
International Journal of Parallel Programming (2020) 48:549–565
https://doi.org/10.1007/s10766-018-0590-x

Resource Allocation in Cloud Computing Using SFLA
and Cuckoo Search Hybridization

P. Durgadevi1 · S. Srinivasan2

Received: 7 May 2018 / Accepted: 30 July 2018 / Published online: 25 August 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
The ‘cloud computing’ technology is requisite for modern technology. It has a notable
facet called Resource Allocation. This given paper proposes Hybridized Optimization
algorithm that is the combination of ‘Shuffled Frog Leaping Algorithm’ (SFLA) and
‘Cuckoo Search’ (CS) Algorithm. This technique overcomes the limitations of the
existingworks likeHABCCS algorithm,GTS algorithm task, krill herd algorithm, also
combines the advantages of SFLA and CS. In this method, SFLA section performs
the preceding steps; initializing the request size, generating requests, and estimate
fitness value of SFLA, sorting, dividing and evaluating the requests of user. The SFLA
encompasses the advantage of higher speed convergence and easier implementation,
with the capacity of having global optimization and are utilized widely in numerous
areas. Then, CS algorithm executes operations like initializing, generating, evaluate
fitness function,modification and then evaluating the newsolutions. TheCSalgorithms
possess the advantage of easier evaluation and it is utilized in complex situations. In
this given system, the request speed, sizes are evaluated. Those evaluations are utilized
in allocating the resources on the server-side. Less computed times are consumed in
this technique. An experimental outcome displays that the approach performs well in
contrasting with other related approaches.

Keywords Cloud computing · Shuffled frog leaping algorithm (SFLA) · Cuckoo
search (CS) algorithm · Resource allocation

B P. Durgadevi
durgadevi@rmkcet.ac.in

S. Srinivasan
ssn.cse@rmd.ac.in

1 R.M.K. College of Engineering and Technology, Puduvoyal, India

2 R.M.D. Engineering College, Gummidipoondi, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-018-0590-x&domain=pdf
http://orcid.org/0000-0001-8096-3832


550 International Journal of Parallel Programming (2020) 48:549–565

1 Introduction

A computing method centered on the Internet termed Cloud Computing (CC), taking
pros of the storage resources of cloud servers, attracts millions of users [1], and shares
the hardware resources. It is a striking computing model as it lets for the provision
of resource on-demand [2]. Information is delivered centered on the necessities of
computers and other equipment. It is mainly the upsurge in Internet-related services,
use, and deliverymodel. Internet proffers the virtualized and also dynamically scalable
resources [3]. Services are proffered by the Internet to the consumers as Something-
as-a-Service. The 3 service models are ‘Infrastructure as a Service’ (IaaSmodel),
‘Platform as a Service’ (PaaSmodel) together with ‘Software as a Service’ (SaaS
model) [4]. In CC, auction stands as a technique of selling clouds resources on a
public forum via competitive bidding. Generally, a cloud auction requires cloud users
to bid aimed at their required resources [5].

In this cloud environment, 2 actors play a notable role. One is cloud users and the
other is cloud providers. The providers possess numerous computing resources on
the huge data centers and on a ‘pay-per-use’ method; they rent those resources to the
users to augment the revenue by accomplishing enriched resource usage. Resources
also remain as demand for the cloud users. Applications with dynamic nature are
predicted by them. The cloud users have applications with changing loads, rent the
resources from the providers and activate their applications with least expenses. Every
user desires multiple resources intended for a definite task or cloudlet that intensify
the performance and finished on time [6].

This computing is successfully utilized by organizations as it offers extensive solu-
tions along with pros to business say, increase flexibility, scalability, agility, reduces
costs and higher efficiencies [7]. It is utilized and applied in organizations and it aids
to enhance revenue every year.

Resource management encompasses the diversified stages of workloads and
resources as of workload submission to final workload execution. In Cloud, this
management comprises of 2 stages namely: (1) resource scheduling, (2) resource
provisioning [8]. RA is a notable aspect of the grid and also distributed computing [9].

RA that implements a utility-centered technique is requisite at diversified levels
of utility-based grid computing. Also, utility-based computing becomes widespread
in end-user applications together with enterprise applications. A utility cloud proffers
services to users having diversified resource needs (Fig. 1). The distribution of services
in the cloud is grounded on auction-based models, combinatorial models, and other
economic models, which are assured to augment the cloud owner’s revenue. Those
economical models enhance user demand and intensify revenue by the provision of
resources [10].

Several latest research-works proposed energy-aware RA computing methods
intended for distributed computing. Numerous surveys of RA of CC are reported
[11]. However, they not concentrated on the core difficulties of energy efficient RA
in clouds. The former works fail in clearly addressing the energy effectual resource
management issue from the perspective of application engineering.

The cloud user gets good quality services from their provider with a reasonable
cost. The cost and quality of the services are contingent on their source allocation

123



International Journal of Parallel Programming (2020) 48:549–565 551

Fig. 1 Resource allocation
request

process in the specific service environment. The providers dispense the resources to
the clients in an optimum way. There are copious RA models that are utilized in the
cloud environment. Those models utilize specific algorithms and also methods for this
reason. The succeeding part shows the survey done on the former works of RAmodels
in the cloud environment. It is chiefly concentrated on RA methodologies [12].

Therefore, evaluation of RA application in CC is proposed. This mechanism is
appropriate for the well performed RA contingent on the utilization of user request.
This RA diminishes execution time additionally power consumption [13].

A fresh technique to increase the system performance through a hybrid algorithm is
apprised in the proceeding sections. The existing techniques were observed to debase
the performance.

The draft structure of this paper is systematized as Sect. 2 surveys the associated
works regarding the method proposed. In Sect. 3, a brief illustration of the proposed
methodology is proffered, Sect. 4, explore the Investigational outcome and Sect. 5
deduces the paper.

2 Literature Survey

Sharma and Guddeti [14] proffered a Euclidean distance centered multiple objective
RA in the appearance of virtual machines (VMs) and VMmigration policy at the data
centre. Additionally, the distribution of ‘VMs’ to ‘PMs’ (PhysicalMachines) was done
by the suggested hybridized approach of Genetic Algorithm (GA) and Particle Swarm
Optimization (PSO) inferred as HGAPSO. The suggested algorithm centered RA and
VMmigration saved the energy usage and diminished the resource wastage in addition
evades SLA violations in the cloud data center. To check the suggested HGAPSO
algorithms’ and also VM migration techniques’ performance in concerning energy
usage, resources usage together with SLA violation, conducted several experiments in

123



552 International Journal of Parallel Programming (2020) 48:549–565

heterogeneous based andhomogeneous baseddata center environments. The suggested
work was as well compared with the bound and branch based exact algorithm. The
experimental outcome displayed the dominance of VM migration together with the
HGAPSO techniques over exact algorithm in concerning with optimum resources
usage, energy efficacy, together with SLA violation.

Kayalvili and Selvam [15] presented an RA method in CC for handling the cloud
resource and dynamic configuration for all sorts of hardware resources that were
encompassed in virtualization technology to deliver services to users with VM as the
fundamental unit, a central role was performed by virtualization technology. The need
of using VM was to comprehend the ideal outcome by varying the placement and the
layout of all the VM. The dispersion of the cloud resources to that of the user-centered
on the request was an NP-Hard issue. Heuristic methodologies were employed for
optimization of RA. The SFLA encompasses the pros of higher speed convergence
and easier implementation with the capacity of having global optimization and were
utilized widely in several areas. The GA was the iterative stochastic optimization
grounded methods that were centered on the natural selection principles in tandem
with their evolution. For this work, the hybridized SFLA-GAwas utilized for attaining
the distribution of optimum resources in the CC environment.

Pillai and Rao [16] proffered an RA mechanism in the cloud, centered on the
coalition formation principles and the game theory’s uncertainty principle. They con-
trasted the outcomes of applying thismechanismwith prevailingRAmethods thatwere
deployed on the cloud. It displayed that this method of RA by coalition-formation of
the machines on the cloud direct to better resource usage and also higher request
satisfaction.

Mireslami et al. [17] proffered a runtime friendly and cost effectual algorithm that
diminished the deployment cost whilst concerning the QoS performance needs. This
algorithm proffered an optimum choice, from customers’ view, for using web appli-
cations on the cloud arena. The multiple targeted optimization algorithms diminished
cost and increased the QoS performance instantaneously. The recommended algo-
rithm was validated by several experiments on diverse workload situations utilized in
2 distinct cloud providers. The outcomes displayed that the recommended algorithm
determined the optimum combination of cloud resources that delivered a stabilized
tradeoff betwixt QoS performance and deployment cost in comparatively low runtime.

Zheng et al. [18] proffered a hybridized energy-aware RA approach to assist
requestors in acquiring satisfied and energy-effectual manufacturing services. The
problem on the energy-aware RA in CMfg was initially summarized. Then a localized
selection strategy grounded on fuzzy similarity degree was employed to attain suitable
candidate services. Multiple targeted mathematical designs aimed at the energy-aware
services configuration were recognized and the non-dominated sorting ‘genetic algo-
rithm’ was employed to perform the combined optimization process. Additionally, a
technique aimed at order preference via similarity to a perfect solution was employed
to find the optimum composite services. Finally, a normal case study was exemplified
to confirm the recommended approach’s effectiveness.

Chen et al. [19] presented an outline that optimized and evaluated RA strategies
quantitatively. By utilizing the statistic model checker called UPPAAL-SMC together
with the supervised learningmethods, this outline: (1) performed difficult QoS queries

123



International Journal of Parallel Programming (2020) 48:549–565 553

on RA instances concerning resource variations; (2) quantitative and qualitative con-
trasts amongst RA strategieswere done; (3) assisted the tuning of parameters to expand
the complete QoS; and (4) supported the quick optimization of the complete workflow
QoS under resource variations and customer needs. The outcomes validated that the
automatic framework supported the ‘Service Level Agreement’ (SLA) and workflow
RA optimization effectually.

Di et al. [20] analyzed in detail the suggested optimal algorithm diminishing task
implementation lengthwith dividable resources aswell as payment budget.Cloudusers
were capable to formulate an assortment of tasks centered upon ‘off-the-shelf’ web
services. Experiments demonstrated that the task execution lengths on this algorithm
were always near to their hypothetical optimal values, also in competitive circum-
stances with restricted available resources. Also a higher-level of fair treatment on the
RA was observed among all tasks.

3 Flowchart for Propose System

This given paper proposes Hybridized Optimization algorithmwhich is a combination
of SFLA and CS Algorithm. In this method, SFLA section performs preceding steps;
initializing the request size, generating requests, and estimating fitness value of SFLA,
then sorting, dividing and evaluating the requests of the user andmodifying the request
position and finally evaluating the new solution. Then shuffle the request and the
resources are finally assigned to the CC server grounded on the shuffled requests.

Finally, the hybridized optimization algorithm diminishes the waiting time of the
user request. The requests are then perfectly allocated on the cloud server. Diagram
for the technique which is proposed is established in Fig. 2.

3.1 User Request

In the primary phase, the requests are conveyed to the cloud environment from the
users. Then the users are assigned as,

URq (x) � {
URq1,URq2,URq3, . . . ,URqn

}
(1)

where URq (x) �Number of requests, x={1, 2, 3,…,n}. The requests are gathered
from the users for every particular time interval by the real-time request queue. The
evaluation and also the ‘fitness functions’ are conferred below,

3.2 Analyze Request

In the secondary phase, the user request is analyzed one by one contingent on the
request speed, weight, and energy. After that, the optimization algorithm process starts
as below.

123



554 International Journal of Parallel Programming (2020) 48:549–565

Fig. 2 Architecture of the proposed system

3.3 Hybrid Optimization

HybridOptimization is the amalgamation of SFLA andCSA.Hybrid SFLA-CSA used
for attaining the allotment of optimal resources in the CC. It gives better optimum
solution compared to the existing systems.

3.3.1 Shuffled Frog Leaping Algorithm

TheSFLAstands as ameta-heuristic optimizationmethod that is centered uponobserv-
ing, emulating, and also modeling the activities of a collection of frogs hunting for the
maximumavailable food location. SFLAwas initially developed byEusuff andLansey
in 2003, can well be employed to solve numerous intricate optimization problems that
are nonlinear, non-differentiable, and also multi-modal. The SFLA unites the genetic-
based memetic algorithm’s advantages with that of the social behavior-centered PSO
algorithm.

The individual frogs encompass ideas inside eachmemeplex that canwell be defiled
by the other frogs’ ideas. Subsequent to a defined number of ‘memetic evolution’
phases, ideas proceed betwixt memeplexes in the shuffling process. The ‘local search’
together with the ‘shuffling process’ continues till the defined convergence norms are
fulfilled.

123



International Journal of Parallel Programming (2020) 48:549–565 555

The primary step of SFLA is that the populace with P frogs is randomly created
within the possible search space. The location for i th frog is signified as,

Xi � (Xi1, Xi2, . . . , XiD) (2)

where Xi signifies the frog group, D signifies the variables. Then, Conferring to the
fitness, the frogs get organized in descendent order. Subsequently, the whole populace
is split into m subsets conferred to as memeplexes where each contains n frogs,

(i .e., P � m × n) (3)

where m is the subset conferred and n is the number of frogs. The approaches of this
partitioning are as follows:

The 1st memeplex is taken by the 1st frog; the second one is conquered by the 2nd
frog, where the mth memeplex is conquered by the mth frog, and the (m + 1)th frog
return to the 1st memeplex, simultaneously.

In all memeplex, the locations of frogs comprising the ‘best-fitness’ together with
‘worst-fitness’ are acknowledged as,

Xb � best f i tness (4)

Xw � worst f i tness (5)

Also, the location of frogs comprising the best global-fitness is acknowledged as.

Xg � global f i tness (6)

.
Then, within every memeplex, a course identical to the PSO algorithm is imple-

mented to enhance only the frog having the worst fitness (not all frogs) in every single
cycle. Consequently, the location of the frog that had the worst fitness bounds to the
location of the best frog, as below:

Di � rand × (Xb − Xw) (7)

where i=1 to m, then Di stands as the number of variables, r means random frogs.
Accept Di if it is Dmin and Dmax, if not set to minimal or maximal limits of Di . The
new position is computed by

Xnew
w � Xold

w + Di ;
(
Dmin < Dm < Dmax

)
. (8)

Again compute fitness of this frog. If the fitness of Xnew
w is above the fitness of

Xold
w after that accept the Xnew

w . Else arbitrarily generate the new frog in place of Xw

within the acceptable frog limits.
If these total processes yield a better solution, it substitutes the worst frog. Or else,

repeat the calculations in (7) and (8) and replace Xb by Xg . If it has no development,

123



556 International Journal of Parallel Programming (2020) 48:549–565

a new solution is arbitrarily created within the possible space to substitute it. The
calculations continued for specific iterations. Consequently, SFLA instantaneously
implements an independent local search on everymemeplex utilizing a course identical
to the PSO algorithm. After continuous memetic evolutionary phases within every
memeplex, the results of such memeplexes are substituted into the fresh population
shuffling process.

The process called shuffling stimulates the global information interchange amongst
the frogs. Then, the populace is sorted in sequence of declining performance value and
updates the population finest frog’s position; the frog group repartitioned into meme-
plexes, furthermore progress the evolution within every memeplex till the conversion
situations are satisfied. Typically, the convergence criterion is illustrated as below:

The comparative changes in the global frog fitness within the successive shuffling
iterations are less considering the pre-specified tolerance. The supreme shuffling iter-
ations are attained. Finally, the solution criterion is,

[∣∣Xnew
w

∣∣ −
∣∣∣Xold

w

∣∣∣
]

<∈ (9)

where Xnew
w is the new fitness and Xold

w is the old fitness and ∈ is the convergence
tolerance.

3.3.2 Cuckoo Searching Algorithm

This algorithm is grounded on the cuckoo bird’s breeding behavior. It encompasses
three basic optimization rules.

1. Each of the cuckoos at an instance lays a solitary egg and puts it at an arbitrarily
selected host nest.

2. The finest nests having highest-quality eggs will proceed to the subsequent gen-
erations.

3. The available number of host’s nests is set, and the host bird may perhaps find
out the unfamiliar egg that belongs to a cuckoo with a probability Pa ∈ [0, 1] and
builds a new solution.

CS utilizes a balanced blend of a local and a global explorative random walk, which
is managed via a switching parameter Pa . A ‘greedy strategy’ is utilized subsequent
to every random walk, to select better solutions as of the present and new produced
solutions as per their fitness values.

Performed the global random walk by utilizing Levy flights as follows,

Xt+1
i � Xt

i + α ⊕ Levy(λ) (10)

where Xt+1
i is the newnestwith the high-fitness value, Xt

i is the nestwherein the cuckoo
primarily lives. Where α (α >0) stands as the step size connected to the optimization
problem scale, and also the product ⊕ indicates the entry-wise multiplication. Levy

123



International Journal of Parallel Programming (2020) 48:549–565 557

flights fundamentally offer random walks, the random steps of which are drawn as of
a Levy distribution aimed at large steps:

Levy ∼ t−λ, (1 < λ ≤ 3) (11)

where t stands as the time of completing the task and λmeans randomwalk in addition
to random steps that encompass an infinite variance and also mean.

Xt+1
i � Xt

i + α ⊕ t−λ. (12)

After Levy flights random walk, CS persists to produce new solutions regarding
biased/selective random walk which utilize a crossover operator. In consideration of
the probability of cuckoos being discovered, make a fresh solution using a crossover
operator:

X
′
i �

{
Xi + r · (Xr1 − Xr2), i f (rand[0, 1] > Pa)
Xi otherwise

}
(13)

where r1, r2 are mutually different random integers; r denotes the scaling factor
that stands as a uniformly distributed arbitrary number on the interim [0, 1]. The next
generation solution is selected from Xi and X

′
i as per their fitness values. At the ending

of each iteration process, the finest solution attained so far is updated.

3.3.3 Sfla-csa

The proposed work is employed for evading the knapsack problem and increasing the
speed for allocating request on the resource. The SFLA-CSA algorithm architecture
appears in Fig. 3.

TheEntropy formula is utilized to compute the requestweight, speed, and sizes. This
entropy calculation is mainly used for utilizing the resource request. The generalized
entropy method is stated as below step,

E � −
m∑

i�1

Xi log Xi (14)

where E is the entropy of the request, Xi is the user request from each set. By means
of employing the request, the entropy value is found by employing the Eq. (14). For
every request, the entropy value is calculated individually and the whole values are
summed to get the better solution. Then, the entire user requests are utilized, and
finally allocating the resource (Fig. 4).

Algorithmic Description

Step 1 Initialize the population and the initial Xi(t) value is initially lived in the nest
Step 2 Produce the population randomly on the nest (i.e., UR)

123



558 International Journal of Parallel Programming (2020) 48:549–565

Fig. 3 SFLA-CSA algorithm

Step 3 Then assess the fitness values of each (Xi)
Step 4 Find an entropyvalue using theEq. (14), calculate the entropyvalues utilizing

the request. Find an entropy value for each request individually and add the
whole value you will obtain the correct solution

Step 5 Then the while do condition in t time max generation of cuckoo nest ought
to be calculated

Step 6 Generate cuckoo randomly utilizing Levy flights equation, evaluate the ran-
dom request and replace the nest

123



International Journal of Parallel Programming (2020) 48:549–565 559

Fig. 4 Pseudo code for the hybrid optimization SFLA-CSA algorithm

Step 7 After the modification to the new nest, it gives a better solution
Step 8 Then, check the condition, if it is fulfilled thenmove it to the shuffledmethod

otherwise, move the nest again to a better environment
Step 9 Condition satisfied, the memeplex is moved
Step 10 Print the result.

4 Results and Discussion

The proposed work is utilized to lessen the knapsack issues in RA. Moreover, their
time and capacity of processing elements also get reduced. Furthermore it is executed
in JAVAwith CloudSim and utilizing the database is the yardstick for basic scheduling
troubles.

123



560 International Journal of Parallel Programming (2020) 48:549–565

Fig. 5 Comparison analysis of proposed system with existing system for resource execution time

4.1 Execution Time

Comparing with other existing systems, the executing time is small for the proposed
system. The SFLA-CSA shows better execution time compared to the HABCCS algo-
rithm, GTS algorithm task, krill herd algorithm and SFLA-CSA. The executing time
is computed as,

ET � E(t) − F(t) (15)

where ET is the computational time, E(t) is the ending time of the process, F(t) is
the beginning time of the process.

A comparison on the executing time between the existing and the proposed one is
exhibited in Fig. 5. In Fig. 5 the names of different optimization algorithms are taken
alongside the horizontal axis additionally the executing time is taken alongside the
vertical.

4.2 Throughput

Throughput alludes to the quantity of information transported as of one site to a dis-
parate one in a specified quantity of time.And it is utilized to gauge the performances of
hard drives, RAM, and Internet and also network connections. The proposed system’s
throughput should be bigger than the existing system. The throughput is estimated as

Tt � It
t

(16)

where It is the information transported and t means the quantity of time. The through-
put of different algorithms is compared and exhibited in Fig. 6. In Fig. 6 the name
of the different algorithms is taken in the horizontals axis additionally the amount is
taken in the vertical axis.

123



International Journal of Parallel Programming (2020) 48:549–565 561

Fig. 6 Comparison analysis of proposed system with existing system for resource throughput

Fig. 7 Comparison analysis of proposed system with existing system for resource throughput

4.3 Time Based Task Execution

Time-based task execution means to schedules the task aimed at execution, time-
based or else event-centered triggers are set on a task which starts its execution. In
the proposed system, the time-based task execution is contrasted with the prevailing
system. The SFLA-CSA optimization will provide a better result. A comparison on
the time taken for execution of task is displayed in Fig. 7. In Fig. 7 the task is taken
along the horizontals axis and also the time is taken along the verticals axis.

4.4 Turnaround Time

It stands as the total time utilized for execution betwixt the submission of a task
and the return of the entire outcome to the consumer. It may differ for miscellaneous
programming languages contingent on the developer of the software or the program. It

123



562 International Journal of Parallel Programming (2020) 48:549–565

Fig. 8 Comparison analysis of proposed system with existing system for resource turnaround time

manages the total time taken for a program to give the requisite output to the consumer
after the program begins.

T (t)Avg � C(t) − A(t) (17)

where T (t)Avg means ‘average turnaround time’, C(t) means completion time of
the task then A(t) means arrival time. The proposed work, when correlated with the
existing system, gives a better outcome. A comparison on this is exhibited in Fig. 8.
In Fig. 8 the number of tasks is taken along the horizontals axis besides the time is
taken in the verticals axis.

4.5 Waiting Time

It means the time taken between the process request and consummation of the request
the waiting time is computed as below,

W (t)Avg � T (t)Avg − B(t) (18)

where W (t)Avg means ‘average waiting time’, T (t)Avg means ‘average turnaround
time’, then B(t) means ‘burst time’. The proposed work is better than the existing
system. A comparison on the waiting time is given in Fig. 9. In Fig. 9 the number of
tasks is taken along the horizontals axis besides the waiting time is taken along the
verticals axis.

4.6 AllocationMechanism

Utilizing this Mechanism, the existing system and the proposed system are compared
here. Overall, the hybrid SFLA-CSA optimization algorithm is better in allocating
resource in the cloud environment. A comparison on this mechanism is exhibited in
Fig. 10. In Fig. 10 the optimization algorithm is taken in the horizontals axis addition-
ally the allocation percentage is taken along the verticals axis.

123



International Journal of Parallel Programming (2020) 48:549–565 563

Fig. 9 Comparison analysis of proposed system with existing system for request waiting time

Fig. 10 Comparison analysis of proposed system with existing system for RA mechanism

Table 1 Overall comparison of results

Optimization algorithm Execution time Throughput Allocation percentage

HABCCS 15,900 15 55

GTS Alg Task 12,200 30 60

Krill herd 9000 45 79

SFLA-CSA 5000 60 95

The overall results are tabulated on the subsequent table. Table 1 enables to correlate
the performance related metrics.

5 Conclusion

Here, SFLA-CSA algorithm is formulated to diminish the knapsack issue for RA
mechanism on CC environment. In the proposed system, using hybrid SFLA and
cuckoo searching algorithm optimization algorithms, the optimization issue is solved.

123



564 International Journal of Parallel Programming (2020) 48:549–565

Executionof theproposedRA is doneon theworkingplatformof JAVAwithCloudSim.
The proposed work and the prevailing system are compared. The execution time for
the proposedworkwas observed to be 5000ms, the throughput was 60 s, the time taken
for task execution was low, the ‘turnaround time’ was lower the allocation percentage
was 95. The existing system like HABCSS, CTS Alg task, krill herd showed high
execution time, throughput, turnaround time and percentage of allocation these may
results in stern degradation in the overall performance of the system which is evident
from the experimental results. The experiment showed the dominance of the proposed
works over the prevailing methodologies and waiting time, allocation mechanisms
stand better to the prevailing system. This work could be ameliorated by improving
the proposed work’s performance.

References

1. Xiaoying, T., Dan, H., Yuchun, G., Changjia, C.: Dynamic resource allocation in cloud download
service. J. China Univ. Posts Telecommun. 24(5), 53–59 (2017)

2. Pradhan, P., Prafulla, B.K., Ray, B.N.B.: Modified round robin algorithm for resource allocation in
cloud computing. Procedia Comput. Sci. 85, 878–890 (2016)

3. Mingxin, W.: Research on improvement of task scheduling algorithm in cloud computing. Appl. Math.
Inf. Sci. 9(1), 507–516 (2015)

4. Lee, H.M., Jeong, Y.S., Jang, H.J.: Performance analysis based resource allocation for green cloud
computing. J. Supercomput. 69(3), 1013–1026 (2014)

5. Madni, S.H.H., Latiff, M.S.A., Coulibaly, Y.: Recent advancements in resource allocation techniques
for cloud computing environment: a systematic review. Clust. Comput. 20(3), 2489–2533 (2017)

6. Kumar, N., Saxena, S.: A preference-based resource allocation in cloud computing systems. Procedia
Comput. Sci. 57, 104–111 (2015)

7. Xue, C.T.S., Xin, F.T.W.: benefits and challenges of the adoption of cloud computing in business. Int.
J. Cloud Comput. Serv. Arch. (IJCCSA) 6(6), 1–15 (2016)

8. Singh, S., Chana, I.: A survey on resource scheduling in cloud computing: issues and challenges. J.
Grid Comput. 14(2), 217–264 (2016)

9. Ergu, D., Kou, G., Peng, Y., Shi, Y., Shi, Yu.: The analytic hierarchy process: task scheduling and
resource allocation in cloud computing environment. J. Supercomput. 64(3), 835–848 (2013)

10. Kolhar, M., Abd El-atty, S.M., Rahmath, M.: Storage allocation scheme for virtual instances of cloud
computing. Neural Comput. Appl. 28(6), 1397–1404 (2017)

11. Hameed, A., Khoshkbarforoushha, A., Ranjan, R., Jayaraman, P.P., Kolodziej, J., Balaji, P., Zeadally,
S., et al.: A survey and taxonomyon energy efficient resource allocation techniques for cloud computing
systems. Computing 98(7), 751–774 (2016)

12. Sudeepa,R.,Guruprasad,H.S.:Resource allocation in cloud computing. Int. J.Mod.Commun.Technol.
Res. 2(4), 19–21 (2014)

13. Zuo, X., Zhang, G., Tan, W.: Self-adaptive learning PSO-based deadline constrained task scheduling
for hybrid IaaS cloud. IEEE Trans. Autom. Sci. Eng. 11(2), 564–573 (2014)

14. Sharma, N., Guddeti, R.M.: Multi-objective energy efficient virtual machines allocation at the cloud
data center. IEEE Trans. Serv. Comput. (2016). https://doi.org/10.1186/s13677-017-0086-z

15. Kayalvili, S., Selvam, M.: Hybrid SFLA-GA algorithm for an optimal resource allocation in cloud.
Clust. Comput. (2018). https://doi.org/10.1007/s10586-018-2011-8

16. Pillai, P.S., Rao, S.: Resource allocation in cloud computing using the uncertainty principle of game
theory. IEEE Syst. J. 10(2), 637–648 (2016)

17. Mireslami, S., Rakai, L., Far, B.H., Wang, M.: Simultaneous cost and QoS optimization for cloud
resource allocation. IEEE Trans. Netw. Serv. Manag. 14(3), 676–689 (2017)

18. Zheng, H., Feng, Y., Tan, J.: A hybrid energy-aware resource allocation approach in cloud manufac-
turing environment. IEEE Access 5, 12648–12656 (2017)

123

https://doi.org/10.1186/s13677-017-0086-z
https://doi.org/10.1007/s10586-018-2011-8


International Journal of Parallel Programming (2020) 48:549–565 565

19. Chen, M., Huang, S., Fu, X., Liu, X., He, J.: Statistical model checking-based evaluation and opti-
mization for cloud workflow resource allocation. IEEE Trans. Cloud Comput. (2016). https://doi.org/
10.1109/TCC.2016.2586067

20. Di, S., Wang, C.L., Cappello, F.: Adaptive algorithm for minimizing cloud task length with prediction
errors. IEEE Trans. Cloud Comput. 2(2), 194–207 (2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1109/TCC.2016.2586067

	Resource Allocation in Cloud Computing Using SFLA and Cuckoo Search Hybridization
	Abstract
	1 Introduction
	2 Literature Survey
	3 Flowchart for Propose System
	3.1 User Request
	3.2 Analyze Request
	3.3 Hybrid Optimization
	3.3.1 Shuffled Frog Leaping Algorithm
	3.3.2 Cuckoo Searching Algorithm
	3.3.3 Sfla-csa


	4 Results and Discussion
	4.1 Execution Time
	4.2 Throughput
	4.3 Time Based Task Execution
	4.4 Turnaround Time
	4.5 Waiting Time
	4.6 Allocation Mechanism

	5 Conclusion
	References




