International Journal of Parallel Programming (2020) 48:496-514
https://doi.org/10.1007/s10766-018-0591-9

@ CrossMark

Charismatic Document Clustering Through Novel K-Means
Non-negative Matrix Factorization (KNMF) Algorithm Using
Key Phrase Extraction

E. Laxmi Lydia'® - P. Krishna Kumar? - K. Shankar? - S. K. Lakshmanaprabu? -

R. M. Vidhyavathi’ - Andino Maseleno®

Received: 13 May 2018 / Accepted: 30 July 2018 / Published online: 7 August 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

The tedious challenging of Big Data is to store and retrieve of required data from the
search engines. Problem Defined There is an obligation for the quick and efficient
retrieval of useful information for the many organizations. The elementary idea is to
arrange these computing files of organization into individual folders in an hierarchical
order of folders. Manually, to order these files into folders, there is an ardent need
to know about the file contents and name of the files to give impression of files, so
that it provides an alignment of certain set of files as a bunch. Problem Statement
Manual grouping of files has its own complications, for example when these files
are in numerous amounts and also their contents cannot be illustrious by their labels.
Therefore, it’s an intense requirement for Document clustering with data processing
machines for enthusiastic results. Existing System A couple of analyzers are impending
with dynamic algorithms and comprehensive analogy of extant algorithms, but, yet,
these have been restricted to organizations and colleges. After recent updated rules of
NMF their raised a self interest in document clustering. These rules gave trust in its
performances with better results when compared to Latent Semantic Indexing with
Singular Value Decomposition. Proposed System A new working miniature called
Novel K-means Non-Negative Matrix Factorization (KNMF) is implemented using
renovated guidelines of NMF which has been diagnosed for clustering documents
consequently. A new data set called Newsgroup20 is considered for the exploratory
purpose. Removal of common clutter/stop words using keywords from Key Phrase
Extraction Algorithm and a new proposed Iterated Lovin stemming will be utilized in
preprocessing step inassisting to KNMF. Compared to the Porter stemmer and Lovins
stemmer algorithms, Iterative Lovins algorithm is providing 5% more reduction. 60%
of the document terms are been minimized to root as remaining terms are already
root words. Eventually, an appeal to these processes named ‘“Progressive Text min-

B E. Laxmi Lydia
elaxmi2002 @yahoo.com

Extended author information available on the last page of the article

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-018-0591-9&domain=pdf
http://orcid.org/0000-0002-6788-7051

International Journal of Parallel Programming (2020) 48:496-514 497

ing radical” is developed inlateral exertion of K-Means algorithm from the defined
Apache Mahout Project which is used to analyze the performance of the MapReduce
framework in Hadoop.

Keywords Document clustering - K-means non-negative matrix factorization
(KNMF) - Iterated lovin stemmers - Key phrase extraction - Stopwords -
MapReduce - Hadoop - Term frequency-inverse term frequency (Tf-IDF)

1 Introduction

A standout amongst the most critical assignments in information and learning reve-
lation is Data Clustering. As per Jain’s definition, “The objective of Data Clustering,
otherwise called cluster analysis, is to find the common grouping(s) of an arrangement
of examples, focuses, or questions” [1]. Data clustering has different applications in
various fields. For instance, in Computer Vision, Image Segmentation can be charac-
terized as a clustering issue [2]. In Information Retrieval, report grouping can give
various levelled recovery and upgrades in level recovery execution [3]. In Bio infor-
matics, grouping is utilized for enhancing different arrangement [4]. Numerous other
essential applications likewise exist in fields like: Medicine, Online Social Networks,
and so on [1].

Document grouping strategies have been getting an ever increasing amount atten-
tions concerning illustration an essential and empowering device to productive
organization, navigation, retrieval, and outline for colossal volumes from claiming
content documents. Using great document clustering methods, computers could nat-
urally arrange a record corpus under worthwhile group echelons, that could empower
a productive scanning and route of the corpus. Next to the maintainance of corpus,
appropriate best stemming algorithm is applied. The various stemming algorithms
are Iterative Lovins stemmer, Lovins stemmer, Porters stemmer. It aims to minimize
the words to its root. A productive document scanning furthermore route will be a
profitable supplement of the deficiencies of conventional IR innovations.

Further more this paper describes the performance of document clustering focusing
on the stemmer algorithms. Related work describes the existing algorithms for doc-
ument clustering stemming algorithms followed by the existing problem while using
LSI (Latent Semantic Indexing), SVD (Singular Value Decomposition), PCA (Prin-
cipal Components Analysis). Proposed work specifies the detailed description of the
document clustering and stemmer algorithms. Finally, result analysis is performed by
Newsgroup20 dataset by comparing three stemmer algorithms and ICF, WSF, CSWF
Factors for stemmed words.

2 Related Work
The action of compassionating the likeliness and unlikeliness across the present phe-

nomenon’s and thus, isolating them into consequential subgroups sharing common
characteristic is known as Clustering. If suppose the classification is done with abso-

@ Springer

498 International Journal of Parallel Programming (2020) 48:496-514

lute items of relevant features, this is a sign of best clustering method adopted. In
clustering we can’t predict the assertive groups as this is an autonomous method.
Simply ‘Document Clustering’ is a similar gathering of files. According to Guduru
[5], Conventional techniques in document clustering utilize set of words as pro-
portionate to discover similitude across documents. These words are thought to be
commonly autonomous which in genuine application may not be the situation. Con-
ventional VSI utilizes words to depict the documents however as a general rule
the ideas/semantics/highlights/points are what portrays the documents. The extracted
highlights hold the most vital thought/idea relating to the documents. Include extrac-
tion has been effectively utilized as a part of text mining with unpredictive algorithms
like Principal Components Analysis (PCA), Singular Value Decomposition (SVD),
and Non-Negative Matrix Factorization (NMF) including factorization of the docu-
ment word matrix. In Proceedings of Berry et al. [6], Landauer et al. [7], it was said
thata novel Information Retrieval technique called Latent Semantic Indexing (LST)
was sketched to call the flaws of the classic VSM model. Inorder to rectify the faults
raised in lexical matching, LSI uses demographically derived concepts instead of iso-
lated word retrieval. It considers some latent structures for word usages which were
partly obscured by variability of word choice. To appraisal the structural word usage
across documents and retrieval performance with database of singular value vectors, a
truncated Singular Value Decomposition (SVD) is used. Performance data shows that
these statistically derived vectors are more robust indicators than individual terms.
Application of Latent Semantic Indexing with results can be found in [6, 7]. Singular
Value Decomposition is extensively used in standard factorization of the data matrix.
As SVD vectors contain negative values compared to VSM vectors which contain
positive values, it became difficult for interpretation. These issues have been replaced
with an outstanding algorithm NMF (formulated in Lee and Seung [8, 9]) that have
various beneficiaries over Standard PCA/SVD like non-negativity in NMF ensures
coherent parts of original data (text, imagesetc.) [10]. Ding et al. [10] demonstrated
that when Frobenius standard is utilized as a difference and including an orthogonality
imperative HT H=1, NMF is comparable to a casual type of K-Means clustering. Xu
et al. were the primary ones to utilize NMF for document clustering in [11] where
unit Euclidean separation imperative was added to column vectors in Yang et al. [12]
broadened this progress by including the sparsity constraints since inadequacy is the
critical feature of tremendous data in semantic space. In both works, the clustering
was found to understand the components of the matrices. As per Xu et al. [11], Inter-
preting of two positive matrices U and V has been analogue with SVD. As per it, every
element uj; of matrix U and vj; of matrix V represents the degree to which term fje
W belongs to cluster j and degree document i is associated with cluster j respectively.
If document i solely belongs to cluster X, then vix will take on a large value while
rest of the elements in ith row vector of V will take on a small value close to zero.
From the work of Kanjani [13] it is seen that the accuracy of algorithm from Lee
and Seung [9] is higher than their derivatives [11, 12]. In this work, he undertook
the authenticated multiplicative update proposed by Lee and Seung [9]. Porter [14]
represented an elementary algorithm for stemming words of English language that
has been widely adopted with extensionfor standard approach of word conflation for
information retrieval.

@ Springer

International Journal of Parallel Programming (2020) 48:496-514 499

The Lovins stemming algorithm proposed by Lovins [15] is mainly used in anal-
ysis of English language with reference to porter stemmer algorithm. This algorithm
exhibits its functionalities in familiar paths along with its shades it appear. Lovins
gave scope to porter stemmer to shape its algorithm with ample modifications and
progressiveness. According to Laxmi [16], K-means have resolved the well-known
clustering problem that is an unsupervised learning algorithm. This is done by assum-
ing the ‘K’ number of clusters for classifying a given grid processor in a clear snapshot
way. As the performance result analysis depends on initial centroids, K-Means clus-
tering does not have a guarantee for an optimal solution. Thus, the proposed system
uses the partition clustering (K-Centroids clustering). With the continuous work of
Laxmi [16] Disparateness cluster environment is created along with the properties of
resource such as resource type, processing speed, and the memory. In order to avoid the
scheduling delay, the system needs to form a cluster using the K-centroids clustering.
Depending up on higher priorities, the node will move to the cluster [17]. Clustering
of Documents and detail description of KNMF is studied with parallel explanation of
indexing the dcouments [18].

3 Problem Statement

In this gigantic world, we are overloaded with numerous numbers of files or documents
in each of its related fields. These increase overload to the users to analyze his/her
strategies for a particular group. Even though they all belong to same fields, there are
various sub groups present. So to distribute these files into sub groups we need to
know the content and then separate them into groups. For this we can manually work
for the separation of 10-100 in number files. But if these are in huge amount, manual
distribution is not enough. So computer aided work is to be acquired by sub group the
files based on its file name along with its content.

Many of great scholars have done a research work in text mining related to docu-
ment clustering and came out with efficient outputs as years by accordingly. Here of
these works, document clustering with updated rules of NMF which was proposed by
Lee and Sung gave good performance. Before this, Latent Semantic Indexing (LSI),
Singular Value Decomposition (SVD), Principal Components Analysis (PCA) were
in great use. Of these, LSI with the help of truncated SVD has estimated the word
structures. As the ages pass by new innovations are replacing the old one with extra
features which took place even in document clustering problem. Here this problem
has recovered with Lee and Sung’s updated NMF rule which have better performance
than LSI. But these rules are limited to academics.

4 Proposed Work
A new updated model i.e., KNMF compared to Lee and Sung’s NMFis used for

Automatic Document clustering. For its experimental implementation, a New Group
20 data set is used. This model is more efficient when compared to that of NMF

@ Springer

500 International Journal of Parallel Programming (2020) 48:496-514

proposed by Lee and Sung. As the k-means factor is added to NMF it gives a prominent
importance in clustering with extracted features.

Extracted features play a dominant role in clustering of documents. These fea-
tures are extracted based on the requirements we define before classification. These
can be semantics, topics, and featured words from the defined document. Mainly
these selected features condense the size of the documents with emphatic words. This
makes the clustering amiable. To achieve this we need to gear up with sequential steps.
Initially, Stopwords/Common clutters are removed with the help of keywords from
Key Phrase Extraction Algorithm and Stemming from proposed Iterated Lovin Stem-
mer Algorithm. Later, Performance of MapReduce framework in Hadoop is achieved
through the Parallel implementation of K-Means clustering algorithm.

Here in this paper, the first portion of implementation is elaborated that includesto
free the required documents from unwanted clutters and evaluate its TF-IDF (Term
frequency-Inverse Document frequency) count values for clustering process along
with novel stemming algorithm.

In the proposed system of KNMEF, the clustering of documents is curved between
similarities of isolated documents and defined characteristics. If suppose in the com-
putation of KNMF, these characteristics indulge basic vectors like W={wl, w2,
w3,...wx } and Term Document matrix related documents like V= {d1, d2,....d;} then
document d; would replace with vector wy, with condition that angle between d; and
Wy 18 less.

5 The Methodology Adapted

1. Formulate Term Document Matrix V using Term frequency —Inverse document
frequency for those groups of file folders.

2. Euclidean length is formalized by the column length of V.

We formulate W and H by calibration of Lee and Seung NMF and KNMF.

4. Cosine Similarity is administered to calculate distance across document di and
defined characteristics W.

5. Similar to K-means single turn algorithm, we empower d; to wy as the angle
between them is less (Fig. 1).

(O8]

Hadoop has initialized in both the Local Reference Mode and the Pseudo-
Distributed Mode for running parallel versions of K-Means by submitting to the
Job-Client. The time analysis measures are updated for future reference.

5.1 Steps for Initial Progressive Updating of the Documents in a Folder

1. Adjudicate the Document is novel or not. If its new, thenupdate in index
Now create a Text Document if it’s a new document updated in index by replacing
the old one.

3. Using the Key Phrase Extraction algorithm defining 499 stopwords, stopwords in
the documents are extracted. These stopwords are maintained as a text document
which makes easy for modification.

@ Springer

International Journal of Parallel Programming (2020) 48:496-514 501

Fig. 1 Flowchart of the proposed

Term- document matrix formulated from
methodology

frequency-inverse document frequency

l

Length of columns V assigned to Euclidean
length

l

Execute Lee and Seung NMF on V to get W
and H

l

Assign Cosine similarity between
Documents di and extracted features of W

!

If angle between d;
and wyx is least

Apply di to wx

4. Now the stopwords are read and removed from the document. User can also add

words to these stopwords text document.

Stemming algorithm is applied on the given document.

Created Text Document is stored in index.

7. Lastly stray files(doc that are eliminated from set of group but are found to be
in)removed.

oW

The above Fig. 2 represents the flow diagram for the detailed description of module
1 to be presented in this paper from the whole process. The module 2 describes
calculation of Term Frequency-Inverse Document Frequency (TF-IDF) Value for the
given input documents. Here is a block diagram of the prescribed process for module
1 and module 2 described in this paper (Fig. 3).

@ Springer

502 International Journal of Parallel Programming (2020) 48:496-514

Define Document

!

Document
is new

m Yes

Updation Index

E— No need to update

!

if
Document
is new

m old

Create a Text document < —

!

Extract words from Documents

!

Remove Stop words

!

Apply Stemming

!

Created Text document is stored in index

l

Stray files are removed

New
= | Update it by replacing old document

Fig. 2 Flow chart representing the Indexing of documents

5.2 Stopwords Count Algorithm

Stepl: The text document to be applied is isolated into individual words and is
stored in array formats.

Step2: Each isolated stopword is read from the list of stopwords defined.

Step3: Now each word is compared with the list of stopwords using sequential array
technique.

@ Springer

International Journal of Parallel Programming (2020) 48:496-514 503

o ™

TUnclustered TUnclustered Unclustered
Documents Documents Documents
<>

Y

Filtered Documents
free of Stray words

Computing "Term Frequency
Inverse Document Frequency '’

Frequency

count value |

.

Fig. 3 Block diagram for the module 1 and 2

Step4: The word is removed from the text document if they match with words in
stopwords list.

Step5: This process continues across whole text document and produces stopwords
free text document.

//Defining stopWords list

Static Set<String>stopWordsSet = new HashSet<String>();

// adding stopwords list to s

For loop (String s: stopWords)

{

stopWordsSet.add(s);

}

// counters are defined to count stopwords

static enum Counters

{

StopWords;

}

//mapper phase for identifying stopwords in given text

Comparing StopWord with string s;

If (stopWord set contains string s) // if condition

then

@ Springer

504

International Journal of Parallel Programming (2020) 48:496-514

return s;

assigning string value to str;

defining a new string tokenizer for str that is tokens;
whilecondition (tokens are added)

{

each token added is assigned to a string ‘word’ ;
ifcondition (comparing the ‘word’ with StopWord)

{
H

If true then increment COUNTER value by 1;

5.3 Lovins Stemmer Algorithm

The algorithm consists of two steps:

Step 1

Step 2

Step 3

By eradicating the suffixes along with the treatment of held stemmers.

This Suffix Stripping consists of concatenating the endings of the word with
long suffix from the list of 294 suffixes and defined 29 rules.

Now comes the Recoding phase where these held stems are left to clear lin-
guistic clauses similar to double letter endings of ‘d’ and ‘t’. According to the
phase, it also depends on 35 rules for termination of stems.

Example: ‘Outputting’ can be stemmed as ‘Output’ rather than ‘Outputt’.
Lastly, with the help of partly similar matching algorithm, fusion is rectified.
It makes an rapid increase in fusion level with illusions of having two equal
stems bearing a diversities as a reason of suffix stemming methods.
Example: ‘EXPLAIN’ and ‘FEXPLANATION’ can be stemmed distinctly with
‘EXPLAIN’ and ‘EXPLAN’.

5.4 Porter Stemmer Algorithm

Step 1

Step 2

Step 3
Step 4

This step in the algorithm plays a complicate role with 3 shares of main
definition. The first share deals with plurals, for example sses ->ss and removal
of s.

The second share avoids the ending letters like ‘ED’ and ‘ING’ and implement
‘EED’ applied when applicable. This share proceeds if ‘ED’ and ‘ING’ are
terminated with translating left over stem to conform that particular suffices
are recognized later.

The third share simply manipulate one of the terminal ‘Y’ to ‘T".

The remaining steps in this stemmer contain rules to deal with different order
classes of suffices, initially transforming double suffices to a single suffix and
then removing suffices provided the relevant conditions are met.

5.5 Proposed Iterated Lovins Stemmer Algorithm

Step 1:

Iterated stemmer is extension of lovins stemmer. So it inherits the rules of
the lovins stemmer.

@ Springer

International Journal of Parallel Programming (2020) 48:496-514 505

53068 - Notepad
File Edit Format View Help

Kaflowitz

From: decay@cbnewsj.cb.att.com (dean.kaflowitz)Subject: Re: about the bible quiz
answersOrganization: AT&TDistribution: nalLines: 18In article
<healta.153.735242337@saturn.wwc.edu>, healta@saturn.wwc.edu (Tammy R Healy) writes:> >
> #12) The 2 cheribums are on the Ark of the Covenant. When God said make no > graven
image, he was refering to idols, which were created to be worshipped. > The Ark of the
Covenant wasn't wrodhipped and only the high priest could > enter the Holy of Holies
where it was kept once a year, on the Day of > Atonement.I am not familiar with, or
knowledgeable about the original language,but I believe there is a word for "idol" and
that the translatorwould have used the word "idol" instead of "graven image" hadthe
original said "idol." So I think you're wrong here, butthen again I could be too. I
just suggesting a way to determinewhether the interpretation you offer is correct.Dean

Fig. 4 Sample dataset from Newsgroup20

public class Iterated Lovins Stemmer extends Lovins Stemmer
Step 2: Before Iterating stemmer of the given word the particular word has to be

changed to lower case.
/*Defining a string STR;

]3

Applying a ‘IF’ condition to check the given length of STR is greater than

If so then need to convert the words into lower case by equalizing the stems.
This runs with a loop function. */
Step 3: Here in this algorithm the Lovinsstemer procedure carries out in reoccurrence
way (may be twice) to avoid the extreme left over stemmed words.

5.6 Experimental Setting and Data Description

For the experimental purpose Fig. 4 has been taken as a sample input from 20
Newsgroup.20 NewsGroup is significant relevant information set for clustering and
classification. It has an accumulation around 20,000 reports cross-wise over 20 diverse
Newsgroups from Usenet. Each of these Newsgroups is gathered in a sub-directory
with every clause gathering in a big document. The newsgroup data set has been

executed on the following software’s.

Software Version

Programming Language Referred
Platform Used

Preferred IDE

Apache Cloudera

High end Server

Cluster with Hadoop software having 15 nodes

1.0

Java

Only tested in GNU/Linux
NetBeans IDE 6.0.1

3

PN: 73821A4 Two socket tower Intel Xeon ES
2403(Quard core)

@ Springer

506 International Journal of Parallel Programming (2020) 48:496-514

' 4 cloudera-demo-0.3.7 - VMware Workstation 12 Player (Non-commercial use only) - a X
t Player ~ > @ H R «
43 Applications Places System 2} 4 FriMay 19, 3:08AM @ cloudera () 1y

OO cloudera@cloudera-vm: ~

File Edit View Search Terminal Help

cloudera@cloudera-vm:~$ hadoop fs -put 53068.txt /home/cloudera

put: Target /home/cloudera already exists

cloudera@cloudera-vm:~$ hadoop fs -put 53068.txt /user/cloudera

cloudera@cloudera-vm:~$ ls

53068. txt om StopWords. java WordCount.class

alphabet.java Stemmer.class StopWords$StopWordsMapper.class

stemming3.java test WordCount. java

StopList TfIdfl.class WordCount$WordCountMapper.class

StopList.txt TfIdfl.java WordCount$WordCountReducer.class
TfIdf.class wp.txt

StopWords.class _user_cloudera_om

StopWords$COUNTERS.class _user cloudera wp.txt

Ke

cloudera@cloudera- export CLASSPATH=.${HADOOP_HOME}/hadoop-core-0.26.2-cdh3u6.jar:commons-cli-1.2.jar:${CLASSPATH}
cloudera@cloudera- javac StopWords.java
fcloudera@cloudera-vm:~$ 1s
53068. txt om StopWords.java WordCount.class
alphabet.java Stemmer.class StopWords$StopWordsMapper.class

a

r stemming3.java test WordCount.java
StopList TfIdfl.class WordCount$WordCountMapper.class
StopList.txt TfIdfl.java WordCount$wWordCountReducer.class
TfIdf.class wp.txt
StopWords.class user_cloudera om
1 [StopWords$COUNTERS.class user cloudera wp.txt
cloudera@cloudera-vm:~$ jar cvf stopword.jar StopWords*class
added manifest
adding: StopWords.class(in = 7990) (out= 4499) (deflated 43%)
adding: StopWords$COUNTERS.class(in = 848) (out= 479) (deflated 43%)
adding: StopWords$StopWordsMapper.class(in = 1897) (out= 853)(deflated 55%)
cloudera@cloudera-vm:~$ _hadoop stopword.jar StopWords 53068.txt stopwordotpt

Fig. 5 Adding the input file to HDFS and creating a Stop-words jar file

Since Hadoop is worked with java, it is simple for interoperability. The below
screens shoots has been generated after executing in the Big data Analytics cluster
which was created as phase 1 of the project. Figure 4 screen shot shows the piece of
Input data taken from newsgroup 20. Figure 5 Screen shot shows the adding of the
given input file into HDFS. It also shows execution of StopWords program by creating
a stopwords.jar file along with some paths needed for the compiling. Figure 6 shows
the output screen for compiling of the Stopwords program with the required stopwords
count in a given input file taken from the newsgroup20 dataset. Figure 7 screen shot
shows the proposed Iterated Lovins Stemming Output of the Fig. 4 input resulting with
maximum minimized stem words. Figure 8 Screen shot shows the Lovins Stemming
Output of the Fig. 4 input. The Fig. 9 Screen shot shows the Porter Stemming Output
of the Fig. 4 input. Figure 10 Screen shot shows the Tf-Idf count values of the sample
input data files taken.

5.7 Screen Shoots Through Experimental Setting

6 Result Analysis

Here this section elevates the performance strategies of different stemming algorithms:
Iterated Lovins Stemming Algorithm, Lovins Algorithm, and Porter Stemming Algo-

rithm. The analysis metrics considered here are: Index Compression Factor (ICF),
Word Stemming Factor (WSF), Correct Stemming Word Factor (CSWF).

@ Springer

International Journal of Parallel Programming (2020) 48:496-514

I # cloudera-demo-0.3.7 - VMware Workstation 12 Player (Non-commercial use only) - o X
¢ Player v = | 3
cloudera@cloudera-vm:~$ hadoop jar stopword.jar StopWords 53068.txt stopwordotpt ~
17/05/19 03:04:41 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Too
1 for the same.
03:04:41 INFO input.FileInputFormat: Total input paths to process : 1
03:04:41 INFO mapred.JobClient: Running job: job 201705196243 0001
03:04:42 INFO mapred.JobClient: map 0% reduce 0%
03:04:46 INFO mapred.JobClien map 100% reduce 0%
03:04:55 INFO mapred.JobClien map 100% reduce 100%
03:04:55 INFO mapred.JobClient: Job complete: job 201765190243 0001
03:04:56 INFO mapred.JobClient: Counters: 22
03:04:56 INFO mapred.JobClien Job Counters
03:04:56 INFO mapred.JobClien Launched reduce tasks=1
03:04:56 INFO mapred.JobClien SLOTS_MILLIS MAPS=2955
03:04:56 INFO mapred.JobClien Total time spent by all reduces waiting after reserving slots (ms)=6
03:04:56 INFO mapred. Total time spent by all maps waiting after reserving slots (ms)=0
03:04:56 INFO mapred. 3 Launched map tasks=1
03:04:56 INFO mapred. Data-local map task:
03:04:56 INFO mapred. i SLOTS_MILLIS REDUCE
03:04:56 INFO mapred.JobClient: StopWords$COUNTERS
03:04:56 INFO mapred.JobClien STOPWORDS=61
03:04:56 INFO mapred.JobClien FileSystemCounters
03:04:56 INFO mapred.JobClient: FILE BYTES_READ=6
03:04:56 INFO mapred.JobClien HDFS_BYTES_READ=1068
03:04:56 INFO mapred.JobClien FILE BYTES WRITTEN=104848
03:04:56 INFO mapred.JobClien Map-Reduce Framework
03:04:56 INFO mapred.JobClien Reduce input groups=6
03:04:56 INFO mapred.JobClien Combine output records=6
03:04:56 INFO mapred.JobClien Map input records=28
03:04:56 INFO mapred.JobClient: Reduce shuffle bytes=6
03:04:56 INFO mapred.JobClien Reduce output records=0
03:04:56 INFO mapred.JobClien Spilled Records=0
03:04:56 INFO mapred.JobClient: Map output bytes=0
03:04:56 INFO mapred.JobClien Combine input records=0
03:04:56 INFO mapred.JobClien Map output record:
03:04:56 INFO mapred.JobClient: SPLIT RAW BYTES=105
03:04:56 INFO mapred.JobClien Reduce input records=0
Number of stop words are 61 cloudera@cloudera-vm:~$ [
! [cloudera] ! [cloudera]) cloudera@cloudera-...) HDFS:/user/clouder... v
d 3.7 - VMware 12 Player (N ial use only) - o x|
o HR »R B =& @ @ &

< MonJun 5,12:58PM @ cloudera () 1y

cloudera@cloudera-vm: ~

[File Edit View Search Terminal Help
javac IteratedLovinsStemmer.java
java IteratedLovinsStemmer
y@cbnewsj.cb.att.con (dean.kaflowitz)
Re: about bible quiz answers
Organization: AT&T
Distribution: na
18
du>, healtagsaturn.wwc.edu (Tammy R Healy) writes:

2 cheribums Ark Covenant. God said make no
graven image, refering idols, created worshipped.
[>Ark Covenant wasn't wrodhipped only high priest could
> enter Holy Holies where kept once year, Day
> Atonement.
I not familiar knowledgeable original language, I believe word "idol" translator
would used word "idol" instead "graven image” original said "idol." I think you're wrong , but again I could too. I just suggesting way deter
mine
whether interpretation offer correct.
Dean Kaflowitz: dec@cbnewsj.cb.at.com (dean.kaflowitz)
subject: re: about bibl quiz answer
organ: at&t
distribut: na
lin: 18
articl <healt.153.735242337@saturn.wwc.edu>, healt@saturn.wwc.edu (tam r he) writ:

> #12)

2 cheribum ark cov. god said mak no

> grav imag, refer idol, creat worship.

>ark cov wasn't wrodhip onl high priest could

> enter hol hol wh kept onc year, day

> at.

i not famil knowledg origin langu, i belief word "idol” transl

would us word "idol" instead "grav imag" origin said "idol.” i think you're wrong , but again i could to. i just suggest way determin
ther interpr offer correct.

Fig. 7 Output screen for proposed iterated Lovins stemming algorithm

@ Springer

508 International Journal of Parallel Programming (2020) 48:496-514

cloudera@cloudera-vm: ~

File Edit View Search Terminal Help
vm:~$ javac LovinsStemmer.java
va uses unchecked or unsafe operations.
XUint:unchecked for details.
cloudera-vm;~$ java LovinsStemmer
bnewsj.cb.att.com (dean.kaflowitz)
: about bible quiz answers
i AT&T
Distribution: na

harticle <healta.153.735242337@saturn.wwc.edu>, healta@saturn.wic.edu (Tammy R He
aly) writes:

> #12)
2 cheribums Ark Covenant. God said make no
> graven image, refering idols, created worshipped.
>Ark Covenant wasn' dhipped only high priest could
ter Holy Holi e kept once year, Day
> Atonement.
I not familiar knowledgeable original language, I believe word "idol" translator

iwould used word "idol" instead “"graven image" original said "idol." I think you
‘re wrong , but again I could too. I just suggesting way determine
whether interpretation offer correct

: deca@cbnewsj.cb.at.com (dean.kaflowitz)

bout bibl quiz answer

turn.wwc.edu (tam r hea) wr

2 cheribum ark coven. god said mak no

> grav imag, refer idol, creat worship.

>ark coven wasn't wrodhip onl high priest could

> enter hol hol whes kept onc year, day

> aton.

i not famili knowledge origin langu, i belief word "idol” transl

would us word "idol" instead "grav imag" origin said "idol.” i think you're wro
'ng , but again i could to. i just suggest way determin

whether interpres offer correct

Fig. 8 Output screen for Lovins stemming algorithm

6.1 Index Compression Factor (ICF)

It defines the percentage of the total number of apparent words to that of Number of
apparent stems after stemming. The strength of the stemmer increases along with this
ICF Value.

N —
ICF:(S—S)XIOO

The Fig. 11 defines the performance metric Index Compression Factor (ICF) con-
sidering three documents doc 1, doc 2, doc 3 performing comparison on three stemmer
algorithms Iterated Lovins algorithm, Lovins algorithm and Porters algorithm. Here
the graph shows that Iterated algorithm performs best than the other two.

6.2 Word Stemming Factor (WSF)
It is defined as percentage of words that have been stemmed by the stemming process
out of the total words in a sample. Strength of Stemming increases along with number

of words stemmed.

WS
WSF = — x 100
T™W

@ Springer

International Journal of Parallel Programming (2020) 48:496-514 509

% cloudera-d 3.7 - VMware 12 Player (N ial use only) = o X

43 Applications Places System %) “ MonJun 5,12:20PM @ cloudera () 1y

O®® cloudera@cloudera-vm: ~

File Edit View Search Terminal Help

cloudera@cloudera-vm:~$ export CLASSPATH=.${HADOOP HOME}/hadoop-core-0.26.2-cdh3
ue.jar:commons-cli-1.2.jar:${CLASSPATH}

cloudera@cloudera-vm:~$ javac stemming3.java

cloudera@cloudera-vm:~$ java Stemmer 53068a.txt

: decai@cbnewsj.cb.att.com (dean.kaflowitz)

subject: re: about bibl quiz answer

articl <healta.153.735242337@saturn.wwc.edu>, healta@saturn.wwc.edu (tammi r hea
Li) write:
>
>
#12)
2 cheribum ark coven. god said make no
> graven imag, refer idol, creat worship.
>ark coven wasn't wrodhip onli high priest could
> enter holi holi where kept onc year, dai
> aton.
i not familiar knowledg origin languag, i believ word "idol" translat
ould us word "idol" instead "graven imag" origin said "idol." i think you're w
rong , but again i could too. i just suggest wai determin
hether interpret offer correct.
Jdean kaflowitz
cloudera@cloudera-vm:~$ ||

Fig. 9 Output screen for Porter stemming algorithm

18 Command Prompt
ITf-Idf values
26 .420680743952367 43.9530550090939 50.94680261461362 54.79819616111611 101.25301979683682 206.4243929982819 140.905907641
88397 142.881172641308 163.15420884849723 51.0 91.42994775023705 ©.0 0.0 0.0 0.0 0. 23.11809565095832 35.961590461985
92 40.029630625767844 44.36044451137971 80.15864067249582 171.03735419857642 114.94955623416851 115.00191944300401 129.781
75703857735 41.0 72.80532876407766 0.0 0.0 0.0 0.0 0.0 0.0 14.83220080440884 31.364159848092005 46.96988242381381 73.18303
9645548 90.54212933375474 122.99439766021415 124.06482647787449 145.23951359485113 148.8777917734494 189.15575646669 24
5.96586533945626 235.77710426055103 178.3395950216785 218.7749618650304 244.5552167083193 0.0 0.0 20.1722050713382 33.8004
89775423664 44.9650756146648 61.895601504016305 100.93991228517672 121.86089865373728 120.57486937559263 149.1087574065636
157.11960381788754 194.21320683858582 172.97390881959623 193.65268479313485 226.94614563498746 258.7193634947818 291.489
91252750403 184.94476520766656 253.45437509425543 11.12415060330663 24.394346548516 36.53213077407741 55.758506396608006 6
7.90659700031605 91.106961 78825 90.98087275044129 105.62873715989174 107.52284961415789 135.80413284788165 174.90905979
694668 167.008782184557 125.49823353377374 155.7381084462928 173.55531508332336 0.0 0.0 15.129153803503652 24.143206982445
477 31.47555293026536 42.85080104124206 72.0999373465548 86.31813654639724 84.84898215319481 104.37613018459457 109.507602
66095193 137.9935943326794 122.34739892117783 136.43711883152685 159.34516608414015 181.1035544463473 203.4929578022198 12
8.80081862676778 176.1293115061775 13.210340371976184 19.978661367769956 21.83434397769155 23.484941211906904 42.188758248
68201 88.46759699926366 59.32880321763536 59.24341304639601 66.74490361983977 21.0 37.249237972318795 0.0 0.0 0.0 0.0 0.0
0.0 7.41610040220442 13.939626599152001 20.875503299472804 31.364159848092005 37.72588722239781 50.108828676383546 49.6259
30591149796 57.21556596160803 57.896919023008095 72.75221402565087 92.92043801712792 88.41641409770664 66.05170185988092 8
1.57710442424862 90.72209652082813 ©.0 0.0 10.0861025356691 14.485924189467285 17.98603024586592 23.80600057846781 38.4532
9991816256 45.69783699515148 44.65735902799727 54.673211049073345 57.13440138832274 71.55223409842635 63.28313737302302 70
.4191581065945 82.08690374031461 93.13897085812147 104.49638373627504 66.05170185988092 90.2125741860909 6.605170185988092
7.991464547107982 7.278114659230517 7.8283137373023015 12.656627474604603 29.489198999754556 18.54025100551105 17.4245332
4894 18.54025100551105 6.0 10.158883083359672 0.0 ©.0 0.0 ©.0 0.0 0.0 3.70805020110221 3.4849066497880004 5.21887582486820
1 6.969813299576001 7.545177444479562 9.110696122978826 8.2709884318583 8.802394763324312 8.2709884318583 9.70029520342011
7 10.931816237309167 9.824046010856293 6.605170185988092 7.41610040220442 7.8888779583328805 0.0 0.0 5.04305126783455 4.82
8641396489095 4.49650756146648 4.761200115693562 4.80666248977032 5.07753744390572 4.465735902799727 4.9702919135521.
61200115693562 5.110873864173311 4.218875824868201 4.401197381662156 4.828641396489095 5.174387269895637 5.4998096760.
3.302585092994046 4.295836866004329
C: \Users\ALEKHYA\Desktop\execute>

1228PM

O) ma o s - A D G gy B

Fig. 10 Output screen showing Tf-Idf values of sample input files taken

The Fig. 12 defines the performance metric Word Stemming Factor considering
three documents performing comparison on three stemmer algorithms. Here the graph
shows that Iterated Lovins stemmer algorithms performs efficiently than others.

@ Springer

510

International Journal of Parallel Programming (2020) 48:496-514

Index Compession Factor (ICF)

60 T T T T T T T
!
x
50 | ---#%-- Porters alg X
---#-- Lovins alg e
---4--- |terated Lovins alg. v
40 | 2
» ,':“I
£307 I
[s 2
k7 o
20 | s]
10 F--nen e A 4
. R --""”j--j(::’/'
"""""" -+
0 1 1 1 1 1 1 1
0 0.5 1 15 2 25 3 35 4
documents
Fig. 11 Graph showing the ICF value result analysis of Stemmers
Word Stemmer Factor (WSF)
75 T T T ”__,_e;s—-------1--------:--------: ________ 1
g
65 .
Ao -
60 i
w 95 . i
g Le®
g 50 e i
3 e
© a5t .
+
40 + .
35 | ---#-- Porters alg .
"""" Lovins alg
30 + ---#-- lterated Lovins alg. | -
25 L L 1 L L L 1 L
0 0.5 1 15 2 25 3 35 4
documents

Fig. 12 Graph analysis of WSF values of Stemmers

@ Springer

International Journal of Parallel Programming (2020) 48:496-514 511

Correctly Stemmed words Factor (CSWF)
70 - T T T T T T T

. ---#--- Porters alg
65 . Lovins alg
: --4--- Iterated Lovins alg.

60

50 | .

45+ .

stemmers

35*‘_‘ - -”“_"“"—!i—

30 + -

T
i
'
1

25 T, -eezgiisE

20 1 L 1) Tag peemmT) 1 1

documents

Fig. 13 Graph showing the stemming words versus distinct words in each doc for stemmers

6.3 Correct Stemming Word Factor (CSWF)

Itis defined as percentage of words that have been stemmedcorrectly out of the number
of words stemmed. The accuracy of the stemmer increases with increased percentage
of CSWE.

CSW
CSWF = —— x100
WS

The Fig. 13 defines the performance metric Correct stemming word factor providing
accurate stem words by considering three documents and performing comparison of
three algorithms, among which iterative algorithm achieves the correct word most
among three algorithms.

The following Table 1 shows the result analysis of different Stemmers {Iterated
Lovins Stemmer, Lovins Stemmer, and Porter Stemmer} considering 3 documents
{Docl as ‘D 1°, Doc2 as ‘D 2’, and Doc3 as ‘D 3’} as examples.

The above Table 1 and graph represents result analysis ofdifferent stemmers(Iterated
Lovins, Lovins, Porter). The table shows the factors that considered for efficient stem-
mer analysis. These factors help us to select the best stemming algorithm that suits
our project. These values are calculated based on the formulas mentioned above.

Result analysis with the stopword algorithm and stemming algorithm:

e Size of the data is reduced.
e Execution time reduced as file size is less.

@ Springer

International Journal of Parallel Programming (2020) 48:496-514

512

(4MSD)
IL'vE c0'6¢ 95°69 08°LT €SIe or'sy LO'LT 0¢ 8¥°6¢ Jojoe SPIOA| powualg %ommoo
(MSD)
(0154 91 91 6LE i4! 4! 69¢ €l Il SpIOM pawruals A[1991109 JO JoquInN
8699 11°9¢C 9 SEEL or' 1y 9 SEEL or' 1y 9 (ASA) 10108 POWIWAS SPIOA
LETT 84 €C £9¢1 S9 £3 £9¢1 S9 £3 (SA\) PaWIWNG SPIOM JO IoqUINN
cL'eS 98’1 S 598 08¢ 69°L (a7 08t 50l (4O 101084 UOIssaIdwIo)) xopuy
(S) Surwways
LTL LOT 0oy £89 Sot1 6¢ 089 Y01 8¢ 191Je SpIom 3oUnsI(Jo TequinN
(N) Surwways
1LST 601 w 1LST 601 w 1LST 601 w 210Jq sp1om anbrun jo requinN
8681 LST 0s 8681 LST 0s 8681 LST 0S (ML) spIop Ter0f,
cd ca 1 £d ca 1a £d ca 1 Syuaundo(

w1110

Jouwuual§ Surao

JoWualS SUIAOT pajetal]

SISATeue Jowwa)g

SJUOUWINOOP ¢ SUIIAPISUOD SISWIWA)S SNOLIEA J0J PAUYSP $I0)dkJ Suruwalg | ajqe]

pringer

As

International Journal of Parallel Programming (2020) 48:496-514 513

Success rate obtained very quickly.

Clustering can be easily applied.

Less time consumption.

Preserves system energy with less time period.

7 Conclusion

In this historical world, we are overloaded with numerous numbers of files or docu-
ments in each of its related fields. As the generation moves the historical and future
trends makes innovations leaving behind enormous amount of data. So to process and
analyze this huge data “Big Data” approaches gave relief from the database manage-
ment tools and traditional data processing applications. A comparison is perfomed
among Iterated Lovins algorithm, Lovins algorithm and Porters algorithms with com-
parative factors uisng ICF, WSEF, CSWF resulting maximum mininmized stem words
by Iterated Lovins algorithms.

Thus a new algorithm KNMF is used and the application will be named as ‘Pro-
gressive Text Mining radical’. Therefore with those defined characteristics of KNMF
help to cluster the documents as we consider them to be ultimate labels of clusters in k-
means. And also parallel implementation with MapReduce for huge sized documents
lead to minimize time computation.

Acknowledgement This work is financially supported by the Department of Science and Technology
(DST), Science and Engineering Research Board (SERB) under the scheme of ECR. We thank DST_SERB
for the financial support to carry the research work.

References

—_

. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 31(8), 651-666 (2010)

2. Zhang, H., Fritts, J.E., Goldman, S.A.: Image segmentation evaluation: a survey of unsupervised
methods. Comput. Vis. Image Underst. 110(2), 260-280 (2008)

. Baeza Yates, R., Ribeiro Neto, B., et al.: Modern Information Retrieval. ACMPress, New York (1999)

4. Miller, D.J., Wang, Y., Kesidis, G.: Emergent unsupervised clustering paradigms with potential appli-
cation to bioinformatics. Front. Biosci. 13(1), 677-690 (2008)

5. Guduru, N.: Text Mining with Support Vector Machines (SVM) and Non-Negative Matrix Factorization
(NMF) Algorithm. Master’s Thesis, University of Rhode Island, CS Department (2006)

6. Berry, M.W., Dumais, S.T., O’Brien, G.W.: Using linear algebra for intelligent information retrieval.
SIAM Rev. 37(4), 573-595 (1994)

7. Landauer, T.K., Foltz, PW., Laham, D.: An introduction to latent semantic analysis. Discourse Process.
25(2-3), 259-284 (1998)

8. Lee, D.D., Seung, H.: Learning the parts of objects by non-negative matrix factorization (NMF). Nature
401, 788-791 (1999)

9. Lee, D.D., Seung, H.: Algorithm for non-negative matrix factorization. In: Dietterich, T.G., Tresp, V.
(eds.) Advances in Neural Information Processing Systems, Volume 13, Proceedings of the Conference:
556562. The MIT Press

10. Ding, C., He, X., Simon, H.D.: On the equivalence of nonnegative matrix factorization (NMF) and
spectral clustering. In: Proceedings of the 2005 SIAM International Conference on Data Mining,
pp. 606-610. Society for Industrial and Applied Mathematics (2005)

11. Xu, W, Liu, X., Gong, Y.: Document clustering based on NON-negative matrix factorization. In:

Proceedings in ACM SIGIR, pp. 267-273 (2003)

w

@ Springer

514

International Journal of Parallel Programming (2020) 48:496-514

12.

13.

14.

15.

16.

17.

18.

Yang, C.F., Ye, M., Zhao, J.: Document clustering based on non-negative sparse matrix factorization.
In: International Conference on Advances in Natural Computation, pp. 557-563 (2005)

Kanjani, K.: Parallel Non Negative Matrix Factorization for Document Clustering. CPSC-659 (Parallel
and Distributed Numerical Algorithms) Course. Texas A&M University, Tech. Rep. (2007)

Porter, M.E.: An algorithm for suffix stripping. Program 14(3), 130-137 (1980)

Lovins, J.B.: Development of a stemming algorithm. Mech. Translat. Comp. Linguistics 11(1-2),
22-31 (1968)

Laxmi, H.V.T.E.V., Somasundaram, K.: 2HARS: heterogeneity-aware resource scheduling in grid envi-
ronment using K-centroids clustering and PSO techniques. Int. J. Appl. Eng. Res. 10(7), 18047-18062
(2015)

Laxmi Lydia, E., Ben Swarup, M., Narsimham, C.: A disparateness—aware scheduling using K-
centroids clustering and PSO techniques in hadoop cluster. Int. J. Adv. Found. Res. Comput. 2(12)
(2015)

Laxmi Lydia, E.: Text mining with lucene and hadoop: document clustering with updated rules of
NMF non-negative matrix factorization. Int. J. Pure Appl. Math. 118, 191-198 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

E. Laxmi Lydia'® - P. Krishna Kumar? . K. Shankar3 - S. K. Lakshmanaprabu? -
R. M. Vidhyavathi® - Andino Maseleno®

P. Krishna Kumar
ponkrishkumar@yahoo.com

K. Shankar
shankarcrypto @ gmail.com

S. K. Lakshmanaprabu
prabusk.leo@gmail.com

R. M. Vidhyavathi
vidhyamiss @ gmail.com

Andino Maseleno

andimaseleno @ gmail.com

Department of Computer Science Engineering, Vignan’s Institute of Information Technology,
Duvvada, Andhra Pradesh, India

Department of Computer Science and Engineering, V V College of Engineering, Tuticorin
District, Tamil Nadu, India

School of Computing, Kalasalingam Academy of Research and Education, Krishnankoil, India

Department of Electronics and Instrumentation Engineering, BS Abdur Rahman Crescent
Institute of Science and Technology, Chennai, India

Department of Bioinformatics, Alagappa University, Karaikudi, India

Department of Informatics Management, STMIK Pringsewu, Pringsewu, Lampung, Indonesia

@ Springer

http://orcid.org/0000-0002-6788-7051

	Charismatic Document Clustering Through Novel K-Means Non-negative Matrix Factorization (KNMF) Algorithm Using Key Phrase Extraction
	Abstract
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 Proposed Work
	5 The Methodology Adapted
	5.1 Steps for Initial Progressive Updating of the Documents in a Folder
	5.2 Stopwords Count Algorithm
	5.3 Lovins Stemmer Algorithm
	5.4 Porter Stemmer Algorithm
	5.5 Proposed Iterated Lovins Stemmer Algorithm
	5.6 Experimental Setting and Data Description
	5.7 Screen Shoots Through Experimental Setting

	6 Result Analysis
	6.1 Index Compression Factor (ICF)
	6.2 Word Stemming Factor (WSF)
	6.3 Correct Stemming Word Factor (CSWF)

	7 Conclusion
	Acknowledgement
	References

