
International Journal of Parallel Programming (2020) 48:566–579
https://doi.org/10.1007/s10766-019-00632-3

GPU Accelerated Parallel Algorithm of Sliding-Window
Belief Propagation for LDPC Codes

Bowei Shan1 · Yong Fang1

Received: 31 May 2018 / Accepted: 12 March 2019 / Published online: 4 April 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Low-Density Parity-Check (LDPC) codes are widely used from hard-disk systems to
satellite communications. Sliding-Window Belief Propagation (SWBP) is an effec-
tive decoding algorithm of LDPC codes for time-varying channels and demonstrates
near-optimal performance in many experiments. However, to adaptively find the best
window size, SWBP may need very long computing time. Inspired by Graphics Pro-
cessing Unit and Compute Unified Device Architecture, in this paper we propose a
novel method to address the issue of SWBP’s computing complexity. Different from
sequential SWBP, we simultaneously compute the metrics of different window sizes
in parallel, which enables us to quickly find the best window size. We use coalesced
memory access to accelerate reading and writing processes. Registers and shared
memory are also considered in our program to reduce memory latency. On the GTX
1080Ti platform, experimental results show that parallel SWBP can achieve about 14
× to 118 × speedup ratio for different regular LDPC codes, and about 8 × to 120 ×
speedup ratio for different irregular LDPC codes, respectively. According to the trend
of our experiments, we strongly believe that, as the length of LDPC codes increases,
a higher speedup ratio can be obtained.

Keywords LDPC · SWBP · GPU · CUDA

This work was supported by the Fundamental Research Fund for the Central Universities of China (Grant
no. 300102249304), the Provincial Science Foundation of Shannxi, China-Key Project (Grant no.
2016JZ024), and the Provincial Foundation for Sci-Tech Youth Nova of Shaanxi, China (Grant no.
2014KJXX-41).

B Yong Fang
fy@chd.edu.cn

1 School of Information Engineering, Chang’an University, Xi’an 710064, Shaanxi, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-019-00632-3&domain=pdf
http://orcid.org/0000-0002-3345-8259

International Journal of Parallel Programming (2020) 48:566–579 567

1 Introduction

Low-Density Parity-Check (LDPC) codes are a class of advanced error-correcting
codes broadly used in modern telecommunication. It was first invented by Gallager
[1] in 1962 and rediscovered byMacKay andNeal [2] in 1996. Up to now, LDPC codes
have been widely applied in many communication systems, e.g., 4G/5G, 10GBase-T
Ethernet (IEEE802.3an),Wi-Fi (IEEE802.11n&802.11ac),WiMAX(IEEE802.16e),
and DVB-S2.

The decoding of channel codes is an important issue. Belief Propagation (BP) is
the optimal decoding algorithm of LDPC codes, in the sense that channel states are
exactly known. Nevertheless, in the absence of exact knowledge of channel states, the
optimal decoding of LDPC codes still remains open. In 2012, Fang [3] proposed the
Sliding-Window BP (SWBP) algorithm to handle this issue, which can exactly trace
time-varying channel state. In many experiments, this novel technique exhibits near-
limit performance. Meanwhile, it is easy to be implemented and insensitive to initial
settings. In addition, another outstanding advantage of SWBP is its convenience for
parallelization. Although SWBP is very attractive in practice, it suffers from intensive
computation. In SWBP, the optimal window size is the key factor for estimating
channel state, which is found by exhaustively evaluating all possible window sizes. If
SWBP is implemented serially, more running time is needed for longer LDPC codes.
Therefore, parallelization of SWBP is indispensable.

In recent years, Graphics Processing Units (GPUs) demonstrate powerful comput-
ing ability and evolve into General Purpose Computing Units. GPUs can accelerate
many computationally intensive problems by thousands of parallel executing threads.
In addition, NVIDIA provides the Compute Unified Device Architecture (CUDA) as
a programming interface for researchers to develop applications on GPUs in C-like
languages.

Since BP-based LDPC decoding algorithm can be easily implemented in parallel,
many LDPC decoders accelerated by GPUs have been presented by researchers [4,5].
However, to our best knowledge, parallel SWBP still remains uninvolved. In this paper,
we speed up the SWBP algorithm onGPUs. There are twomajor bottlenecks in SWBP.
Thefirst one is belief-passingof standardBPbetweenVariableNodes (VNs) andCheck
Nodes (CNs). Since this problem has been addressed by many parallel algorithms, we
will not further discuss it in this paper, and the reader can refer to [6–8] for details. The
second one is estimating the best window size, which is a time-consuming process.We
will tackle this problem by simultaneously computing the metrics of different window
sizes. The coalesced memory access will be applied to accelerate the reading and
writing operations. The intermediate variables will be stored in registers and shared
memory to reduce memory latency. We will use three different algorithms, i.e., thrust,
cuBLAS, and reduction kernel, to find the minimum element of an array.

The rest of this paper is arranged as below. Section 2 reviews the background knowl-
edge of SWBP and GPU. Section 3 introduces the parallelized SWBP on GPUs using
CUDA. Section 4 reports experimental results. Finally, Sect. 5 concludes this paper.

123

568 International Journal of Parallel Programming (2020) 48:566–579

2 Review on Background

2.1 Preliminaries

Let n be the length of the used LDPC code, which is specified by an m × n parity
check matrix H. Let x = (x1, . . . , xn)� be the codeword sent by the encoder and
y = (y1, . . . , yn)� be the codeword received at the decoder. Let us multiply H with
x to get syndrome c = (c1, . . . , cm)� = Hx. For simplicity, this paper considers the
memoryless Binary Symmetric Channel (BSC) model, i.e., Pr(xi �= yi) = pi . If the
channel is stationary, then p1 = · · · = pn .

BP is a popular algorithm to decodeLDPCcode. To introduce it,wefirst define some
notations. Let v = (v1, . . . , vn)

� denote the overall Log-likelihood-Ratios (LLRs) of
VNs, including both intrinsic and extrinsic LLRs. Let qi j be the LLR propagated from
the i th VN to the j th CN and r ji be the LLR propagated from the j th CN to the i th
VN. Let dvi be the degree of the i th VN and dc j be the degree of the j th CN. Let x̃
be the estimation of x. We illustrate the standard BP in Algorithm 1.

Algorithm 1 BP Algorithm
Input: c, y, and p
Output: x̃

Initialization: v
(0)
i = (1 − 2yi) log

1−pi
pi

and r (0)
j i = 0

1: for l = 1 : MAX_ITERATION do
BP from VNs to CNs:

2: for i = 1 : n do
3: q(l)

i j = v
(l−1)
i − r (l−1)

j i
4: end for

BP from CNs to VNs:
5: for j = 1 : m do

6: tanh

(r (l)
j i

2

)
= (1 − 2c j)

dc j∏
k=1

tanh

(q(l)
k j

2

)/
tanh

(q(l)
i j

2

)

7: end for
Computing overall beliefs for VNs:

8: for i = 1 : n do

9: v
(l)
i = v

(0)
i +

dci∑
k=1

r (l)
ki

10: end for
Hard decision:

11: x̃i =
{
0, if vi > 0

1, if vi < 0
12: if Hx̃ = s then
13: quit loop
14: end if
15: end for

The LDPC decoder with SWBP algorithm includes three phases: standard BP,
window size setting, and local bias probability refinement. Detailed explanation of
SWBP can be found in [3]. Since many researchers have used GPUs to accelerate BP
algorithm in LDPC decoder [4,5], we will ignore standard BP phase in this paper.

123

International Journal of Parallel Programming (2020) 48:566–579 569

2.2 Bias Probability Estimation

To estimate the bias probability of each BSC sub-channel, we re-compute local bias
probability p̃i by averaging the overall beliefs of neighboring variable nodes in a size-s
(an odd) window around yi . Let bi = 1

1+exp(vi)
. Then

p̃i=
−bi + ∑min(i+h,n)

i ′=max(1,i−h)
bi ′

min(i + h, n) − max(1, i − h)
, (1)

where h = �s/2�. Obviously, (1) can be easily deduced as

p̃i=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p̃i−1+bi−1 − bi + bi+h − p̃i−1

i + h − 1
, 2 ≤ i ≤ (1+h)

p̃i−1+bi−1 − bi + bi+h − bi−h−1

i + h − 1
, 2+h ≤ i ≤ (n − h)

p̃i−1+bi−1 − bi + bi−h−1 − p̃i−1

n − i + h
, n − h + 1 ≤ i ≤ n

. (2)

2.3 Window-Size Setting

Estimating an appropriate s is the key step of SWBP, where s is the window-size. To
address this problem, [3] uses Mean Squared Error (MSE) as the metric. For each
possible s, p̃ is first calculated according to (2) and then the MSE between b and p̃ is
calculated. Finally, the best s that gives the smallest MSE is obtained. This problem
can be solved by Algorithm 2.

Algorithm 2Window-Size Setting Algorithm
Input: b: overall beliefs
Output: optimal s∗
1: Initialization: s = 1 and σ 2 =FLOAT_MAX;
2: for s < n do
3: compute h = �s/2�;
4: compute p̃i by equation (2);

5: compute σ 2
s = 1

n

n∑
i=1

(bi − p̃i)
2;

6: if σ 2 > σ 2
s then

7: σ 2 = σ 2
s ;

8: s∗ = s ;
9: end if
10: s = s + 2 ;
11: end for

It is very reasonable that the best window-size s should minimize theMSE between
overall beliefs and local bias probabilities.

123

570 International Journal of Parallel Programming (2020) 48:566–579

Table 1 Running time of
different parts of SWBP
algorithm

Part Running time (s)

Load LDPC code 0.92

Encode 2.38

Decode preparing 0.49

Standard BP 98.44

Select best window size 178.51

2.4 Complexity Analysis of SWBP

In the window size setting phase, for each possible s, about 4n additions/subtractions
and n divisions are performed to compute p̃. Then n subtractions and n multiplications
are performed to compute each (bi − p̃i)2. Finally, n-1 additions and 1 division are
performed to get σ 2 = 1

n

∑n
i=1 (bi − p̃i)

2. Therefore, we need in total 8n operations
of addition/subtraction/multiplication/division for each s. To find the best s, one needs
to try each odd s between 1 to n, which needs h = �s/2�window size setting iterations,
where �·� denotes the flooring function. In [3], the minimum search step of different
window-size was set to 20 to reduce the computing complexity. In our experiment, we
find that this interval is so big that the best window-size s may be omitted. Thus we
fix the minimum interval of searched window-size to 2.

In the local bias probability refinement phase, about 4n additions/subtractions and n
division are performed to refine p̃ in each BP iteration. Since the outputs of successive
BP iterations are usually very similar, it is unnecessary to refine p̃ after each BP itera-
tion. In [3], source bias probability is re-estimated after every 10 BP iterations (except
explicit declaration), which is a good tradeoff between performance and complexity.
Compared to window size setting phase, it is clear that the computing complexity of
this phase can be ignored.

According to the above analysis, the total computing complexity is O(4n2) in
each SWBP iteration. The bottleneck of the SWBP lies in window size setting phase
(standard BP is ignored in this paper). It is obvious that for long LDPC codes (n is
large), SWBP is an algorithm with heavy computing complexity.

To verify aformentioned analysis, we employ a regular LDPC code with length
2000 as the input of SWBP algorithm, and measure the running time of different
modules. The test result is listed in Table 1, which shows that selecting best window
size is the bottleneck .

2.5 Features of GPUs

Originally, GPUs are designed to accelerate the creation of images for output to a
display device. With its rapid progress, highly parallel structure of modern GPUs
makes themmore efficient to compute the large block of data in parallel. For example,
with its 3584 CUDA cores, NVIDIA GTX 1080Ti has powerful computing ability.
One GPU has thousands of threads. All threads can run in parallel. The memory
architecture of the GPU is depicted in Fig. 1. The Global, Local and Texture memory

123

International Journal of Parallel Programming (2020) 48:566–579 571

Fig. 1 GPU memory
architecture

has larger capacity with lower speed while Shared memory and registers are fast but
scarce. To optimize program, we should take care of memory allocation.

Meanwhile, NVIDIA presented CUDA as a parallel computing platform and appli-
cation programming interface. The CUDA platform is designed to work with C-like
programming languages. Therefore, software engineers can easily useCUDA to devel-
opment parallel program to use GPU resources. OnCUDAplatform, we can access the
compute kernels which is the parallel computational elements. CUDA compute capa-
bility version specifies the maximum parallel elements, such as threads and blocks.

2.6 Testing Platform

In our experiments, two different test platforms will be used to investigate the speed
up effect. The sequential SWBP will run on CPU platform and the parallel SWBP
will run on GPU platform, respectively. The specifications of these two platforms are
listed in Table 2.

3 Parallel SWBP

3.1 Algorithm

In sequential SWBP algorithm, each window size setting iteration will generate one
MSE σ 2 and each σ 2

i is calculated by bi , si and pi . Therefore, any two MSEs σ 2
i

and σ 2
j (i �= j) have no data correlation and can be simultaneously calculated. In our

123

572 International Journal of Parallel Programming (2020) 48:566–579

Table 2 Specification of CPU platform and GPU platform

CPU platform GPU platform

Name Intel Core i7 6850K NVIDIA GTX 1080Ti

Core name Broadwell Pascal

OS Window server 2008 enterprise Window server 2008 enterprise

Frequency 3.60 GHz 1.58 GHz

Technology 14 nm 16 nm

Details Cores: 6 CUDA capability version: 6.1

Threads: 12 CUDA cores: 3584

L1 cache: 384 KB SMs: 28

L2 cache: 1.5 MB Threads per block: 1024

L3 cache: 15 MB Each dimension of a block: 1024 × 1024 × 64

Memory: 64 GB DDR4 Warp size: 32

Constant memory: 64 KB

Shared memory per block: 48 KB

Memory: 11 GB GDDR5

(a) (b)

Fig. 2 a Sequential SWBP algorithm. b Parallel SWBP algorithm

parallel SWBP, all σ 2
i ’s will be calculated simultaneously by thousands of threads on

GPU. These two algorithms are illustrated in Fig. 2.

123

International Journal of Parallel Programming (2020) 48:566–579 573

Fig. 3 Coalesced memory access

3.2 CoalescedMemory Access

In our SWBP algorithm, the input is overall belief vector b, which is stored in global
memory of GPU. Because global memory has large capacity, it can be easily made
use of by large array. But global memory is an off-chip memory, much slower than
on-chip memory. In order to reduce the access time to global memory while reading b,
coalesced memory access should be considered. Instead of performing 16 individual
memory accesses, all the 16 threads of a half-wrap should access the global memory
of GPU in a single read. The elements of b have to lie on a contiguous memory block,
where the kth thread accesses the kth data element. The principle of coalescedmemory
access is illustrated in Fig. 3.

3.3 Using SharedMemory

Shared memory is an on-chip memory with lower latency and high bandwidth. The
speed of shared memory is the same as that of registers and hundreds times faster
than that of global memory. Note that the capacity of shared memory is small and has
only 48KB per block. The shared memory should be allocated to variables carefully in
order not to exceed the capacity. We can find in Fig. 3 that all threads in one block can
access variables in the same shared memory. Therefore, we define an array in shared
memory, and two variables in registers:

1 __shared__ float b[n];
2 float bias;
3 float sum;

where b[n] loads the overall belief stored in global memory into shared memory. bias
stores the local bias probability p̃i calculated by Eq. (2), and sum stores the current
sum of (bi − p̃i). Since these two variables are frequently used in each thread, the total
access time will be reduced. σ 2

i will be calculated by accumulating sum. Because σ 2
i

is only used for comparison purpose, the operation of division by n can be ignored.

3.4 Find BestWindow Size

In global memory, we define an array dev_sigma2 with length n to store all σ 2
i ’s, each

of which is calculated by one thread. The best window size s should give the smallest

123

574 International Journal of Parallel Programming (2020) 48:566–579

σ 2
i . Then the problem becomes finding the smallest element of array dev_sigma2. To

solve this problem, we investigated three parallel algorithms: (1) thrust; (2) cuBLAS;
and (3) reduction kernel algorithm.

3.4.1 Thrust

Thrust is a powerful library of parallel algorithms and data structures [10]. Thrust
provides a flexible, high-level interface for GPU programming. In thrust library,
min_element() function could return the minimum element of array. Therefore, we
use the following code to call thrust library, where the variable index is the index of
the minimum element.

1 thrust :: device_ptr <float > d_ptr
2 = thrust :: device_pointer_cast (dev_sigma2);
3 thrust :: device_vector <float >:: iterator d_it
4 = thrust :: min_element(d_ptr , d_ptr + code_length);
5 index
6 = d_it -(thrust :: device_vector <float >:: iterator)d_ptr;

3.4.2 cuBLAS

The cuBLAS [9] library is a fast GPU-accelerated implementation of the standard
Basic LinearAlgebra Subroutines (BLAS). In cuBLAS library, cublas I samin() func-
tion will return the minimum element of array. Therefore, we use the following code
to call cuBLAS library, where the variable index is the index of the smallest element.

1 cublasStatus_t status;
2 cublasHandle_t h;
3 status = cublasCreate (&h);
4 cublasIsamin (h, code_length , dev_sigma2 , 1, &index);
5 cublasDestroy(h);

3.4.3 Reduction Kernel

To achieve the fastest speed, we design a reduction search algorithm. We implement
a kernel function min_kernel() and present the code as following.

1 #define nB 256
2 #define MAX_KERNEL_BLK 30
3 #define MAX_BLK ((n/nB)+1)
4 #define MIN(a,b) ((a>b)?b:a)
5 #define FLOAT_MAX 1.0 e30
6 __device__ volatile float block_vals[MAX_BLK];
7 __device__ volatile int block_idxs[MAX_BLK];
8 __device__ int block_num = 0;
9 __global__ void min_kernel(const float *data ,

10 const int dsize , int *result){
11 __shared__ volatile float vals[nB];
12 __shared__ volatile int idxs[nB];
13 __shared__ volatile int last_block;

123

International Journal of Parallel Programming (2020) 48:566–579 575

14 int idx = threadIdx.x+blockDim.x*blockIdx.x;
15 last_block = 0;
16 float this_val = FLOAT_MAX;
17 int this_idx = -1;
18 while (idx < dsize){
19 if (data[idx] < this_val)
20 {this_val = data[idx];
21 this_idx = idx;}
22 idx += blockDim.x*gridDim.x;}
23 vals[threadIdx.x] = this_val;
24 idxs[threadIdx.x] = this_idx;
25 __syncthreads ();
26 for (int i = (nB >>1); i > 0; i>>=1){
27 if (threadIdx.x < i)
28 if (vals[threadIdx.x] > vals[threadIdx.x + i])
29 {vals[threadIdx.x] = vals[threadIdx.x+i];
30 idxs[threadIdx.x] = idxs[threadIdx.x+i];}
31 __syncthreads ();}
32 if (! threadIdx.x){
33 block_vals[blockIdx.x] = vals [0];
34 block_idxs[blockIdx.x] = idxs [0];
35 if (atomicAdd (&block_num , 1) == gridDim.x - 1)
36 last_block = 1;}
37 __syncthreads ();
38 if (last_block){
39 idx = threadIdx.x;this_val = FLOAT_MAX;this_idx = -1;
40 while (idx < gridDim.x){
41 if (block_vals[idx] < this_val)
42 {this_val = block_vals[idx]; this_idx =
43 block_idxs[idx];}
44 idx += blockDim.x;}
45 vals[threadIdx.x] = this_val; idxs[threadIdx.x] =
46 this_idx;
47 __syncthreads ();
48 for (int i = (nB >>1); i > 0; i>>=1){
49 if (threadIdx.x < i)
50 if (vals[threadIdx.x] > vals[threadIdx.x + i])
51 {vals[threadIdx.x] = vals[threadIdx.x+i];
52 idxs[threadIdx.x] = idxs[threadIdx.x+i]; }
53 __syncthreads ();}
54 if (! threadIdx.x)
55 *result = idxs [0];}
56 }

In ourmain() function, we callmin_kernel() to get the index of the smallest element.

1 min_kernel <<<MIN(MAX_KERNEL_BLK , ((n+nB -1)/nB)), nB >>>
2 (dev_sigma2 , n, index);

In Sect. 4, codes of different lengths are used in our experiments. It is found that
our own designed reduction kernel performs the best.

123

576 International Journal of Parallel Programming (2020) 48:566–579

Table 3 Regular LDPC code parameters (N is codeword length, K is information bit number)

Test 1 2 3 4 5 6

N 504 1008 2000 4000 8000 10,000

K 252 504 1000 2000 4000 5000

Maximum degree 7 8 7 7 7 7

Code type Regular Regular Regular Regular Regular Regular

Table 4 Parallel SWBP running time with different algorithms

Codeword length 504 1008 2000 4000 8000 10,000

With thrust (ms) 4.209 6.530 12.264 22.337 42.555 52.936

With cublas (ms) 2.607 5.107 9.996 20.100 40.250 50.557

With reduction kernel (ms) 2.539 5.061 9.941 20.056 40.210 50.514

0 2000 4000 6000 8000 10000
0

10

20

30

40

50

60

Codeword length

P
ar

al
le
l
SW

B
P

R
un

ni
ng

ti
m
e
(m

s)

w ith thrust
with cublas
with reduction kernel

3999 4000 4001
20

20.05

20.1

20.15

Fig. 4 Parallel SWBP running time with different algorithms

4 Experiment Results

Our experiment platforms are listed in Table 2. We will perform 3 experiments to
investigate the speed up effect of our parallel SWBP algorithm. The first and second
experiments will use regular LDPC codes as input. The parameters of LDPC code are
listed in Table 3.

In our first experiment, we compare 3 parallel versions of SWBPwith different algo-
rithms listed in Sect. 3.4. In order to eliminate randomness, we perform 200 times tests
and calculate the average running time. Our experiment results are listed in Table 4 and
illustrated in Fig. 4. The experiment result shows that our own designed reduction ker-

123

International Journal of Parallel Programming (2020) 48:566–579 577

Table 5 Running time and speedup ratio

Codeword length 504 1008 2000 4000 8000 10,000

Sequential SWBP (ms) 36.25 128.20 280.74 1020.57 3856.91 5991.36

Parallel SWBP (ms) 2.539 5.061 9.941 20.056 40.210 50.514

Speedup ratio 14.28 25.33 28.24 50.89 95.92 118.61

0

1000

2000

3000

4000

5000

6000

R
un

ni
ng

ti
m
e
(m

s)

Codeword length
0 2000 4000 6000 8000 10000

0

20

40

60

80

100

120

Sp
ee

du
p
ra

ti
o

Sequential SWBP
Parallel SWBP with reduction kernel
Speedup ratio

Fig. 5 Running time and speedup ratio (regular LDPC code)

nel algorithm achieves the fastest speed. Thrust algorithm is the slowest and cuBLAS
algorithm is in between. Although the speed of cuBLAS is almost the same as that of
reduction kernel, it should be noticed that we only count the running time of function
cublas I samin(), while that of functions cublasCreate() and cublasDestroy() is
not included. In fact, these two functions cost about 100 milliseconds on this platform.

In our second experiment, we compare sequential SWBP and parallel SWBP algo-
rithm. Since reduction kernel has achieved the fastest performance, we select parallel
SWBP with reduction kernel as the representative of parallel SWBP. Our experiment
results are listed in Table 5 and illustrated in Fig. 5. The experiment results show
that our parallel SWBP algorithm obtained 14 × to 118 × speedup ratio for different
LDPC codeword lengths, and as codeword length increases, the speedup ratio rises
tremendously. According to the trend of Fig. 5, we believe that if we use longer LDPC
codes, higher speedup ratio can be obtained.

In our last experiment, we use irregular LDPC codes as the input to investigate
our parallel SWBP algorithm. The parameters of irregular LDPC code are listed in
Table 6. Our experiment results are listed in Table 7 and illustrated in Fig. 6. The
experiment results show that the parallel SWBP obtained 8 × to 120 × speedup ratio
and the changing trend of speedup ratio is the same as that of regular LDPC codes.

123

578 International Journal of Parallel Programming (2020) 48:566–579

Table 6 Irregular LDPC code parameters (N is codeword length, K is information bit number)

Test 1 2 3 4 5 6

N 504 1008 2000 4000 8000 10,000

K 252 504 1000 2000 4000 5000

Maximum degree 8 9 10 8 8 8

Code type Irregular Irregular Irregular Irregular Irregular Irregular

Table 7 Runnning time and speedup ratio (irregular LDPC code)

Codeword length 504 1008 2000 4000 8000 10,000

Sequential SWBP (ms) 20.691 109.795 371.414 999.975 3843.97 5991.36

Parallel SWBP (ms) 2.529 4.986 9.847 19.819 39.4884 50.514

Speedup ratio 8.18 22.02 37.72 50.46 97.34 120.34

0

1000

2000

3000

4000

5000

6000

R
un

ni
ng

ti
m
e
(m

s)

Codeword length(irregular LDPC)
0 2000 4000 6000 8000 10000

0

20

40

60

80

100

120

Sp
ee
du

p
ra
ti
o

Sequential SWBP
Parallel SWBP with reduction kernel
Speedup ratio

Fig. 6 Running time and speedup ratio (irregular LDPC code)

5 Conclusion

We proposed a parallel SWBP algorithm to decode LDPC codes. This algorithm
was implemented on CUDA platform and accelerated by NVIDIA GTX 1080Ti GPU.
Different from sequential SWBP, parallel SWBP simultaneously estimates the metrics
of different window sizes by thousands of threads of GPU. By taking good care of
memory architecture of GPU, the reading and writing time were also reduced. We
carefully design a reduction kernel to find the smallest element of a long array in
parallel, and this algorithm achieved better performance than thrust and cuBLAS
algorithms.

To investigate the speedup effect, we use CPU and GPU platforms for sequential
SWBP and parallel SWBP respectively. The experiment results show that parallel
SWBP achieved about 14 × to 118 × speedup ratio for different regular LDPC codes,

123

International Journal of Parallel Programming (2020) 48:566–579 579

and about 8 × to 120 × speedup ratio for different irregular LDPC codes. From the
trend of above experiments, we expect higher speedup ratio for longer LDPC codes.

All source codes of this paper can be found in [11]. Readers can download it for
academic purpose.

Acknowledgements We would like to thank colleagues in School of Information Engineering, Chang’an
University, for their useful suggestions.

References

1. Gallager, R.G.: Low-density parity-check codes. IRE Trans. Inf. Theory 8(1), 21–28 (1962)
2. Mackay, D.J.C., Neal, R.M.: Near shannon limit performance of low density parity check codes.

Electron. Lett. 32(6), 457–458 (1997)
3. Fang,Y.: Ldpc-based lossless compression of nonstationary binary sources using sliding-windowbelief

propagation. IEEE Trans. Commun. 60(11), 3161–3166 (2012)
4. Chang, C.C., Chang, Y.L., Huang, M.Y., Huang, B.: Accelerating regular LDPC code decoders on

GPUS. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 4(3), 653–659 (2011)
5. Dai, Y., Fang, Y., Yang, L., Jeon, G.: Graphics processing unit-accelerated joint-bitplane belief prop-

agation algorithm in DSC. J. Supercomput. 72(6), 2351–2375 (2016)
6. Pai, Y.S., Shen, Y.C., Wu, J.L.: High efficient distributed video coding with parallelized design for

LDPCA decoding on CUDA based GPGPU. J. Vis. Commun. Image Represent. 23(1), 63–74 (2012)
7. Park, J.Y., Chung, K.S.: Parallel LDPC decoding using CUDA and OPENMP. Eurasip J. Wirel. Com-

mun. Netw. 2011(1), 1–8 (2011)
8. Falcao, G., Sousa, L., Silva, V.: Massively LDPC decoding on multicore architectures. IEEE Trans.

Parallel Distrib. Syst. 22(2), 309–322 (2010)
9. NVIDIA: cublas. https://developer.nvidia.com/cublas. Accessed 10 Apr 2018

10. Thrust. http://thrust.github.io/. Accessed 10 Apr 2018
11. Source codes. http://js.chd.edu.cn/xxgcxy/dbw_en/list.htm. Accessed 10 Apr 2018

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://developer.nvidia.com/cublas
http://thrust.github.io/
http://js.chd.edu.cn/xxgcxy/dbw_en/list.htm

	GPU Accelerated Parallel Algorithm of Sliding-Window Belief Propagation for LDPC Codes
	Abstract
	1 Introduction
	2 Review on Background
	2.1 Preliminaries
	2.2 Bias Probability Estimation
	2.3 Window-Size Setting
	2.4 Complexity Analysis of SWBP
	2.5 Features of GPUs
	2.6 Testing Platform

	3 Parallel SWBP
	3.1 Algorithm
	3.2 Coalesced Memory Access
	3.3 Using Shared Memory
	3.4 Find Best Window Size
	3.4.1 Thrust
	3.4.2 cuBLAS
	3.4.3 Reduction Kernel

	4 Experiment Results
	5 Conclusion
	Acknowledgements
	References

