can introducewith
a very small measurement overhead during performance measurement [1]. Different
from these performance tools, our regression-tree based approach uses both hardware
counters (dynamic features) and input matrix features (static features), thus brings a
comprehensive understanding of the scalability behaviours.

Other researchers have used performance counters to identifymulticore bottlenecks
and optimize applications [22], but no quantitative analysis is performed in those
studies. Our work not only conducts detailed scalability analysis, but also is the first
attempt in applying machine learning techniques to find the impact factors of SpMV
scalability on FT-2000+.

Machine learning has quickly emerged as a powerful design methodology for sys-
tems modeling and optimization [40]. Prior works have demonstrated the success of
applying machine learning for a wide range of tasks, including modeling code opti-
mization [7,8,15,30,31,39,41–45,49], task scheduling [11,14,16], processor resource
allocation [46], and many others [34,35]. In this work, we employ machine learning
techniques to develop an automatic and portable approach to characterize the scala-
bility of SpMV on an emerging many-core architecture. We stress that this work does
not seek to advance machine learning algorithms; instead, it explores and applies a
well-establishedmodelingmethod to tackle the optimization problem for an important
class of applications.

7 Conclusion

This paper has presented an empirical study of SpMV scalability on an emerging
ARMv8-based many-core architecture, Phytium FT-2000+. We conduct an overall
evaluation about the scalability of SpMV on FT-2000+. We develop a machine
learning based model to help find the main factors that lead to the flat scalability:
unbalanced nonzero allocation, shared L2 cache contention and nonzero variance per
row. We use a statistical method to find the relations between factors and the speedup
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of SpMV as a verification of our model. We select representative matrices to explain
how these factors give a limit to the scalability of SpMV on FT-2000+ in an essential
way not remain it in “black box”. Along the line, we give potential optimizations for
mitigating these scalability bottlenecks on SpMV. Our experimental results show that
our optimization can effectively improve the scalability of specific matrices.
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