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Abstract
Searchable encryption (SE) is appearing as a prominent solution in the intersection
of privacy protection and efficient retrieval of data outsourced to cloud computing
storage. While it preserves privacy by encrypting data, yet supports search opera-
tion without data leakage. Due to its applicability, many research communities have
proposed different SE schemes under various security definitions with numerous cus-
tomary features (i.e. multi keyword search, ranked search). However, by reason of
multi-keyword ranked search, SE discloses encrypted document list corresponding to
multiple (secure) query keywords (or trapdoor). Such disclosure of statistical infor-
mation helps an attacker to analyze and deduce the content of the data. To counter
statistical information leakage in SE, we propose a scheme referred to as Countering
Statistical Attack in Cloud based Searchable Encryption (CSA-CSE) that resorts to
randomness in all components of an SE. CSA-CSE adopts inverted index that is built
with a hash digest of a pair of keywords. Unlike existing schemes, ranking factors
(i.e. relevance scores) rank the documents and then they no longer exist in the secure
index (neither in order preserving encrypted form). Query keywords are also garbled
with randomness in order to hide actual query/result statistics. Our security analysis
and experiment on request for comments database ensure the security and efficiency
of CSA-CSE.
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1 Introduction

Cloud computing is a promising computing paradigm that brings a new era in infor-
mation technology arena [1–4]. It provides on-demand and scalable computing and
storage facilities to individuals or business customers. Low-cost resources and conve-
nient payment policy (pay as you go) are attracting clientele rapidly. Similarly, cloud
storages e.g. Amazon storage, Dropbox, Google Drive and so on are grabbing an
increasing number of market share. Individual users store their data to the cloud and
access it via network ubiquitously. Besides, the cloud exempts enterprises from main-
taining computing/storage infrastructures as well as from managing human resources
to look after them. At the same time, cloud storage assists to fight an emerging threat
ransomware [5] by preserving data redundantly. However, cloud is not risk free and
there exist some potential security and privacy concerns for cloud storage [6–9].

When users upload their data to the cloud, they lose the physical control of the
data and cannot protect it from unauthorized access especially from the cloud service
provider (CSP) itself. There are some prominent cyber accidents in the history, for
example, Apple’s iCloud leakage in 2014, Dropbox data privacy breach in 2016. Par-
ticularly from iCloud’s leakage event, numerous Hollywood actresses’ private photo
got exposed and caused massive outcry [10]. To protect sensitive data, users encrypt it
before outsourcing to the cloud. But, encryption converts the data into random text and
obviates from search based utility. Definitely, downloading all the data and decrypting
them locally before search operation is not a feasible solution because of massive
communication and computation cost respectively. To resolve this problem, search-
able encryption is an essential tool. Searchable encryption (SE) is a cryptosystem, in
which encrypted text can be searched [11–13]. Confidentiality of data is preserved
through encryption, yet search option is provided without data leakage. Depending on
application scenario, SE can be subdivided into two major classes: data sharing and
data outsourcing scenario. In data sharing, a sender sends data to a receiver via a gate-
way i.e., cloud server. Data sharing in symmetric key encryption requires complex key
management [14] in contrast to asymmetric cryptography which can handle SE con-
veniently. Likewise, in data outsourcing, user outsources encrypted data to the cloud
and then uses secure query keyword to search. Most of the solutions of SE for data
outsourcing involve symmetric key cryptosystem for efficiency. This work focuses on
searchable encryption in data outsourcing context.

In cloud data outsourcing scheme, the user generates an index with a collection
of document IDs and each document ID is followed by a keyword set extracted from
that document. Then user encrypts the documents using modern cryptosystem (such
as RSA, AES or Salsa20) and transforms the index into secure index (SI) that contains
secure searchable keywords. Figure 1 demonstrates the index and SI data structure.
More precisely, Fig. 1a, b illustrates the index and SI respectively. User uploads the
encrypted documents along with the SI to the cloud. During search operation, the
user generates trapdoor for query keyword set and sends the trapdoor to the cloud.
Trapdoor is cryptographically irreversible transformation of query keywords used to
search similarity against SI. Cloud compares the trapdoor with the secure index to test
similarity. Once the cloud server finds the similarity, it sends the relevant encrypted
documents back to the user. This is typical interaction for searching on encrypted data
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Fig. 1 Data structure of Searchable Encryption. a Index and b secure index

Fig. 2 Secure search on encrypted data in which data owner and data user are same

stored in cloud storage. Figure 2 depicts the overall process of secure searching from
encrypted documents where data owner and data user are same person.

On the other hand, Fig. 3 illustrates the situation where data owner and the data user
are different person. In this case, data owner constructs the index with the extracted
keywords from the documents, encrypts the documents, and generates secure index
from the index. After that, the data owner uploads the encrypted documents and the
secure index to the cloud server. During searching time, the data user sends query
keywords to the data owner and receives trapdoor of the query keywords from the
data owner. Then the data user sends the trapdoor to the cloud server, cloud server
processes the resulted documents with the trapdoor and sends the resulted documents
back to the data user. This is what happens in SE in data outsourcing scenario when the
data owner and the data user are not the same person. Here, the process of generating
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Fig. 3 Data owner encrypts documents and generates Secure Index from Index and sends it to server. Then
owner himself or his authorized agent (Data User) searches encrypted document with trapdoor of query
keywords

trapdoor from the query keywords by the data user with the assistance of data owner
is known as search control and the process of distribution of decryption key by the
data owner to the data user is known as access control. However, both search control
and access control are out of scope of this work.

In any searching mechanism, effective data retrieval needs relevance ranking,
instead of returning unsorted documents only for containing query keywords [15,
16]. To preserve privacy, searching mechanism should not reveal any ranking related
information. Moreover, it is also necessary to support multiple keywords search, i.e.,
multi-keyword query. As a widely used practice (like Google or Bing search query),
searcher tends to provide a set of representative keywords instead of only one to fetch
the most conforming data. Each keyword in the search query helps to shrink the result
further. “Coordinate matching” [17] is the widely used technique of multi-keyword
ranked search and widely accepted in the plaintext information retrieval (IR) com-
munity. Nonetheless, the technique of implementing it in encrypted data remains a
difficult task because of inherent security needs, including various strict requirements
like the privacy of data, index, and keyword.

The most common approach in this trait is to represent each document (index) or
query with a vector and to exploit secure k-nearest neighbours (kNN) algorithm for
encryption of index/query vectors, at the same time, to ensure accurate relevance score
calculation between index and query vectors [18–23]. Each of these works has their
own security extensions and/or other additional features, however, at the core, they
use a secure kNN algorithm to conceal index/query vectors.

Secure kNN algorithm has its own limitations of privacy breaches [24] and com-
puting relevance score for each document is time-consuming as it keeps the user
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waiting while searching for relevant documents. The secure kNN centric schemes are
susceptible to correlation attack. As they multiply a vector with a matrix which is a
homomorphic transformation (i.e. ratio of distances between two pairs of points are
preserved). So an adversary can compute the Cartesian distance between two vectors
and if the distance is below a predefined threshold value then the adversary can con-
clude that the two vectors are somehow correlated. This privacy breach is termed as a
correlation attack. Correlation attack is most formidable for the trapdoor. Despite ran-
domness in trapdoor, correlation attack assists an attacker to find the same trapdoors.

On the contrary, in single keyword ranked search schemes [25–27], relevance scores
between a document and a keyword is encrypted using order preserving encryption
(OPE) [28, 29]. However, OPEs are not secure against chosen plaintext attack (CPA)
and vulnerable to range exposure attack meaning that OPEs expose a range of a plain
text within a certain probability [27].

In our observation, deterministic (multi-keyword ranked) searchable encryption
schemes are susceptible to various statistical attacks [30]. These attacks may lead to
a privacy breach where an attacker, instead of gathering actual data, obtains some
statistical information such as term frequency, access pattern, search pattern. Search
pattern, which is a sequence of trapdoor (of query keywords) and the access pattern,
which is a sequence of returned document lists (in response of the trapdoors) are very
crucial statistical information [31]. Search pattern or access pattern is used to predict
a keyword with high probability. In turn, these information helps an adversary to infer
the content of the index or query or the actual data.

To counter statistical attacks, we propose a scheme titled Countering Statistical
Attack in Cloud-based Searchable Encryption (CSA-CSE) that constructs an inverted
index based on a pair of keywords and generates randomized trapdoor. In CSA-CSE,
the index is a collection of keyword pairs where each pair is followed by an array
of document IDs in the order of relevance score of that pair of keywords. To hide
the keywords in the index, CSA-CSE resorts to keyed hash function (i.e. NMAC or
HMAC). During the searching time, trapdoor of query keywords is built using same
hash function and same key with the addition of some randomness to ensure trapdoor
indistinguishability. Additionally, the searching process should be faster as this oper-
ation takes place keeping the data user waiting for its result. CSA-CSE exemplifies a
multi-keyword ranked searchable encryption scheme in symmetric key setting to cover
secure data outsourcing problem in the cloud. Unlike most existing schemes, CSA-
CSE strives to repel statistical attacks using unique data structure of secure index and
randomized trapdoor. The contributions of this work can be summarized as following:

• We define security properties of the multi-keyword query and ranked searchable
encryption in order to counter statistical data leakage from secure index, trapdoor
and result.

• We propose a scheme that resists statistical information leakage from searchable
encryption.

• The performance of the proposed scheme is validated through experiments on a
RFC database.

The organization of this paper is as follows: Sect. 2 describes related work. System
model, threat model, necessary properties for searchable encryption are elaborated in
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Sect. 3. Section 4 elucidates the proposed scheme. Security analysis of the proposed
scheme and experimental results are discussed in Sect. 5. We conclude the paper with
some future research directions in Sect. 6.

2 RelatedWork

Searchable encryption enables the user to encrypt data before outsourcing to cloud
server and to search on encrypted data securely. It can be broadly categorized based
on cryptographic primitives into symmetric and asymmetric key settings. Mostly, data
outsourcing and data sharing scenarios are suitable for SE in symmetric [32–35] and
asymmetric key [14, 36–38] respectively. This focus of our research is related to SE
using symmetric key cryptosystem.

Song et al. [35] described the problem of searching on encrypted data for the first
time. He proposed a solution and provided proof of it. Their scheme is provably
secure considering the fact that, server learns nothing about the original text given
only the ciphertext. At the same time, they prevent the server from searching any
arbitrary keyword and they keep the searching keyword hidden to the server. However,
their algorithm takes O(n) number of stream cipher and O(n) number of block cipher
operations to search a keyword, where n is the length of a document. Hence, this
scheme is inefficient.

A pioneer work in [34] introduced index-based solution for searching on encrypted
data. This work defined the secure index and formulated security notion based on
semantics security against adaptively chosen keyword attack. Resorting to pseudo-
random function and bloom filter, this scheme generates an indistinguishable index.
However, the trapdoor is deterministic and observing search result, the server can
deduce relationship among related documents.

Cheng et al. [32] relied on pseudo-random bit stream to mask keyword index of
each file and sends it to server. Later the scheme sends server short seed to retrieve
particular portion of the index while keeping other portion pseudo-random. Their
scheme named Privacy Preserving Searches on Encrypted Data (or PPSED in short)
uses pseudo-random permutation and pseudo-random functions to build the secure
index. PPSEDmaintains a list of document IDversus bit arraywith a length of keyword
size for that document. Bit array for each document holds the presence of keywords
in that document, which is masked using pseudo-random bits. The user sends this list
and encrypted documents to the server. Later at time of searching, the user uses short
simple seeds to as a trapdoor to search a keyword.

Curtmola et al. [33] proposed a scheme that maintains a reverse index which is a
list of keywords where each keyword is succeed by a document list containing that
keyword. The scheme maintained an array in which each element contains the address
of the next element and a decryption key for it. The master data of each keyword is
preserved in a look-up table. All the data residing in the lookup table and reverse index
are encrypted. Using trapdoor of a query keyword, the server searches the lookup table
then finds a link between all the documents that consist of the keyword concealed in
the trapdoor.
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Ranking among search result of SE plays a crucial role to minimize network traf-
fic and post-searching processing. A common approach for ranked search with single
query keyword utilizes both the advancement of information retrieval and crypto com-
munity [25–27]. Wang et al. [26] used same way for ranking among search result. To
get relevance (relevance score, RS) between a keyword and a document they used well
known term-frequency (TF)× inverse-document-frequency (IDF) [17] and to hide the
relevance score yet to provide server side ranking, they harboured on a modified ver-
sion of order preserving encryption [28, 29]. However, OPE and any scheme using
OPE are susceptible to range exposure attack.

All these schemes are early works in searchable encryption and show a new direc-
tion of research but lackmany features inmodern searchable encryption such as ranked
search, multi keyword search and fuzzy search. One of the recent work [39] proposed
by Fu et al. supports multiple keywords search and allows users to search with mis-
spelled keywords or typos. However, their scheme resorts to bloom filter and suffers
from false positive.

Multi-keyword ranked search is of paramount importance as it is what happens
in real-world search, where user queries using multiple keywords and expects some
ranked result based on relevance with query keywords. To address this problem (i.e.
multi-keyword ranked search) over encrypted data,many researchers contributed in the
literature [18, 21–23]. All these works used vector space model for mapping relevance
score of each keyword of a particular document. To calculate relevance score between
a document and a keyword, they utilized TF× IDF model [17], and to conceal these
scores and yet to calculate accurate similarity (inner product or cosine metric) with
query keyword, they used secure kNN computation [40]. Additionally, apart from this
common calculations, eachwork has its own singularity in terms of secrecy, efficiency,
functionality. For example, in order to achieve search efficiency, Sun et al. [22] used
multi-dimensional binary tree based index structure and algorithm, aside from, Xia
et al. [23] used tree-centric index and greedy depth-first search algorithm.

As noted previously, almost all multi-keyword ranked search schemes use vector
space model, one of the relevance score calculation rules and secure kNN algorithm
to comply multi keyword search with ranking resulting documents. Besides, each of
them enhances the scheme with either efficiency or other additional features. Among
them, Xia et al.’s [23] proposed a vibrant scheme referred to as Dynamic Multi key-
word Ranked Search (DMRS). Their scheme is dynamic in a sense that it can handle
the update of documents i.e. insertion/deletion of new/existing documents efficiently.
Resorting to the vector space model and the TF× IDF model, they construct the index
vector of each document and generate the query vector with query keywords. To
encrypt the index and query vectors they utilize secure kNN algorithm that preserves
relevance scores and ensures exact relevance score calculation between the query and
index query vectors. Many modern multi-keyword ranked search schemes are almost
same up to this portion. In an addition Xia et al. build a special tree-based index struc-
ture and formulates a Greedy Depth First Search algorithm that achieves sublinear
search time. To prevent a statistical attack they introduced phantom terms into the
index vector blinding search result. However, Greedy Depth First Search algorithm
does not work perfectly in certain cases and the addition of phantom terms may result
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in the wrong document list. Nonetheless, secure kNN algorithm centric schemes may
fall vulnerable to correlation attack.

Unlike most of these works, we present a multi keyword ranked search scheme
that neither relies on OPEs nor on secure kNN algorithm with a view to resisting
range exposure and correlation attacks respectively. Instead it resorts to inverted index
[41] construction of secure index and incorporates randomness into trapdoor to baffle
attacker. Finally, for evaluating performance of the proposed scheme, it compares
the proposed scheme with secure kNN centric Multi keyword Ranked Searchable
Encryption (MRSE) schemes.

3 Problem Formulation

This section formally defines the systemmodel, threat model with attacker’s capability
and design goal. CSA-CSE adopts a system model of data outsourcing context and
threat model signifies the attacker’s domain knowledge. Apart from that, threat model
also demonstrates two attacks namely, range exposure attack and correlation attack
those are eminent to some existing schemes and CSA-CSE intends to repel them.
Design goal of searchable encryption considers privacy at top and then efficiency for
performance issue, still there exists a trade-off between privacy and efficiency.

3.1 SystemModel

Astandard systemmodel of searchable encryption in data outsourcing context involves
three different entities: a data owner, cloud server and data user, as delineated in Fig. 4.
Owner possesses a collection of documents F �{f1, f2, f3, . . . . . . . . . , fn} with an
intention to outsource to the cloud server in encrypted format ensuring effective data
utilization such as keyword based document retrieval. In our scheme, the data user who
searches on encrypted data is the data owner as shown in Fig. 2. In case, data owner
and data user are two different entities, there is a search control and access control
mechanisms for the data user to collect the trapdoor of query keywords and decryption
key to decrypt the files respectively (Fig. 4). In either cases, data owner first constructs
an index I with extracted keywords from the document collection F and generates a
(searchable) secure index SI from the index I. At the same time, data owner computes
encrypted document collection C �{C1,C2,C3, . . . . . . . . . ,Cn} from the document
collection F using standard cryptosystem (e.g. RSA, AES, Salsa20). Afterwards, the
data owner outsources the encrypted collection, C along with the secure index, SI to
the cloud server.

Data owner authorizes the data users to access the documents. Then data user can
get trapdoor of query keywords using search control mechanism. Similarly, to decrypt
the encrypted documents data user gets shared secret key from data owner using access
control mechanism. Both search control and access control mechanisms are out of the
scope of this paper.

Cloud server preserves the encrypted document collection, C and the searchable
secure index, SI. Once it receives a search request with a trapdoor TD (along with
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Fig. 4 System model

optional parameter, k) from data user, the cloud server performs a search over the SI,
and finally returns the corresponding collection of top-k ranked encrypted documents.
To protect access pattern, cloud server sends a mix of extra documents and exactly
desired documents. So upon receiving returned documents, data user needs to eliminate
the extra documents. Cloud server, who is responsible for storing encrypted documents
and secure index and executing search operation against a trapdoor, should be furnished
with a faster search operation because the search operation takes place keeping data
user waiting for its result. Thus a faster search result is intended for a better user
experience.

3.2 Threat Model

To design a searchable scheme, different research communities consider cloud server
as honest but curious, namely, cloud server follows the Service Level Agreement prop-
erly but may pry into users’ data [18, 26, 42]. Specifically, the cloud server fairly and
accurately follows designated protocols.Meanwhile, it is curious to analyze the cipher-
text of the encrypted documents, secure index, trapdoor and outcome of the search
operation to retrieve any statistical data in order to figure out underlying information.
Relying on how much information the cloud server possesses, one can classify the
two threat models [18, 23], namely, known cipher text model and known background
model.

3.2.1 Known Ciphertext Model

In this model, the server or other potential adversary only knows the encrypted docu-
ment collection, C, the secure index, SI, and the search trapdoor, TD. All these data
are in encrypted form, thus possesses a cover onto it. Apart from this, the server can
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Fig. 5 Term Frequency distribution of two keywords ALGORITHM and COMMUNICATION

Fig. 6 Relevance dcore distribution of two keywords ALGORITHM and COMMUNICATION

compute search result between the secure index and any trapdoor. Hence, the server
can launch ciphertext only attack (COA) [43] in this model.

3.2.2 Known BackgroundModel

In contrast to known ciphertext model, the server is stronger in terms of data pos-
session in the known background model. Besides having ciphertexts of a different
component of searchable encryption, the server manages to have some additional sta-
tistical information, such as the term frequency statistics of the document collection,
index/query keyword frequencies, search pattern of keywords. For example, the sta-
tistical information records how many documents are there for each term frequency
of a specific keyword in the whole collection, as shown in Fig. 5, which could be used
as the keyword identity [23]. Again, it reveals how many documents are there for each
relevance score of a specific keyword in the whole document collection, as shown
in Fig. 6. Furnished with such statistical information, the server can deduce or even
identify certain keywords through analyzing prudently [26, 27, 42].

Furthermore, single keyword ranked search scheme using OPE suffers from range
exposure attack and multi keyword ranked search scheme using kNN algorithm is
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vulnerable to correlation attack. CSA-CSE devotes to foil these attack. In this portion
we explain these two attacks.

A. A Range Exposure Attack

OPE or any scheme that uses OPE is susceptible to range exposure attack. It reveals
order/rank information of a plaintext that is, for two plaintext n1 and n2; if n1 < n2 then
OPE(n1) <OPE(n2). In a range exposure attack, an attacker determines the range of a
plaintext d with certain percentage p% . For example, if an attacker knows OPE(n1)�
C1 andOPE(n2)�C2 (where, n1 < n2 ≥C1 < C2). Then observing another ciphertext
Ck between C1 and C2, the attacker concludes that, plaintext of Ck lays in the range
]n1, n2[. Such information leakage in referred to as range exposure attack.

B. Correlation Attack

Secure k nearest neighbours (kNN) [40] algorithm splits a data vector into two
random vectors and then multiplies the constituent vectors with secret matrix in order
to hide the data vector. However, multiplying a vector with a matrix is a homomorphic
transformation which means, ratio of distance of two vectors from a fixed point is
preserved even after multiplication. Hence, to ensure data confidentiality, different
schemes introduce randomness into data vector [18, 20, 23, 42]. For example, Xia
et al. [23] used additional dimensions at the end of the data vector. Data vector V is
having a dimension of 3 and another dimension is added making it 4. V is multiplied
with secret matrix M:

v1 m1,1 m1,2 m1,3 m1,4 v′
1

v2 × m2,1 m2,2 m2,3 m2,4 � v′
2

v3 m3,1 m3,2 m3,3 m3,4 v′
3

v4 m4,1 m4,2 m4,3 m4,4 v′
4

A single row of vector–matrix multiplication is, v
′
i � mi,1.v1 + mi,2.v2 + mi,3.v3 +

mi,4.v4. Now, for more accurate vector–vector multiplication using secure kNN algo-
rithm, the termmi,4.v4 which is resulted from incorporated randomness must be small
enough in comparison with others, mi,1.v1 + mi,2.v2 + mi,3.v3. Hence, observing dif-
ference between corresponding elements of two encrypted vectors V1 and V2 the
attacker can conclude, whether two encrypted vectors are from same vector or not.
This information leakage is titled as correlation attack. Correlation attack is especially
formidable for trapdoors.

3.3 Design Goals

While formulating a searchable encryption, it is possible to hide information from
polynomial time attacker using cryptographic means. However, unlike standard cryp-
tosystems, multi-keyword ranked searchable encryption reveals ranked search result
in a response to a multi-keyword query. On that account, an attacker can gather sta-
tistical information analyzing different component of the searchable encryption i.e.
secure index, trapdoor and search result. So, one of the privacy goals of the proposed
scheme is to frustrate an attacker from collecting statistical information. In order to
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Fig. 7 Query keywords to accurate result conversion

baffle an attacker fromgathering statistical information, randomness in index, trapdoor
and search result can play a vital role. Randomness may result in the inaccurate result
(i.e. it may return accurate documents along with some irrelevant documents), but it
is a trade-off that is necessary to frustrate an attacker from accumulating non-trivial
statistical information. Later, the data user can cull out the extra documents locally.

In the above system model as described in previous Sect. 3.1, the server gets the
encrypted documents and secure index at the very beginning of searchable encryption
lifecycle. The server can deduce correlated documents from the secure index if it is
not protected properly. On the other hand, the server gets trapdoors and corresponding
search results incrementally as search operation is ongoing. Figure 7 shows a search
process from conversion of query keywords to acquiring accurate result documents.
The data owner transforms the query keywords into trapdoor preferably by adding
randomness, then trapdoor is handed over to the server. The server computes the
corresponding noisy search result, after that, this noisy result is sent back to the data
user. Finally, data user culls out the noise from the resulted document list. Here,
trapdoor and noisy result are exposed to the server, i.e. the potential adversary. So
they should contain some randomness to confuse the attacker. Observation suggests
that, during trapdoor to noisy-result generation (in the server), the deterministic noise
in the noisy result is better than the non-deterministic one as both trapdoor and noisy
result are revealed to the adversary. Say, for a query keyword set, an accurate result
is, RA �{D1, D2, D3}.

For the first run, false positive result is, RF1 �{D4, D5}.
For the second run, false positive result is, RF2 �{D6, D7}.
For the third run, false positive result is, RF3 �{D8, D9}.
So for first, second and third runs, results are:

R1 � RA ∪ RF1 � {D1, D2, D3, D4, D5},
R2 � RA ∪ RF2 � {D1, D2, D3, D6, D7},
R3 � RA ∪ RF3 � {D1, D2, D3, D8, D9} respectively.

Now, if an attacker computes the intersection between R1, R2 and R3, he will obtain
the accurate result or a very close approximation to the accurate result, R1 ∩R2 ∩R3
�{D1, D2, D3}.

Consequently, CSA-CSE prefers adding a fixed set of false positive result each time
for the same trapdoor.

Besides privacy, for efficiency issue, searching document list with a trapdoor needs
to be faster as this search operation executes while the data users are waiting for its
outcome. In addition, as the search operation takes place repeatedly, a good design of
searchable encryption needs to make it faster.
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To design a secure, efficient multi-keyword ranked search over encrypted cloud
data under the above-mentioned system/threat models, the proposed scheme has the
following design goals, Privacy-preserving and search-efficiency. By the phrase “pri-
vacy preserving” in searchable encryption, we mean secrecy of keyword information
in SI and trapdoor must be protected. Simultaneously, inherently disclosed data e.g.
trapdoor and/or resulted document list should be randomized.

A. A Privacy-preserving

The proposed scheme intends to prevent the cloud server from learning informa-
tion about the document collection, the index, and the query except for their encrypted
form. The proposed scheme intends to mask search and access patterns with random-
ness to confuse an attacker. At the same time, proposed scheme desired to withstand
against correlation attack and range exposure attack. The specific privacy require-
ments are index confidentiality, trapdoor indistinguishability, randomness in exposed
information. Their respective descriptions are presented below.

1. Index confidentiality: Index confidentiality prevents privacy breaches from secure
index SI. SI must be irreversible and the underlying keyword information includ-
ing the keyword itself, its relevance scores, term frequency, inverse document
frequency should be protected from the cloud server.

2. Trapdoor indistinguishability: Trapdoor indistinguishability thwarts an adversary
from getting underlying keyword information from a trapdoor. Like SI, trapdoor
should be irreversible. And the server should not be allowed to learn whether two
trapdoors are generated from same query keywords.

3. Randomness in exposed information: Due to nature of multi-keyword ranked
search, server learns trapdoor and corresponding ranked result (ordered document
list). There is no way to stop this information from being exposed. To frustrate
server by gathering statistical information (i.e. search pattern and access pattern),
trapdoor and its matching document list must contain randomness (even they are
in encrypted form).

B. Search efficiency

The proposed scheme intends to achieve efficiency especially in a searching time
as it executes repeatedly keeping data user waiting for its result.

4 Countering Statistical Attacks in Cloud-Based Searchable
Encryption (CSA-CSE)

This section presents a scheme of multi-keyword ranked search referred to as CSA-
CSE that confuses an attacker to collect various statistical information such as, term
frequency, search pattern, access pattern and so on. For computing relevance score
between a keyword and a document CSA-CSE resorts on the widely used TF× IDF
model [17]. At the core of CSA-CSE’s security, there is a special construction of
two keywords termed as secure seed (SS), which is one-way transformation of the
keywords. Due to inherited privacy breaches of order-preserving functions (OPF) [28,
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Table 1 List of Notations

F �{f1, f2, f3, . . . . . . . . . , fn} Set of all documents

C�{C1,C2,C3, . . . . . . . . .Cn} Encrypted form of F

n Total number of documents

W �{W1,W2,W3, . . . . . . . . .Wm} Set of all keywords extracted from all
documents

m Total number of keywords

kE Encryption key required to encrypt all the
documents

kH Hash key

message1 || message2 Concatenation of two messages, message1
and message2

Hash(kH, ·) Keyed hash [45] function that returns hash
digest of input message using kH as hash
key

fSS(kH, Wi, Wj) Function to compute secure seed of two
keywords Wi and Wj are using a hash key
kH It takes two keywords Wi, Wj and a
hash key kH. It returns keyed hash digest
of “Wi ||Wj” if Wi ≤Wj or returns keyed
hash digest of “Wj|| Wi” otherwise.

fSS(kH, Wi, Wj)�{
Hash

(
kH,Wi||Wj

)
; if Wi ≤ Wj

Hash
(
kH,Wj||Wi

)
; otherwise

Wq List of query keywords, it is a subset of W

TD Trapdoor of Wq

k Optional parameter that represents number
documents to be returned as a response to a
trapdoor

29, 44] or secure kNN algorithm [24, 40], CSA-CSE sidesteps them and keeps the
documents in an order of relevance scores with an SS. Table 1 describes the notations
used in this paper and Table 2 presents the main processes of typical searchable
encryption along with their corresponding steps. Then we describe the algorithm of
secure seed. The following subsections describe the index structure of CSA-CSE and
the proposed CSA-CSE scheme followed by its security analysis.

123



484 International Journal of Parallel Programming (2020) 48:470–495

Table 2 Main processes of a searchable encryption with their steps

Process Steps

Documents→ index Extract keywords

Calculate relevance scores

Select keyword pairs

Sort documents based on relevance scores

Index→ secure index Replace each keyword pair with its secure seed

Remove relevance score from index

Query keywords→ trapdoor Mix extra (random) keyword(s)

Select keyword pairs (randomly)

Replace each keyword pair with its secure seed

Search Find secure seeds (of trapdoor) from secure index

Fetch their documents from top

4.1 Index Structure

Index in CSA-CSE is a list of keyword pairs where each keyword pair is followed by a
document IDs in order of their relevance scores with that keyword pair. Unlike single
keyword ranked search schemes [26, 27], CSA-CSE does not use order-preserving
encryption to hide relevance score between document and keywords. Instead, it ranks
the documents on the basis of their relevance score. Again, CSA-CSE considers rele-
vance score of a document against a pair of the keyword, instead of a single keyword. It
helps to get better ranking of documents and to conceal individual keyword’s relevance
score.

For construction of index, CSA-CSE extracts keyword set, W �
{W1,W2,W3, . . . . . . . . . ,Wm} from all the documents. Then for each docu-
ment, it computes relevance score with each keyword using TF× IDF model [17].
After that, it computes relevance score of each document with each pair of keywords.
If the total number of keywords is m then there are Cm

2 � m(m−1)
2 number of keyword

pairs. Relevance score of a document with a keyword pairs is simply the sum of
relevance scores of the document with each of the keyword in that pair. Finally,
document list against a keyword pair are sorted based on their relevance with that
keyword pair. In secure searchable index (SI), each keyword pair is replaced with its
secure seed as computed by above fSS(kH, Wi, Wj) function. Hence, SI preserves the
secure seeds in place of keyword pair and IDs of ordered documents instead of (order
preserving) encrypted form of the relevance scores.

As an illustration, we present a hypothetical scenario of four documents, f1, f2, f3,
f4; five keyword, A, B, C, D and E; so the keyword pairs are (A, B), (A, C), (A, D), (A,
E), (B, C), (B, D), (B, E), (C, D), (C, E), (D, E). To demonstrate thework-flow of secure
index construction, Table 3 shows the imaginary relevance scores between documents
and keywords. These numeric values of relevance scores are required for ranking of
documents on the basis of relevance scores in this demonstration. Relevance score of
a document with a keyword pair is the sum the of the document’s relevance scores
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Table 3 Relevance score of
document versus keyword

Document A B C D E

f1 .2 .3 .25 .15 .35

f2 .13 .27 .23 .03

f3 .56 .09 .16 .4

f4 .36 .39 .43

Table 4 Relevance score between document and keyword-pair

A, B A, C A, D A, E B, C B, D B, E C, D C, E D, E

f1 � .5 f1 � .45 f1 � .35 f1 � .55 f1 � .55 f1 � .45 f1 � .65 f1 � .4 f1 � .6 f1 � .5

f2 � .13 f2 � .4 f2 � .36 f2 � .16 f2 � .27 f2 � .23 f2 � .03 f2 � .5 f2 � .3 f2 � .26

f3 � .65 f3 � .72 f3 � .96 f3 � .56 f3 � .25 f3 � .49 f3 � .09 f3 � .56 f3 � .16 f3 � .4

f4 � .36 f4 � .36 f4 � .39 f4 � .43 f4 � .36 f4 � .75 f4 � .79 f4 � .39 f4 � .43 f4 � .82

Table 5 Ranking of documents for each keyword-pair

A||B A||C A||D A||E B||C B||D B||E C||D C||E D||E

f3 f3 f3 f3 f1 f4 f4 f3 f1 f4
f1 f1 f4 f1 f4 f3 f1 f2 f4 f1
f4 f2 f2 f4 f2 f1 f3 f1 f2 f3
f2 f4 f1 f2 f3 f2 f2 f4 f3 f2

with individual keywords. For example, relevance score of f3 with keyword pair (A,
D) (as showed in third column and fourth row of Table 4: 0.96) is the sum of relevance
score of f3 with A (0.56) and relevance score of f3 with D (0.4) each from Table 3.
Table 4 shows the relevance scores between the documents and the keyword pairs.
Finally, Table 5 shows the final step of index, where documents are sorted depending
on their relevance scores with the keyword pairs. To transform the index into secure
index, keyword pairs are replaced with their secure seeds.

4.2 Countering Statistical Attack in Cloud Based Searchable Encryption

In conformity with other searchable encryption schemes [11], CSA-CSE consists of
four algorithms: Setup, SecureIndex, Trapdoor and Search.

SK←Setup (λ) This algorithm takes system parameter λ and generates the secret
key (SK)which is comprised of an encryption key kE and a hash key kH. The encryption
key kE is used to encrypt the documents using any of the standard crypto system such
as symmetric (e.g., AES, 3DES, Salsa20) or asymmetric (e.g., RSA, ECC) and the
hash key kH is used to generate the secure seed of keyword pair.

SI←SecureIndex (F, SK) This algorithm takes document list F and secret key
SK and returns secure index SI. Before generation of SI, data owner extract keyword
list W�{W1,W2,W3, . . . . . . . . . ,Wm} from F, computes relevance scores between
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document and keyword and generates an index similar to that described in Sect. 4.1.
Finally, the data owner computes secure seeds of the pairs of keywords. Accordingly,
SI is generated which is a list of secure seeds (of keyword pairs) and each secure seed
is followed by a set of ranked document IDs.

TD←Trapdoor (SK, Wq) Trapdoor is a randomized algorithm that takes query
keywords Wq and secret key SK as input and returns randomized trapdoor for the
query keywords. First of all, it chooses ne numbers of extra keywords (ne ∈ N). The
value of ne depends on the policy of how much noise the data owner intends to add
with query keywords. Then all the query keywords (including the extra keywords)
are arranged linearly in a random order and a pair of keywords are formed with
each adjacent keyword. First and last keywords form another pair. So each keyword
contributes to two pairs. Lastly, set of secure seeds of all the keyword pairs is the
(randomized) trapdoor of the query keywords Wq.

For example, if query keyword set, Wq �{q1, q2, q3}, randomly chosen extra
keyword is q4 and keywords are placed in q1, q2, q3, q4 order then, randomized
trapdoor TD for is Wq,

TD � {
fSS

(
kH, q1, q2

)
, fSS

(
kH, q2, q3

)
, fSS

(
kH, q3, q4

)
, fSS

(
kH, q4, q1

)}

Document-IDs←Search (SI, TD, k) Search algorithm takes the secure index, a trap-
door (TD) and optional parameter k as input and returns set of k documents that match
with TD. Due to simplicity of construction of the secure index and the trapdoor, this
algorithm only selects the secure seeds from SI those exist on the TD and returns
k/nTD number of document IDs from each list, where nTD is the number of secure
seed in the trapdoor. The value of k is chosen carefully to minimize the number of
extra documents.

According to system model, the data owner extracts keywords W �
{W1,W2,W3, . . . . . . . . . ,Wm} from document collection F and builds index. At
the same time, the owner generates a vector of relevance scores for each document
with the relevance scores of each keyword in the same order. Then the owner computes
encrypted documents (C �{C1,C2,C3, . . . . . . . . . ,Cn}) appending the correspond-
ing relevance score vector with each document. Finally, he generates secure index
from the index and outsources the encrypted document collection (C) and the secure
index (SI) to the cloud server. During searching time, server incorporates secure index
with trapdoor, TD (sent by the data user) to find the intended document IDs and sends
the relevant encrypted documents back to the data user. The user decrypts the returned
documents and finds the exact documents using the relevance score inside the doc-
uments locally. Like other searchable encryption schemes, in CSA-CSE, there is an
inverse relationship between secrecy and efficiency.

4.3 Security Analysis

This section analyses the security ofCSA-CSEaccording to three privacy requirements
defined in Sect. 3.3: index confidentiality, trapdoor indistinguishability, randomness
in exposed information.
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1. Index confidentiality: In CSA-CSE, the index contains a list of secure seed (of
keyword pair) followed by a list of document IDs in order of their relevance. One-
way hash function protects the privacy of keyword pair inside the secure seed. The
ranking of documents is naturally exposed over a long period of search operations.
Hence, exposing the rank or order information of documents in the secure index
does not reveal any protected information.

As of relevance score, CSA-CSE does not keep these values not even in order-
preserving-encrypted form in the secure index. Instead, it ranks the documents
according to relevance scores. So, unlike single keyword ranked search schemes [26,
27] those use order-preserving encryption to hide relevance scores, CSA-CSE does
not suffer from range exposure attack. On the other hand, unlike some multi-keyword
ranked search schemes [18, 21–23], CSA-CSE does not contain encrypted form (with
secure kNN algorithm) of relevance score vectors. So the index of CSA-CSE is not
vulnerable to correlation attack.

To facilitate ranking documents, CSA-CSE keeps document IDs in the order of
their relevance scores with keyword pair. Despite every possible step, if an adversary
tries to guess keyword pair Wi, Wj and relevance score RS with a document fk, still it
might not be possible to find the exact relevance scores of two keywords Wi, Wj with
the document fk (RSWi and RSWj respectively), because there are millions of options
to make RS � RSWi + RSWj .

2. Trapdoor indistinguishability: In CSA-CSE, trapdoor generation process is a
randomized algorithm. For a query of mq number of keywords, if number
of noisy keywords is mn and total number of keywords is m then there are(
mq + mn − 1

) × (
m − mq

)
different options for the query (given, mq + mn ≥

4). So for same query keyword set, CSA-CSE generates different trapdoors in
different times. Similar to secure seed of index, trapdoor also protects it underly-
ing keywords using one-way hash function. At the same time, selection of noisy
keyword(s) and combination of keywords are performed at random which makes
the adversary clueless about origination query keywords.

3. Randomness in exposed information: In CSA-CSE, it is possible for a trap-
door of a query keyword set to be valid trapdoor for another query keyword
set which helps to obfuscate search pattern of searchable encryption. For
example, if a query has W1 and W2 query keywords and keyword W3 is
added as a noise then Wq � {W1, W2, W3}. Here, trapdoor TD for Wq
is, {fSS(kH,W1,W2), fSS(kH,W2,W3), fSS(kH,W3,W1)}. Similarly, TD will be
trapdoor of query keywords W2,W3 and if W1 is chosen as noisy keyword. Thus
same probabilistic trapdoor produces same results (i.e. document IDs) which, in
turn, obfuscates the accurate access pattern. In consequence, CSA-CSE protects
search pattern and access pattern even though they are supposed to get revealed
characteristically. However, this protection comes by the price of communication
overhead and post processing computation. Instead of getting accurate results (i.e.
encrypted documents), the data user gets some undesired documents along with
expected documents. Then the data user can find and remove the extra documents
locally.
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5 Experiment Results and Analysis

In this section, we analyze the performance of the CSA-CSE by implementing it using
Java language on a Windows10 machine with a Core2 CPU running at 3.33 GHz. We
used Request for Comments database (RFC) [46] similar to Fu et al.’s scheme [39].
We downloaded more than 8000 files from RFC database and extracted more the 500
keywords from those files. We compare the performance of CSA-CSE with the core
of other multi-keyword ranked search (MRSE) schemes those use vector space model,
TF× IDF model and secure kNN algorithm [18–21, 23, 26, 39, 42]. Performance is
compared in terms of execution time and memory space required to store data.

5.1 Efficiency

Since, both CSA-CSE and other MRSE schemes have four different algorithms.
Each of the algorithms has different purposes in the scheme: key generation, secure
index construction, trapdoor generation and search operation. This research compares
CSA-CSE with other MRSE considering last three algorithms. It provides asymptotic
analysis as well as execution time comparison on test data.

A. A Index Construction

In CSA-CSE, the index takes the form of an inverted index where index is a list of
keyword pairs with each keyword pair followed by the document collection in order
with relevance scores. Thus, to construct index, it requires choosing two keywords
out of m keywords: there are Cm

2 � m(m−1)
2 number of keyword pairs in total. For

calculating relevance score of a document with each keyword pair, it needs to add the
relevance scores of the two keywords with that document. Hence, for m(m−1)

2 number

of keyword pairs, it requires m(m−1)
2 × n number of addition operations, given, the

total number of the document is n. Then, for each keyword pair, documents collection
is sorted based on their relevance score. It necessitates total m(m−1)

2 ×n log2 n number
of comparison operations. Finally, to turn the index into secure index, CSA-CSE
computes secure seeds of the keyword pairs which requires m(m−1)

2 times of execution
of fSS(kH, ·, ·) function. As a whole, the time complexity for index tree construction
is O

(
m2n log2 n

)
.

Besides, at the core ofMRSEschemes’ secure index construction, there exists vector
spacemodel for index representation and secure kNNcomputation to encrypt the index
vector. To construct a secure index of a document, it computes multiplication between
a vector and a matrix two times. So for n number of documents, m length vector
and m × m size matrix, the time complexity of secure index construction is O

(
m2n

)
.

Apart from this, each of MRSE schemes has their own computational overhead of
additional security or efficiency purpose. This research compares CSA-CSE’s secure
index construction with the core part of MRSE schemes’ secure index construction,
keeping MRSE schemes at advantageous position. Because, different MRSE schemes
have their own functionalities causing extra computation cost [21–23, 42].

Approximately, the execution time for constructing secure index depends on the
total number of documents F and the total number of keywords in dictionary, W.
Figure 8a, b show that the time cost of index tree keeping total document number (1000)
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Fig. 8 a Secure index construction time comparison for fixed number of documents (1000 documents). b
Secure index construction time comparison for fixed number of keywords (100 keywords)

and total keyword number (100) constant respectively. The two figures demonstrate
that, CSA-CSE’s index generation time curvemore sensitive to the increase of keyword
number than that of document number. It compiles the time complexity expression
of index construction. In both figures, MRSE schemes have upper hand over CSA-
CSE. CSA-CSE takes more time for building secure index because it sorts the entire
document list many times, more precisely m(m−1)

2 times. Despite long generation time
of secure index, CSA-CSE adopts this technique because it is one-time operation.
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Furthermore, for storing secure index into cloud server, CSA-CSE requires
m(m−1)

2 × n times the size of a document ID. That is, if size of a document ID is

one byte (8 bits) then it requires m(m−1)
2 × n bytes to preserve the entire secure index

in the server. Again, other MRSE schemes need only mn times the size of a document
ID, keeping MRSE clearly ahead of CSA-CSE. However, m(m−1)

2 × n is supposed to
be a smaller amount in comparison with the size of actual encrypted data and has min-
imal storage overhead in the cloud server. CSA-CSE trades off computation/storage
overhead of secure index in exchange of privacy and efficiency.

B. Trapdoor Generation

The generation of trapdoor from query keywords involves selecting extra query
keyword(s), arranging all query keywords in an arbitrary order, constructing keyword
pairs taking two consecutive keywords and another pair taking first and last keywords
and finally, computing secure seed for each of keyword pairs. These jobs can be
performed instantly. The only operation that needs computation is computing secure
seeds of the keyword pairs. For instance, if there are three query keywords and an extra
keyword is chosen to randomize the trapdoor then it needs to compute secure seed
function four times. That is equal to a total number of keywords in the query. On the
other hand, typical MRSE scheme split the vector into two vectors and then for each
vector, multiply a vector of size m with a matrix of size m×m causing the complexity
of trapdoor generation to O(m2). This technique is taken from secure kNN algorithm
[24]. Figure 9 illustrates the trapdoor generation time comparison between CSA-CSE
and typical MRSE scheme, where trapdoor generation time grows polynomially with
the number of keywords, that of CSA-CSE remains almost constant. Different MRSE
schemes adds additionoperations into the core operationof trapdoor generation leaving
them with more computation cost.

C. Search Operation

Search operation in CSA-CSE requires only to select intended documents from a
pool of document collection sorted by relevance scores with different keyword pairs.
As this operation involves no computation, it executes momentarily making it faster
than its peers. In contrast, at the core ofMRSE scheme’s search operation involves two
vector multiplications for all the documents. Some schemes such as Xia et al.’s [23]
scheme adopts index tree construction and corresponding greedy depth-first search
algorithm that enables sublinear search operation. However, for some special case,
their technique costs more than linear time. Figure 10 displays the searching time
comparison between CSA-CSE and MRSE schemes. With growing number of doc-
uments, searching time increase, while CSA-CSE’s searching time depends only on
the number of keywords (m) in the dictionary.

5.2 Search Accuracy

Due to inherent nature of searchable encryption with multi-keyword ranked search, it
has to reveal encrypted documents ranked with a trapdoor. Thus there is no way to hide
search pattern or access pattern in an accurate searchable encryption scheme [47]. Con-
sistency has an inverse relation with privacy in searchable encryption. Nonetheless,
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Fig. 9 Trapdoor generation time comparison

Fig. 10 LOG of execution time for a dictionary with 100 keywords

noisy trapdoor and noisy document list originating from it can vanquish an adversary
to collect such statistical information. Many existing schemes add noise to the trap-
door and/or resulted in document list in order to hide the statistical information [14].
Similarly, CSA-CSE’s approach incorporates noise to both trapdoor and its result.
Cost emanated from the noise is a trade-off in exchange for privacy. To measure
the number of extra documents that come with the result of a trapdoor, authors con-
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Fig. 11 Number of returned documents and exact number of top-100 documents for query keywords set
{“algorithm”, “communication”, “protocol”}

ducted an extensive experiment on the RFC database [46]. For illustration, consider
three query keywords “algorithm”, “communication” and “protocol”. Figure 11 shows
actual number of top-100 documents against different number of returned documents,
considering equal weight for each of the keywords i.e., if a user wants top-100 doc-
uments with these three query keywords, and query top-90 documents for each of
the query keywords (making 90+90+90 equals 270), the user will get 96 documents
those belong to exact top-100 documents. So rest 174 documents are extra documents.
On the other hand, to get top-100 documents, the system has to return 315 documents,
top-115 documents by each keyword. Thus, returns 245% extra documents, however,
it is a tread off for privacy. Once all the encrypted documents come to the user, user
decrypts and eliminate the unwanted data locally. For this purpose, each encrypted
document contains a vector of relevance score for all the keywords in the dictionary.

6 Conclusion and Future Research Direction

In this paper, we have proposed a secure and efficiently computable multi-keyword
ranked searchable encryption scheme named CSA-CSE with an aim to protect the
privacy of statistical information. Instead of using an encryption technique (i.e.
order-preserving encryption), CSA-CSE resorts on sorted order of the documents
based on relevance score. Again, instead of ranking documents based on relevance
score with a keyword, CSA-CSE uses relevance score with a pair of keywords. Thus
original relevance score remains beyond the trace of the cloud server, the potential
attacker. Though CSA-CSE conceals the keywords and relevance scores in secure
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index, it increases the secure index construction time. However, construction of secure
index is one-time job and this extra time can easily be ignored. At the same time,
this approach makes the trapdoor generation and searching operations extremely fast,
which is desired in searchable encryption as the two operations take place keeping
the user waiting for its result.

Search pattern and access pattern in searchable encryption get exposed by definition
and to the best of authors’ knowledge, the only way to confuse an attacker about the
exposure is randomization. To protect the search pattern and access pattern, CSA-CSE
randomizes the trapdoor and the resulted documents. To protect these patterns and to
foil range exposure and correlation attacks, CSA-CSE does not utilize neither OPE nor
kNN algorithms. Instead it resorts to keyword-pair centric inverted index ordered by
relevance scores. Thus the privacy of search pattern and access pattern comes with the
cost of transmission and post-processing delay. However, it is necessary to confuse an
attacker accumulating search statistics. This extra load can be engineered by sending
the encrypted relevance scores first, then sending the encrypted documents on request.
A more robust searchable encryption scheme needs controlled and/or dynamic noise
into trapdoor and resulted document list.

Still, there are a lot of challenges of multi-keyword ranked searchable encryption.
Such scheme requires being dynamic to add/delete documents as the owner wants.
This scheme need to be adapted for multi-user setting, i.e. multiple users’ ability to
search. Here, user revocation is a major issue to prevent an unsubscribed user from
accessing further. To simulate a practical scenario, the robust cryptographic approach
is necessary.
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