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Abstract
Hyperspectral images captured through the hyperspectral sensors play an imperative
part in remote sensing applications in the present context. Unlike traditional images
sensed with few bands in the visible spectrum, the hyperspectral (HS) images are
obtained with hundreds of spectral band ranges from infrared to ultraviolet regions.
Because of its vast spatial and spectral data, it requires an extensive computational
system for processing and its hidden features are needed to be unveiled in an effective
manner specifically for the classification of HS imagery. This approach exploits the
high spectral band correlation and rich spatial information of the HS images for the
generation of feature vectors. To attain optimal feature space for the best probable clas-
sification, an adaptive approach is incorporated to adaptively choose spectral–spatial
features for feature selection to classify the pixels effectively. Furthermore, the HS
image encompasses several bands includingnoisy bands. To categorize the imageswith
great accuracy, it is suggested to eradicate the noisy bands whilst retaining the infor-
mative bands. In this research, an adaptive spectral–spatial feature selection scheme
is proposed for HS images where the extremely correlated representative bands are
considered for analysis with uncorrelated and noisy spectral bands are judiciously dis-
carded during its classification process. This hybrid approach not merely diminishes
the computational time and also improves the general classification accuracy signifi-
cantly. The empirical result displays that the proposedwork surpasses the conventional
approach of HS image classification systems.
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1 Introduction

RS stands as a technology that recognizes the attributes of an object of interest with-
out having direct contact with that object. This technology makes utilization of the
shape and size of an object. The reflected/radiated electromagnetic waves are obtained
through sensors. The features of the reflected/radiated waves count on the condition of
the objects. RS plays an imperative part in the prolonged observation of a specific area.
It also enables the user to attain details of objects that are at a distant location. A HS
image gathers and also processes the information over the electromagnetic spectrum.
The objective of this is to get the spectrum of every pixel on the image. The reason is
to find objects, identify materials or even detect disparate sorts of processes.

HS image sensor mounted in earth viewing airborne and spaceborne platforms for
RS applications provide with abundance information concerning the region of our
interest. These sensor types are operated in distinct wavelengths and capture the intent
region with images of many narrow contiguous spectral bands called image cube.
Generally, the HS sensors mounted in aircraft and satellite platforms could capture
the images with the spectral extent of (380–12,700 nm and 400–14,400 nm) respec-
tively. It is functioned by numerous government and commercial imaging agencies. A
reflectance of specific spatial coordinates in all the existent spectral bands constitutes
spectral signature which is unique for every object exists in the regions.

The compilation of spectral signatures of all the objects, materials and elements
forms the spectral library furthermore it is utilized for classification of pixels with its
similar classes. Generally, HS images would be classified effectively centered on its
unique spectral–spatial features. Classification of pixels into various groups centered
on spectral similarity approach is the vital tasks in RS domain predominantly in land
classification, pattern recognition along with machine vision. The presence of vast
spatial and spectral components in this type of image requires more memory and
extensive computational efforts for analysis. The classification cost of HS image cube
is reduced if bands or features that do not aid discrimination effectively are removed
[1].

In machine learning, classification provides a way by which the computer program
learns from the input data, after that this learning is utilized for classifying the new
observation. The dataset might contain two classes or can contain many classes. Some
of the commonly used types of classification algorithms in machine learning are linear
classifiers, decision trees, SVM, random forest, neural network along with nearest
neighbour algorithm.

This paper ponders on a proficient way of choosing the features that pave a means
for the effective HS images classification. It is noted that in the feature selection (FS)
method, the system lacked the capability to optimally select feature as per the feature
weight. The proposed work aims at rendering a solution to resolve the problem.

Remaining paper is prearranged as; Sect. 2 manages the literature review. Section 3
summarizes the proposed method. Section 4 elaborates on the SVM and also the k-NN
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classifiers. Section 5 depicts the investigational outcomes and discussions. Section 6
renders the computational expense analysis and Sect. 7 deduces the paper.

2 RelatedWorks

Several classification methods [2–11] centred on spectral–spatial were developed.
Numerous authors including spectral–spatial restraint suggested by Rongrong et al.
[2] in which the pixels were classified centered on the constructed hypergraph includ-
ing feature-based hyperedge and spatial based hyperedge. It was done based on the
assumptions that the pixels, which were close to the feature region or space, and the
pixelswhichwere spatially closuremaximally be amember of the same class. InHanye
et al. [3] incorporated spatial and spectral similarity measures for both dimensionality
reduction and HS image classification. It was done centered on the observation that
the pixels amid the close region were spatially related and spectral similarity mea-
sures exploited the redundancy for dimension reduction. In Ke et al. [4] suggested the
‘spectral frequency spectrum difference’ [SFSD] method which determines the spec-
tral similarity in the frequency domain using Fourier transform with the concept that
the attributes of the spectral signature can well be obtained clearly in the frequency
domain. Erlei et al. [5]. developed a sparse representation centered classifier with spec-
tral information divergence [SID], exploiting the spectral discrepancy between the two
pixels for the effective HS image classification. Hongzan et al. [6] developed an unsu-
pervised spectral matching centred on artificial DNA calculating [UADSM] in which
dynamic and artificial DNA calculating strategy was incorporated over a spectral sig-
nature for effective classification of HS images. HS image classification centered upon
sparsity model [7] in which sparse representation was utilized to represent HS pixels.
In this algorithm, two approaches were suggested to enhance the classification’s per-
formance. Using explicit smoothing restraint, a pixel represented with similar spectral
attributes and mixed pixels were represented by joint sparsity model. In Mahdi et al.
[8] recommended a ‘spectral–spatial classifier’ that exclusively resolves the issue of
combined pixels. Here the spectral information can well be characterized locally and
globally for in-depth analysis for the determination of mixed components in every
pixel. Xudong et al. [9] recommended an edge preserving filtering centred approach
to improve classification accuracy exclusively for instantaneous applications.

Recently, the notion of manifold feature learning aimed at the classification of HS
images proposed and reported in Jun et al. [10]. This framework was mainly to charac-
terize linear and non-linear features exist in the data. Spectral signature/similar spectral
statistical attributes [11] approach for the effectual classification of HS imagery was
suggested in the previous work accounting of all the presented spectral bands. But all
the aforementioned work primarily oriented toward for the development of optimal
classification algorithm appropriate for various applications. In this work, to amelio-
rate the general classification accuracy of the classification system, the spectral bands
with high correlation concerning reflectance alone needed to be regarded for experi-
mentation in the test image data exclusively for the built out of real-time HS image
classification system.
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Fig. 1 The flowchart of the proposed hyperspectral image classification scheme

3 ProposedMethodology

In this study, an adaptive spectral–spatial clustering is employed with optimal FS
centered on the predefined criteria by exploiting the high spectral band correlation
along with rich spatial information of HS image dataset. It is done to generate concise
and prime feature vectors which are to be incorporated for the built out of an effective
HS image classification system aimed at instantaneous applications.

This proposed system framework considering spectral and spatial features for clas-
sification is delineated in Fig. 1. The HS image classification system generally focused
on the assigning of every pixel to appropriate classes of interest. The classification of
disparate classes in an image is primarily centered on the features extorted from spa-
tial data, spectral data or both spectral–spatial data. In literature, the earlier approach
of HS image classification is to allocate every pixel into one of the classes centered
on the consideration of spectral characteristics alone for FS [12]. However, for an
effective classification, the spatial features are as well considered along with spectral
features reported in [13] in which each pixel is assigned to individual classes centered
on spectral and spatial features. HS image classification with spectral–spatial features
centered on binary tree representation has proposed by [14]. The concept of 3D convo-
lutional neural network based framework has been proposed by [15] for the extraction
of combined spectral–spatial features for effective classification.

The FS method in the existent literature doesn’t provide an optimal approach for
choosing the relevant features. The proposed one facilitates the optimumFS. In certain
instances of classification when considering both spectral–spatial features, there may
be an existence of equal weight for more than two classes. Concerning feature space
where the threshold function needed to be altered locally to determine the pixel under
test is assigned to intend the class of interest. The solution to this point of context is
to incorporate an adaptive nature of FS approach when the aforementioned situation
emerged during the classification process.

Consider that the input n-pixel image together with m-spectral bands is signified as
X � {xi ∈ R

m ; i � 1, 2, . . . , n}. To lessen the dimensionality of the HS image for
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an effective classification, representative bands and prototype pixels for every class
are generated by making utilization of the redundancy between intra band and inter
bands. And then spectral–spatial feature vectors are constructed and optimized for the
development of appropriate classification model with various classifiers to assess the
efficacy of the presented work.

The efficiency of a particular classifier mainly relies on the training data required
for proper assignment of pixels into appropriate category accordingly. This proposed
approach is well-matched for the case of in-sufficient training data when at least 2
classes ended-up with identical feature weight lead to spectral classes with the false
assignment. Consider that the k-classes available in the HS image and it is represented
as Ci ; i � 1, 2, . . . , k. With conditional probability [1], it can well be determined
that the classes to which a pixel vector x belong furthermore it is written as,

P(wi |x); i � 1 . . . . . . k (1)

In which, wi is the spectral class and x is the pixel vector.
The classification of the pixel vector x into a particular category is centered on the

general rule that,

x ∈ wi ; i f P(wi |x) > P(w j |x) for all j �� i (2)

where P denotes the probability, wi is the spectral class and x is the pixel vector.
The above stated expression can as well be represented with discriminant functions,

gi (x) with maximal likelihood classification it is specified by,

x ∈ wi ; i f (gi (x)) > (g j (x)) for all j �� i (3)

and

gi (x) � ln P(wi ) − 1

2
|
∑

i
|−1

2
(x − mi )

t
−1∑

t

(x − mi ) (4)

where mi and
∑−1

t are mean vector and covariance matrix respectively for the data
in class wi .

Theremight be predefined criteria to the extent at which each class to be categorized
with independent threshold limit intended for all the classes. The decision was made
with the threshold value furthermore it is devised as,

x ∈ wi ; i f (gi (x)) > (g j (x)) for all j �� i and (gi (x)) > Ti (5)

and

gi (x) � ln P(wi ) − 1

2
|
∑

i
|−1

2
(x − mi )

t
t−1∑

t

(x − mi ) > Ti (6)
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where Ti denotes the threshold for the spectral classwi . In certain cases of in-sufficient
training data, the feature space needs to be selected adaptively between spectral and
spatial perspective when the given conditions are satisfied for at least 2 classes dur-
ing the classification. Furthermore it is outlined in Algorithm 1 in which adaptation
technique with optimal FS has been incorporated whenever uncertainty exists for the
classification of pixels to disparate classes.

else

The input of the adaptive spectral-spatial FS is an HS image that contains n-pixels
andm-spectral bands. The spectral-spatial correlation is computed for the inputHyper-
spectral image. Various representative bands are generated. This is followed by the
extraction of spectral–spatial features. The optimal feature weights are determined.
Centered upon these weights, the classified image representing k-classes are obtained
as outlined in Fig. 2.

The proposed system of adaptive spectral–spatial FS aimed at HS image classifi-
cation is tested on the SVM (Support Vectors Machine) due to the actuality that it
yields a good result for the big dimensional data encompassing less number of train-
ing samples [16–19]. In input, a Hyper-spectral image with n-pixels and m-spectral
band X = {xi ∈ R

m ; i � 1, 2, . . . , n} along with extorted spectral–spatial features
were given. With SVM classifier, the probability of the misclassification of classes
is greatly reduced [20] and also proved that it is the best classifier on basis of mini-
mizing classification error [21]. The notion of support vector introduced aimed at the
classification of hyper-spectral RS image reported in [17] and also reported in [22].
Numerous variants of spectral and spatial classification schemes was suggested in ear-
lier studies includes based on the mass voting rule proposed by [23] and with local and
global probabilities developed by [8]. Further, the proposed scheme is also tested on
the k-NN (k-Nearest Neighbor) along with its variants. SVM along with k-NN aimed
at HS image classification is studied widely in [22, 24].

123



International Journal of Parallel Programming (2020) 48:813–832 819

Fig. 2 Pseudo code of the proposed system

4 SVMAnd K-NN Classifiers

In this section, SVM along with K-NN classifiers are briefly discussed which were
adopted to demonstrate the proposed FS scheme for the HS image classification.

4.1 Using Support Vector Machine Classifier

SVM stands as a discriminative classifier built out by Cortes and Vapnik [25] for
binary classification defined by a separating hyperplane. The objective of SVM in HS
image classification is to map the input vectors in to the higher-dimensional features
space and an optimum separating hyper-plane is formed in this space [26]. However,
the feature space’s dimensionality is huge in HS image datasets and the pixels are
linearly inseparable, the SVM incorporates kernel function for the mapping of pixels
into higher-dimensional features space [27].

The widely used type of kernels is the ‘radial basis function kernel’. This kernel
function is popular in several ‘kernelized learning algorithms’. In SVM classification,
this kernel plays an imperative role. This kernel canwell be implemented on 2 samples.
These canwell be signified as features vectors of some input space. This vector contains
the ‘squared Euclidean distance’ between 2 feature vectors. This kernel lessens with
distance and ranges between 0 and 1.
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In HS image classification, it is often required discriminating above two classes
and can be constructed using n-class classifier which selects the class centered on
the maximal value functions specified in the kernel function. The methodology of the
SVM for the input vector x � (

x1, x2 . . . xn
)
, which transforms the input pixel into

higher dimensional features space centered on support vectors (x1, x2, . . . xN ) with
the kernel function K (x, xi ), i � 1, 2, . . . , N and the decisions rule of any pixels
under test is written as,

y �
N∑

i�1

yiαi K (x, xi ) + b (7)

where y1α1, y2α2 . . . . . . yNαN represents weights.
In SVM, the classification of data is centered on the determination of best hyper-

plane which takes apart data points of 1 class as of the other class. The most excellent
hyperplane intended for an SVM stands as the one with the greatest margin between
the 2 classes. The ‘support vectors’ denote the data points which are nearby the parting
hyperplane and these are on the border of the ‘slab’.

The SVM classifier utilizes an iterative training algorithm that minimizes an ‘error
function’. As per the type of ‘error function’, the models of SVM can well be split into
4 distinct groups. The first group refers to the C-SVM classification. The other groups
of SVM are the classification SVM type two, Regression SVM Type one along with
the Regression SVM Type two.

4.2 Using k-Nearest Neighbor Classifier

The k-NN stands as a method to classify an unknown data centered upon the known
classification of its neighbors. When a compilation of samples with known classifi-
cation is presented, each sample is classified likewise to its nearby samples and if
the categorization of a sample is unknown, then the prediction is by regarding the
classification of its NN samples. It is a learning algorithm that performs classification
centered on the similarity of the surrounding data sets. “K” represents the number of
data set items that are considered for the classification. The ‘similarity measure’ that
is utilized in this technique quantifies the relationship amongst the different items.

There are 2main considerations on the k-NN classifier. Firstly, the distance function
on k-NN plays an indispensable role in the success of the classification. Generally,
the smaller distance function used in the classification algorithm provides a greater
likelihood for samples to be a member of the same class. Secondly, the option of
the value for the parameter ‘k’ as it signifies the numbers of nearest neighbors to
be regarded for the classification of unknown samples [28]. Typically, the unknown
sample is classified centered on the samples of its ‘k-NN’ by majority vote method
and it acts upon well with multimodal classes [29].
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Fig. 3 Salinas-A image, a sample band and b ground truth

5 Experimental Results and Discussion

This section summarizes the findings of the proposed FS that was tested on two bench-
mark classifiers of SVM and k-NN with MATLAB’s statistics along with machine
learning toolbox. First, the experimental datasets are introduced and then experimen-
tal outcomes and discussion are given.

5.1 Experimental Datasets

In this research, the proposed work is empirically tested on 2 well known HS datasets
namely, Salinas-A and Samson available online [30] using the above-stated classifiers.
The spectral and spatial information of these datasets is given as follows.

5.1.1 Salinas-A Scene Dataset

The Salinas image comprising of 512×217 pixels with 224 spectral bands attained
by Airborne Visible Infrared Imaging Spectrometer sensor over Salinas Valleys, Cal-
ifornia with the spatial resolution of 3.7 m along with spectral wavelengths extending
as of 400 nm through 2500 nm. The Salinas-A scene comprising of 83×86 pixels is a
small sub scene situated within the Salinas image at (samples, lines)� (591–676,
158–240) and it includes six distinct classes namely: Brocoli_green_weeds_1,
Corn_senesced_green_weeds, Lettuce_romaine_4wk, Lettuce_romaine_5wk, Let-
tuce_romaine_6wk and Lettuce_romaine_7wk. There are twenty water absorption
bands on the ‘Salinas-A scene’ including the bands 108 through 112, 154 through
167 and 224 are discarded with the remaining of 204 bands are considered for the
experimentation. Figure 3a shows a sample band of Salinas-A and its ground truth
displays in Fig. 3b. Table 1 demonstrates the Salinas-A reference data which consists
of six classes and its number of samples.
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Table 1 Description of six distinct classes of Salinas-A scene

ID Class Number of samples

C1 Brocoli_green_weeds_1 391

C2 Corn_senesced_green_weeds 1343

C3 Lettuce_romaine_4wk 616

C4 Lettuce_romaine_5wk 1525

C5 Lettuce_romaine_6wk 674

C6 Lettuce_romaine_7wk 799

Fig. 4 Samson image, a sample band and b ground truth

Table 2 Description of three
distinct classes of Samson Image

ID Class Number of samples

C1 Rock 2920

C2 Tree 3541

C3 Water 2564

5.1.2 Samson Image Dataset

The Samson Image consisting of 952×952 pixels with 156 spectral bands obtained
by Spectroscopic Aerials Mapping System with On-board Navigation (SAMSON)
of Oregon State University with the spatial resolution of 3.13 m and with spectral
wavelengths ranging from 401 through 889 nm. In this experiment, a small sub scene
of an image comprising 95×95 pixels located at (252, 332) in the actual dataset was
used and it includes three distinct classes namely: rock, tree, and water. Figure 4a
shows a sample band of Samson and its ground truth is displayed in Fig. 4b. Table 2
demonstrates the Samson reference data that comprises 3 classes and its number of
samples.
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Table 3 Classification results of Salinas-A scene using SVM classifiers

L-SVM
(%)

Q-SVM
(%)

C-SVM
(%)

FG-SVM
(%)

MG-SVM
(%)

CG-SVM
(%)

Brocoli_green_weeds_1 97 95 97 97 97 97

Corn_senesced_green_weeds 99 97 99 96 97 93

Lettuce_romaine_4wk 98 98 97 97 97 96

Lettuce_romaine_5wk 99 99 99 99 99 99

Lettuce_romaine_6wk 98 96 96 98 98 98

Lettuce_romaine_7wk 98 98 98 93 100 100

OA 98.3 97.5 97.8 96.6 98 96.9

Bold indicates high overall accuracy among this six classifiers

5.2 Performance Evaluation

The classification outcomes demonstrated in this sectionmadewith different top-notch
kernel functions of SVM and k-NN classifiers. Here, the outcomes of the proposed
feature extraction technique are examined using various versions of SVM and K-
NN with the metrics of classification accuracy, prediction speed and also training
time. The effectiveness of classification with the variants of SVM such as linear (L),
quadratic (Q), cubic (C), fine Gaussian (FG), medium Gaussian (MG) and coarse
Gaussian (CG) is assessed. The comparative evaluation of these classifiers tested
on Salinas-A scene. It shows that the linear SVM outperforms the other SVM clas-
sifiers with 98.3% considering overall accuracy. Similarly, the classification results
is also compared with all the variants of k-NN which include fine (F), medium
(M), coarse (C), cosine (Cos), cubic (Cu) and weighted (W). It specifies that the
fine k-NN functions well with reference to its other types with 98.3% considering
overall accuracy. The classification accuracy of the experimental datasets with dif-
ferent variants of these classifiers was assessed and compared. The classification
outcomes of Salinas-A scene using the disparate versions of SVM and k-NN are
tabularized in Tables 3 and 4 respectively. Figure 5a, b depicts the classification label
of Salinas-A scene by L-SVM and F-kNN classifiers respectively. On Samson image,
FG-SVM and C-kNN performed well with 96.9% and 96.5% respectively. The clas-
sification outcomes of Samson image using the disparate versions of SVM along with
k-NN is tabularized in Tables 5 and 6 respectively. Figure 6a, b depicts the classifica-
tion label of Samson image by FG-SVM and C-kNN classifiers respectively.

As HS image encompasses rich spatial and spectral components, its dimensionality
has an effect on the consideration of spatial and spectral feature selection. This can
well be solved and analyzed with the parallel coordinate plot, which is a technique
proposed by Inselberg et al. [31]. And can be applied to a diverse set of multidimen-
sional problems and for visualizing multivariate data and high dimensional geometry
[32]. The Figs. 7 and 8 visualizing the spatial and spectral features of Salinas-A scene
depicted as parallel coordinates which have been evaluated in different types of SVM
and k-NN classifiers respectively. The images corresponding to these classifications
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Table 4 Classification results of Salinas-A scene using k-NN classifiers

F-kNN
(%)

M-kNN
(%)

C-kNN
(%)

Cos-kNN
(%)

Cu-kNN
(%)

W-kNN
(%)

Brocoli_green_weeds_1 95 84 0 61 84 95

Corn_senesced_green_weeds 99 99 43 87 99 99

Lettuce_romaine_4wk 92 95 77 74 95 97

Lettuce_romaine_5wk 96 97 75 88 97 94

Lettuce_romaine_6wk 94 94 36 68 94 98

Lettuce_romaine_7wk 96 91 49 67 91 94

OA 98.3 94.4 51.1 75.8 94.4 96.3

Bold indicates high overall accuracy among this six classifiers

Fig. 5 Classification results of Salinas-A scene by a L-SVM and b F-kNN

Table 5 Classification results of Samson image using SVM classifiers

L-SVM (%) Q-SVM (%) C-SVM (%) FG-SVM
(%)

MG-SVM
(%)

CG-SVM
(%)

Rock 97 97 78 97 97 97

Tree 99 99 85 99 99 99

Water 94 94 76 94 94 94

OA 96.8 96.7 80.4 96.9 96.7 96.6

Bold indicates high overall accuracy among this six classifiers

were depicted here but the other images were not shown here due to the space con-
straints. Figures 9 and 10 visualizing the spatial and spectral features of Samson image
depicted as parallel coordinates which have been evaluated in different types of SVM
and k-NN classifiers respectively.

The ‘Receiver Operating Characteristics’ (ROC) curve demonstrates the relation-
ship between ‘true positive rate’ and ‘false positive rate’. The ROC curve of Salinas-A

123



International Journal of Parallel Programming (2020) 48:813–832 825

Table 6 Classification results of Samson image using kNN classifiers

F-kNN (%) M-kNN (%) C-kNN (%) Cos-kNN
(%)

Cu-kNN (%) W-kNN (%)

Rock 92 95 96 94 95 94

Tree 96 98 98 99 98 96

Water 97 95 94 95 95 95

OA 94.9 96.2 96.5 96.3 96.2 95.4

Bold indicates high overall accuracy among this six classifiers

Fig. 6 Classification results of Samson image by a FG-SVM and b C-kNN

scene obtained by SVM classifiers and also kNN classifiers are exhibited in Figs. 11
and 12 respectively.

The ‘ROC curve’ of Samson image obtained by SVM classifiers and also kNN
classifiers are exhibited in Figs. 13 and 14 respectively.

6 Computational Cost Analysis

This section summarizes the computational cost analysis of the proposed work. The
classification method is experimentally tested on an Intel Core i5-7200U 2.70 GHz
with 8 GB RAM. The processing duration for the classification of two HS image
datasets with distinct classifiers is reported. So as to increase the computational speed,
we incorporated a parallel computing approach during the testing process. More-
over, in the process of HS image classification, simultaneous spectral–spatial FS and
extraction enable the classification process ended up with less time consuming than
traditional schemes. The parallel computing strategy can also be further upgraded
using ‘Graphical Processing Unit’ (GPU) accelerated computing and the method of
this kind has been proposed in [33]. The ‘GPU’ implementation of change detection
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Fig. 7 Spectral–spatial features of Salinas-A scene represented as parallel cordinates with SVM classifiers,
a L-SVM, b Q-SVM, c C-SVM, d FG-SVM, e MG-SVM and f CG-SVM

on multi-temporal HS images for instantaneous application was reported by [34]. In
Tables 7 and 8, which reports the parallel computing performance of Salinas-A scene
with prediction speed and training time evaluated by disparate types of SVM clas-
sifier in addition to k-NN respectively. It exhibits that the Q-SVM and F-kNN are
outperforming the other variants of classifiers on Salinas-A scene with reference to
training time. In Tables 9 and 10, which reports the parallel computing performance
of Samson image with prediction speed and training time evaluated by disparate types
of SVM and k-NN classifiers respectively. With Samson image, L-SVM and M-kNN
performed well with reference to training time. This shows that the computational
performance primarily relies on the characteristics of spatial–spectral feature vectors
selected for categorization of HS images.

7 Conclusion

This work handles the feature selection and classification of the HS images. In this
research, a new adaptive spectral and spatial centered FS is presented for an effective
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Fig. 8 Spectral–spatial features of Salinas-A scene represented as parallel coordinates with k-NN classifiers,
a F-kNN, bM-kNN, c C-kNN, d Cos-kNN, e Cu-kNN and f W-kNN

Fig. 9 Spectral–spatial features of Samson image represented as parallel coordinates with SVM classifiers,
a L-SVM, b Q-SVM, c C-SVM, d FG-SVM, e MG-SVM and f CG-SVM

123



828 International Journal of Parallel Programming (2020) 48:813–832

Table 7 Parallel computing performance on Salinas-A scene using SVM classifiers

L-SVM Q-SVM C-SVM FG-SVM MG-SVM CG-SVM

Prediction
speed

1800 obs/s 1700 obs/s 2700 obs/s 2800 obs/s 3400 obs/s 3500 obs/s

Training
time

12.149 s 10.398 s 11.415 s 11.267 s 11.97 s 11.762 s

Bold indicates high speed among this six classifiers

Table 8 Parallel computing performance on Salinas-A scene using k-NN classifiers

F-kNN M-kNN C-kNN Cos-kNN Cu-kNN W-kNN

Prediction
speed

4700 obs/s 2900 obs/s 6300 obs/s 6000 obs/s 9100 obs/s 8400 obs/s

training time 1.3241 s 4.031 s 2.5493 s 2.4547 s 2.2902 s 2.5759 s

Bold indicates high speed among this six classifiers

Table 9 Parallel computing performance on Samson image using SVM classifiers

L-SVM Q-SVM C-SVM FG-SVM MG-SVM CG-SVM

Prediction
speed

56,000 obs/s 47,000 obs/s 80,000 obs/s 41,000 obs/s 49,000 obs/s 46,000 obs/s

Training
time

49.053 s 195.07 s 55,805 s 200.44 s 205.37 s 210.75 s

Bold indicates high speed among this six classifiers

Table 10 Parallel computing performance on Samson image using k-NN classifiers

F-KNN M-KNN C-KNN Cos-KNN Cu-KNN W-KNN

Prediction
speed

66,000 obs/s 54,000 obs/s 28,000 obs/s 10,000 obs/s 45,000 obs/s 87,000 obs/s

Training
time

2.0213 s 1.7646 s 2.5586 s 4.9984 s 3.4974 s 4.408 s

Bold indicates high speed among this six classifiers

classification of HS images. Unlike conventional FS methods reported in preceding
works, the proposed work can adaptively choose the optimal spectral and spatial fea-
tures as per the feature weight and pre-defined norm for the best potential classification
of classes in the HS images. The investigational outcomes obtained by two benchmark
classifiers on the 2 real HS images illustrate the efficiency of the proposed technique
over traditional classifiers concerning the quantitative metrics like overall accuracy,
prediction speed and training time with parallel computing approach. On the Salinas-
A scene, L-SVM along with F-kNN individually yielded an accuracy of 98.3%. On
Samson image, FG-SVM and C-kNN performed well with an accuracy of 96.9% and
96.5% respectively. This paper can well be extended to test on real-time images and
the classification’s accuracy can well be further enhanced.
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Fig. 10 Spectral–spatial features of Samson image represented as parallel coordinates with k-NN classifiers,
a F-kNN, bM-kNN, c C-kNN, d Cos-kNN, e Cu-kNN and f W-kNN

Fig. 11 ROC curve of Salinas-A scene obtained by SVM classifiers, a L-SVM, b Q-SVM, c C-SVM, d
FG-SVM, e MG-SVM and f CG-SVM
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Fig. 12 ROC curve of Salinas-A scene obtained by k-NN classifiers, a F-kNN, b M-kNN, c C-kNN, d
Cos-kNN, e Cu-kNN and f W-kNN

Fig. 13 ROC curve of Samson image obtained by SVM classifiers, a L-SVM, b Q-SVM, c C-SVM, d
FG-SVM, e MG-SVM and f CG-SVM
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Fig. 14 ROC curve of Samson image obtained by k-NN classifiers, a F-kNN, b M-kNN, c C-kNN, d Cos-
kNN, e Cu-kNN and f W-kNN
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