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Abstract
The use of key-value caches in modern web servers is becoming more and more
ubiquitous. Representatively, Memcached as a widely used key-value cache system,
originally intended for speeding up dynamic web applications by alleviating database
load. One of the key factors affecting the performance of Memcached is the memory
allocation among different item classes. How to obtain the most efficient partitioning
scheme with low time and space consumption is a focus of attention. In this paper,
we propose a lightweight and accurate memory allocation scheme in Memcached, by
sampling access patterns, analyzing data locality, and reassigning the memory space.
One early study on optimizing memory allocation is LAMA, which uses footprint-
basedMRC to optimize memory allocation inMemcached. However, LAMA does not
model deletion operations in Memcached and its spatial overhead is quite large. We
propose a method that consumes only 3% of LAMA space and can handle read, write
and deletion operations. Moreover, evaluation results show that the average stable-
state miss ratio is reduced by 15.0% and the average stable-state response time is
reduced by 12.3% when comparing our method to LAMA.
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1 Introduction

Caching has been applied to all levels of the memory/storage architecture, especially
for in-memory key-value stores. In today’s web server architecture, distributed in-
memory caches, such as Redis [1] andMemcached [2], are vital components to ensure
low-latency service for user requests. Memcached as a most commonly used dis-
tributed memory key-value cache system, has been deployed in Facebook, Twitter,
Wikipedia, Flickr, and many other Internet companies. Given the scale and scope of
these deployments it has been shown that even a slight improvement in hit-ratio can
have a significant impact on performance [3,4], so any improvement in hit-ratio is
prominent in realistic scenario.

By default, items in Memcached are divided into several data classes according to
the size of the item, and the memory is allocated according to the request, regardless of
the locality of the data. This demand-driven allocation algorithm does not achieve the
desired performance. This problem is called slab calcification [5]: When all available
slabs are allocated, the allocated space can no longer be adjusted to adapt the changed
access pattern.

Memcached allocates space at slab granularity, which is 1 MB by default. For
each class, the allocated objects are filled in the slab to which they are assigned. These
objects are sorted based on their last access time to form an LRU linked list in a priority
queue. If there is no free space in the class, a data item will be evicted following the
LRU policy. In this design, the number of slabs in each class represents the memory
space that has been allocated to it.

Performance prediction [6,7] and optimization [8–12] for Memcached have drawn
much attention recently. To avoid the performance drop due to slab calcification, the
operator needs to restart the server to reset the system. Recent studies have proposed
adaptive slab allocation strategies and shown a notable improvement over the default
allocation [13,14]. A state-of-art solution, locality-aware memory allocation (LAMA)
[15,16], is a novel dynamic slab allocation scheme. It applies the footprint theory
[17] to construct miss ratio curves (MRCs) for each class in Memcached, and then
uses dynamic programming to determine how many slabs are needed for each class.
LAMA’s spatial overhead is linear to the working set size. For 1 GB working set,
LAMA needs to consume nearly 100MB of space to construct MRC, which is quite
large especially when we running LAMA for large applications.

Moreover, deletion operation is a common Memcached operation that LAMA can
not model. In theMemcached implemented by Facebook [14], in order to avoid incon-
sistent data (e.g. concurrent update operations, may cause inconsistencies between
Memcached and the back-end database), when one client needs to update data, it
will delete the corresponding data from Memcached and only update the back-end
database. Figure 1 is Memcached’s operations in Facebook, as shown in Fig. 1b, we
first update the contents of the database, and then delete the corresponding key in
Memcached. For more general scenarios, we need to enhance LAMA.
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(a) (b)

Fig. 1 Memcached operations in Facebook. a Get operation and b update operation

In this paper, we propose a lightweight and accurate memory allocation scheme in
key-value cache, based on an extension of a recent cache model, AET [18]. We use the
extension model to achieve high accuracy on miss ratio with read, write and deletion
operations. In addition, we amend the cost function of the dynamic programming in
LAMA, making the cost function closer to the real miss count during phase changes
in Memcached. We compare our solution to LAMA, the spatial overhead is reduced
to only 3.0% of LAMA. In addition, the average stable-state miss ratio can be reduced
by 15.0% and the average stable-state response time can be reduced by 12.3%.

2 MRC Construction

Miss ratio curves (MRCs) are useful for estimating how much data is being used by
a particular workload and what utility can be gained by increasing the memory size
[19]. We allocate memory to each class by measuring the MRCs to each class in
Memcached. We firstly review the footprint in LAMA and AET model for an LRU
cache, and then describe an Enhanced AET (EAET) to model deletion operations.

2.1 Footprint in LAMA for MRC Construction

In LAMA design, the global access trace will be splitted into different sub-traces
according to their classes.With the sub-trace of each class, theMRCs can be generated
using footprint theory.

LAMA uses a hash table to record the last access time of each item. With this hash
table, LAMA can easily compute the reuse time distribution r t(i), which represents
the number of accesses with a reuse time i . Reuse time is the time interval between
two accesses to the same object. It is a simpler metric to measure locality than reuse
distance, which counts the number of distinct accesses between an access and its next
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reuse. For access trace of length N , if the number of unique data is M , the average
number of items accessed in a time window of size w can be calculated using Xiang’s
formula [17]:

f p(w) = M − 1

N − w + 1

(
M∑
i=1

( fi − w)I ( fi > w)

+
M∑
i=1

(li − w)I (li > w) +
N−1∑

t=w+1

(t − w)r t(t)

)
.

(1)

Here, a timewindow of sizew is a sub-sequence with lengthw of consecutive accesses
in the trace. In Eq. 1, fi is the first access time of the i th datum, li is the reverse last
access time of the i th datum. If the last access is at position x , li = n + 1− x , that is,
the first access time in the reverse trace. I (p) is the predicate function equals to 1 if p
is true, otherwise 0. r t(t) represents the number of accesses with a reuse time t .

Finally, LAMA can profile the MRC using f p distribution. The miss ratio for a
cache of size c is the fraction of reuses that have an average footprint larger than c:

mr(c) = 1 −
∑

{t | f p(t)<c} r t(t)
N

(2)

In LAMA, the sub-trace of each class need to be stored to calculate the fi , li and
r t(t), this leads to a linear relationship between the consumption of space and the
length of access trace, which may consume too much memory when the working set
size is large.

2.2 AETModeling

The AET model is a series of kinetic equations related to average data eviction in the
cache [18,20]. The only input to the AET model is Reuse Time Histogram (RTH), and
the output is the Miss Ratio Curve (MRC).

With RTH, we can now calculate the probability that reference x has reuse time
greater than t , which is then related to a stack movement in an LRU queue.

The AET model establishes a relationship between the reuse time distribution and
the average eviction time (AET). AET zooms in on the eviction process of an evicting
block from its last access to its eviction. During this process, the evicting block spends
eviction time, AET(c), on average, to travel c stack positions from top to bottom and
then get evicted. It is realized by the following equation:∫ AET(c)

0
v(t)dt = c. (3)

Here, v(t) is the traveling speed of the data blocks, at time t . AET(c) represents the
time a data item travels from top to bottom of the LRU stack with size c. Hu et al.
show that v(t) is equal to P(t), the probability that a reference has reuse time greater
than t . Now Eq. 3 turns to:
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∫ AET(c)

0
P(t)dt = c (4)

We can obtain P(t) from the reuse time histogram:

P(t) =
∞∑

i=t+1

r t(i)

N
, (5)

where N is the length of the sampled sequence and r t(i) is the number of accesses
with reuse time i .

Finally, the miss ratio mr(c) for an LRU cache with size c is indeed the probability
that a reuse time is greater than the average eviction time:

mr(c) = P(AET(c)) (6)

When the reuse time distribution is sampled, Eq. 4 finds AET (c) and then Eq. 6
gives the miss ratio curve, i.e., mr(c) for all c, which can be efficiently calculated in
linear time.

2.3 Enhanced AETModeling

The AET model is a primary model for cache read and write operations, without
regarding to deletion operations. A recent work PACE [21] comes up with a more
general scenario on an LRU cache, which proposes a method to be able to model
various operations such as read, write, update and deletion on data items with different
sizes.

In Memcached, we only need to consider the MRC for each class, and each item
in a class occupies a same size slot, so we only need to consider set, get and deletion
operations. Our enhanced AET considers possible upward data movements due to
deletions in an LRU stack. The movement of a data block can be bi-directional:

1. An downward move, caused by a set or get operation. (sample reuse time distri-
bution in access_r th[i]);

2. An upward move, caused by a deletion operation. (sample reuse time distribution
in delete_r th[i]).
Assume that we have the reuse time distribution of all the read, write and update

operations to any data item as well as the delete time distribution of all deletions.
Assume fa(i) presents the probability that an item is accessed (read,written or updated)
with a reuse time i , fd(i) presents the probability that an item is deleted with a delete
time i . For each operation, the probability for an item of data with arrival time t to
move one step towards the stack bottom is P(t):

P(t) =
∞∑

i=t+1

fa(i) −
t−1∑
i=0

fd(i) (7)
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With the reuse time distribution of access and delete, we can easily find fa and fd:

fa(t) = access_r th[t]
N

(8)

fd(t) = delete_r th[t]
N

(9)

The overall speed of movement (v(t), or P(t)) is just the superposition of the veloc-
ities in both directions:

P(t) =
∞∑

i=t+1

access_r th[i]
N

−
t−1∑
i=0

delete_r th[i]
N

(10)

Here,
∑∞

i=t+1
access_r th[i]

N is the downward movement probability (or speed) caused

by access operations (set/get), and
∑t−1

i=0
delete_r th[i]

N is caused by deletion operations.
It is conceivable that if the deletion speed is greater than the access speed, the data
block in the LRU stack tends to move upward as a whole. With the travel speed set
(i.e. P(t)), Eq. 4 can be applied to find the average eviction time (AET (c)) and Eq. 6
derives the miss ratio curve.

3 Lightweight and Accurate Memory Allocation

Many real-world workloads change their access patterns over time, in order to achieve
high performance, we need to dynamically reassign memory of some classes in face of
changing workloads. We adopt the idea of dynamic programming to reassign the slabs
of each class in LAMA and use EAET to construct MRCs for each class. The whole
process of our memory allocation scheme is shown in Fig. 2, and we also amend the
cost function when doing dynamic programming, which will be explained in Sect. 3.2.
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Fig. 2 Process of lightweight and accurate memory allocation
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3.1 Memory Allocation Controller in LAMA

In LAMA design, a workload can be divided into a series of fixed-size time windows
(or phases). In a time window, it collects data accesses within the window to build
the MRC, calculates the best allocation scheme to achieve minimal total miss rate or
average response time, and finally apply this allocation scheme to next time window.
The size of time window can be set by the user or empirically.

For instance, if we allocate class i with Mi memory, then this class’s overall per-
formance target (miss rate or response time) PTi can be calculated as:

PTi = costi (mri (Mi ), Ni ) (11)

where Ni is request number of class i , and the miss ratio is mri (Mi ), which can be
derived from the MRC. costi is the cost function of the performance target:

costi (m, cnt)=
{
cnt ∗ m, target = miss_rate
cnt ∗ (m ∗ Tm(i) + (1 − m) ∗ Th(i)), target = response_t ime

(12)
Here, Tm(i) is the average miss time of class i , Th(i) is the average hit time of class

i . Our final goal is to optimize the overall performance for all classes:

min
C∑
i=1

PTi = min
C∑
i=1

cost(mri (Mi ), Ni ) (13)

s.t .
C∑
i=1

Mi = M (14)

where C is the number of classes, M is total memory we can allocate. The optimal
solution can be reached through dynamic programming (see Algorithm 1).

Algorithm 1 Dynamic Programming for Memory Allocation
1: for i ← 1..C do
2: for j ← i + 1..M do
3: f [i][ j] ← ∞
4: for k ← i .. j do
5: f [i][ j] ← min( f [i][ j], f [i − 1][k] + costi (mri ( j − k), Ni ))

6: end for
7: end for
8: end for

The most important part of this dynamic program is the target function:

f [i][ j] ← min( f [i][ j], f [i − 1][k] + costi (mri ( j − k), Ni )) (15)
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where f [i][ j] represents the optimal performance when the first i classes are allocated
j slabs. This is an intuitive target function, but there is a subtle deviation in the cost
function, which we will discuss next.

3.2 Correction of Cost Function

Our memory allocation scheme changes phase by phase. In phase t , the amount of
memory each class being allocated is slabs[i]. At the end of phase t , we will perform
the slabs reassignment using dynamic programming. The reassignment scheme can
be expressed as next_slabs[i], which means in phase t + 1, the amount of memory
allocated to each class is next_slabs[i]. In stable stage, we always have∑

slabs[i] =∑
next_slabs[i].
According to the previous target function (i.e. Eq. 15), the expected total number

of misses in phase t + 1 is: mri (next_slabs[i]) ∗ Ni . But in fact, transitioning from
slabs[i] to next_slabs[i] is not a cold start, while the footprint and EAET model all
cold misses, which can overestimate the number of misses.

Each memory reassignment decision takes place in two adjacent phases. We use
memory[t] denote thememory allocated to a specific class in phase t , andmemory[t+
1] denotes the memory allocated to the same class in phase t + 1. We intercept the
two phases in the run to test this deviation, Fig. 3 shows the ratio between the real
miss count in phase t + 1 and estimated miss count using the cost function at the end
of phase t . Here, the real miss count is achieved by running LAMA multiple times
under different memory sizes and counting the real misses in phase t + 1. In Fig. 3a
we can see the deviation is quite a big problem. The vertical axis is the ratio between
real miss count and estimated miss count. The horizontal axis is the ratio between
memory[t + 1] and memory[t]. The ideal situation is that all ratios are 1.

The key factor that leads to this deviation is: We assume that each phase is cold-
started. The EAET model and the footprint model both assume that the cache is
cold-started. However, the real situation is that the reassignment between two phases

(a) (b)

Fig. 3 Miss count deviations. a Before amendment, b after amendment
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is not a cold start. Before each reassignment starts, there is already a part of data in
each class.

We can do some amendments by comparing the size relationship between
memory[t + 1] and memory[t]:
1. memory[t + 1] < memory[t] At this point, the memory used in phase t + 1

becomes smaller than phase t . When we collect RTH, we ignore the cold miss,
and capture long reuse time across phases.

2. memory[t + 1] ≥ memory[t] At this point, the memory allocated in phase t + 1
becomes bigger than phase t . Because a class’s expansion is a gradual process,
so we need to fit this gradual process to get better accuracy. In the AET model,
the logical time required to fill a cache of size c is AET (c), that is, we need to
spend AET (memory[t + 1]) − AET (memory[t]) logic accesses to transit from
memory[t] tomemory[t + 1], and the misses due to this reason is linearly related
to the expanded memory allocation. After the filling process, the stabilization
situation is reached and the miss rate is mri (memory[t + 1]). We can divide the
cost function into two segments, one for gradual conditions, and the other for stable
conditions.

For example, we amend the cost function when the target performance is the miss
rate:

costi (slab1, slab2, cnt) =

⎧⎪⎨
⎪⎩
cnt ∗ mri (slab2) − cold_missi slab1 ≥ slab2,

(cnt − (AETi (slab2) − AETi (slab1))∗
mri (slab2) + (slab2 − slab1) ∗ I PSi slab1 < slab2

Here, the cost function is used to estimate the miss count in the next phase, the
arguments include slab1, slab2, cnt , which means the slabs used in phase t is slab1
and the allocated slabs in next phase is slab2, the total request number is cnt . The
subscript i indicates a particular class i , and I PSi denotes data items per slab in class
i . When the target performance is average response time, it’s very easy to extend:

average_response_timei =Tm(i) ∗ costi (slab1, slab2, cnt)+
Th(i) ∗ (cnt − costi (slab1, slab2, cnt))

(16)

In Fig. 3b, we illustrate the effect of amendments on cost function. Obviously, these
lines are more closer to the standard line (i.e. ratio = 1) .

4 Evaluation

In order to clearly evaluate the different MRC measurement methods and the effect of
adding the cost function amendment, we have split five different variants:

LAMA-fp The original LAMA scheme.
LAMA-aet Only use AET model do MRC Construction.
LAMA-eaet Only use EAET model do MRC Construction.
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LAMA-aet-amend Use AET model and the amendment of cost function.
LAMA-eaet-amend Use EAET model and the amendment of cost function.

4.1 Environment Setup

LAMA Configuration In the implementation of LAMA-fp, the phase is divided
according to the re-partition intervalM, and update the hash
table independently at each phase, record the reuse_t ime,
last_visi t_time, f irst_visi t_t ime, and then calculate
the MRCs of this phase. Because the MRC calculation is
in a separate background thread (lru maintainer thread),
the MRC calculation time can be ignored. There are two
parameters that need to be set in the LAMA, namely, the
re-partition interval M , and the upper bound N of the num-
ber of reassigned slabs in one adjustment. Here M is set to
10 million and N is set to 200.

System Configuration The machine we used for the experiment was Intel(R)
Core(TM) i7-3770, 4-core, 3.4 GHz, 8 MB LLC and
16 GB memory. In the experiments, we measured miss
rate and response time. To measure the latter, we set up
a MySQL database for back-end storage for Memcached.
The response time includes the time when the data was
retrieved from the back-end database when the data did not
hit. In our experiments, the Memcached instance was run-
ning on the local port with 4 threads, and the database was
running on another server in the same LAN.

Workloads We use two different traces to evaluate the performance
of variants of LAMA: Facebook ETC trace and a Redis
trace from a cloud computing service provider. The Redis
trace is transformed into a sequence of operations suitable
for Memcached and it originally contains deletions opera-
tions. Facebook ETC trace is generated usingMutilate [22].
Mutilate mimics the features of Facebook’s ETCworkload.
The ETC workload is the closest to the general workloads
and has the highest miss rate in all Facebook Memcached
pools. The Facebook ETC trace has 90 million requests and
7 million data objects and the Redis trace has 160 millions
requests in all.

4.2 Impacts of Deletion Operations

Because the original LAMA did not consider the modeling of deletion operations, we
evaluate howmuch this deviation would be in a scenario with a real deletion operation.
In Facebook ETC, we set the ratio of the update operation and get operation to 1:9,
and follow the operation processing of Facebook in Fig. 1, turn some of the update
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Fig. 4 MRC in different classes

operations into deletion operations, the ratio of the deletion operation to the update
operation is subject to the Zipf(c = 1.0, α = 2.0) distribution.

In Fig. 4, we show MRC predictions for data class 3–6, and other classes have the
same situation. It can be easily found that the LAMA-eaet is very close to the real
MRC, and because the LAMA-fp does not take deletion operations into account, the
predicted MRC results are quite different from the real MRC. Overall, the average
absolute error of LAMA-eaet is 0.7%, while the average absolute error of LAMA-fp
is 7.3%.

4.3 Total Miss Rate and Average Response Time

In this section, wewill evaluate two different target performances: total miss rate (MR)
and average response time (ART). The difference between the two is reflected in the
difference of the cost function in Eq. 12.

Facebook ETC and a cloud computing trace are used to evaluate the performance,
andwe set thememory limitation to 1/2 of theworking set size.We show the evaluation
of miss rate and average response time in Fig. 5. The left half shows the miss rate, and
the right half shows the average response time.

We can find, LAMA-fp’s performance on both indicators is worse than ours, and
the amendment of the cost function does have an effect. In Fig. 5a, the average miss
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(a) (b)

Fig. 5 Target performance on different variants. aMiss rate and b average response time

rate is reduced by 15.6% (from 25.6 to 21.6%) in Facebook ETC and 7.8% (from
23.3 to 21.5%) in the cloud computing trace when comparing LAMA-eaet-amend to
LAMA-fp.

In Fig. 5b, the ART situation is similar toMR. The average response time is reduced
by 13.0% (from 274.1–238.5 µs) in Facebook ETC trace and 5.4% (from 91.7 to
86.7µs) in the cloud computing tracewhen comparing LAMA-eaet-amend to LAMA-
fp.

We also evaluate the stable-state performance for memory sizes from 128 to
1024MB in 128 MB increments. In Fig. 6, LAMA-eaet-amend always outperforms
than LAMA-fp in terms of miss rate and average response time. Comparing LAMA-
eaet-amend and LAMA-fp, the average stable-state miss ratio is reduced by 15.0%
(9.8–18.2%) and the average stable-state response time is reduced by 12.3% (7.5–
15.3%).

4.4 Tail Latency

In this part, we evaluate the tail latency of LAMA-eaet-amend, LAMA-fp and Auto-
move using Facebook ETC trace. Automove is the default reassignment strategy used
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(a) (b)

Fig. 6 Stable-state performance under different memory sizes. a Miss ratio and b average response time

Table 1 Tail latency of LAMA-eaet and LAMA-fp (µs)

Policy Min Avg 50th 75th 90th 95th 99th 99.9th Max

Automove 13 179 19 29 935 988 1137 1348 29,059

LAMA-eaet 14 153 19 19 926 990 1236 1556 29,070

LAMA-fp 15 156 21 23 929 991 1246 1563 46,009a

aThis is an outlier, we simply ignore it

by Memcached-1.4.20, and for simplicity, we will refer to LAMA-eaet-amend as
LAMA-eaet.

In Table 1, we list the access latency in the LAMA-eaet, LAMA-fp, and Automove
strategies. Compared with Automove, the average latency of LAMA-eaet and LAMA-
fp are both lower than it, which is 14.5% and 12.8% lower respectively. Comparing
their minimum latency, we can see that Automove is the lowest, this is actually because
LAMA-{fp,eaet} need to access the hash table and update the reuse time table, but
this latency is actually very low. And we can also see the gap between LAMA-eaet and
LAMA-fp’s latency of 50–99.9%. The latency of LAMA-fp is always bigger than that
of LAMA-eaet because of the larger hash table of LAMA-fp, and it takes significantly
more time to update the hash table.

Comparing LAMA-eaet and Automove, LAMA-eaet is dominant on 50–90%, but
the Automove’s latency is lower at 99% and 99.9%, and the LAMA-fp’s situation
is similar. The main reason here is because LAMA-{fp,eaet} focuse on reducing the
overall miss rate or average response time, which may cause some latency on cold
data increase.

4.5 Spatial Overhead

We also evaluate the spatial overhead in this part. Table 2 lists the spatial overhead
comparisons of LAMA-eaet and LAMA-fp when the working set is 1 GB (LAMA-
eaet-amend uses same space as LAMA-eaet). Here LAMA-eaet uses 1% set sampling,
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Table 2 Spatial Overhead of LAMA-eaet and LAMA-fp

LAMA-fp LAMA-eaet

Items in hash table 2714 K ∗ 24 byte = 62MB 27 K ∗ 20 byte = 527KB

Hash table size 220 ∗ 8 byte = 8 MB 216 ∗ 8 byte = 512KB

RTH 312KB 312KB ∗ 2 = 624KB

Space for calc MRC 900 KB 512 KB

Total 71 MB 2.1 MB

so the number of objects in the hash table is basically 1% of the LAMA-fp’s size, and
the size of each object in the hash table is 20bytes and 24bytes respectively. The extra
4 bytes in LAMA-fp are because footprint requires additional first visit time field.

The final total overhead is 2.1 MB and 71 MB respectively. It can be found that
the main spatial overhead of LAMA-fp is the hash table, and 70 MB of the occupied
memory is used for the hash table. The cost of this part is actually related to the size of
the working set of the access sequence. This is because the footprint algorithm used
by LAMA-fp does not support the sampling technique and can’t reduce the overhead
in this respect. The LAMA-eaet can reduce the spatial overhead by sampling and
guarantee the accuracy, the space used only accounts for 3.0% of the LAMA-fp and
0.2% of the total space used.

5 RelatedWork

Research on cache modeling and MRC construction has focused on LRU and stack
algorithms [18,23–26]. Recent approximation algorithms (e.g., CounterStacks [25],
SHARDS [26] and AET [18]) make lightweight, continuously-updated MRCs practi-
cal for online modeling and control of the LRU caches.

MRC profiling techniques are widely used in different applications. Several studies
use on-line MRC analysis for cache partitioning [27,28], page size selection [29], and
memory management [30,31]. The memory cache prediction [32] also uses on-line
MRC detection for storage workloads. In high-throughput storage systems, fast MRC
tracking is always beneficial. One earlier study on optimizing memory allocation is
LAMA[15],which uses footprint-basedMRC to optimizememory allocation inMem-
cached, an in-memory key-value store. LAMA shows that MRC-based optimization is
superior to the Facebook and Twitter approaches in stable-state performance. Another
work called mPart [19] is also an MRC-based memory allocation technique, which
uses the AET-based MRCs to optimize memory allocation in a multi-tenant key-value
store, and outperforms an existing state-of-the-art sharing model, Memshare [4].

6 Conclusion

We have presented the design and implementation of a lightweight and accurate mem-
ory allocation scheme in key-value cache and compare it with a recent solution LAMA.
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The evaluation inMemcached shows that we can consume only 3.0% of LAMA space
and achieve better performance than LAMA. In Facebook ETC trace, the the average
stable-state miss ratio is reduced by 15.0% and the average stable-state response time
is reduced by 12.3%.
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