
International Journal of Parallel Programming (2020) 48:213–243
https://doi.org/10.1007/s10766-018-0583-9

Loss Based Congestion Control Module for Health Centers
Deployed by Using Advanced IoT Based SDN
Communication Networks

Mudassar Ahmad1 · Usman Ahmad2 ·Md Asri Ngadi3 ·
Muhammad Asif Habib1 · Shehzad Khalid4 · Rehan Ashraf1

Received: 24 January 2018 / Accepted: 8 June 2018 / Published online: 16 June 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Many healthcare centers are deploying advanced Internet of Things (IoT) based on
Software-DefinedNetworks (SDNs). TransmissionControl Protocol (TCP)was devel-
oped to control the data transmission in wide range of networks and provides reliable
communication by using many caching and congestion control schemes. TCP is pre-
destined to always increase and decrease its congestion window size to make changes
in traffic. Nowadays, about 50% IoT based SDN traffic is controlled by TCP CUBIC,
which is the default congestion control scheme in Linux operating system. The aim
of this research is to develop a new content-caching based congestion control scheme
for advanced IoT enabled SDN networks to achieve better performance in healthcare
infrastructure network environments. In this research, Congestion Control Module for
Loss Event (CCM-LE) is proposed to enhance the performance of TCP CUBIC in
advanced IoT based on SDN. Network Simulator 2 (NS-2) is used to simulate the
experiments of CCM-LE and state-of-the-art schemes. Results show that the perfor-
mance of CCM-LE outperforms by 19% as compared to state-of-the-art schemes.

Keywords Content cache · Congestion control · Health centers · IoT · SDN

1 Introduction

The communication networks are growing rapidly and becoming more complex to
be managed and handled. This is exclusively factual with traditional network design,
protocol stack and network systems which is difficult to provide satisfactory solutions
to the existing networking demands. However, Software Defined Network (SDN) is
an encouraging technique to computer networking that splits the data plane and the

B Muhammad Asif Habib
drasif@ntu.edu.pk

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-018-0583-9&domain=pdf


214 International Journal of Parallel Programming (2020) 48:213–243

control planemutualwith centralized controller to allownetwork operator to design the
packet forwarding. The architecture of SDN is shown in Fig. 1. Number of researchers
defined the SDN as detached the control plane from the data plane, this network is
different from traditional networks which were more complex and difficult to manage
because these legacy networks were used those protocols which allows nodes to work
with other nodes to interchange the data [1–4].

TCP act as a de-facto transport protocol standard for all the applications using
advanced Internet of Things (IoT) based Software defined Networking (SDN) net-
works. By using the IoT based advanced networks technology, healthcare centers has
deployed their networks to a centralize location. The centralize data center connects
many healthcare centers that are deployed to multiple geographic locations all over the
word. Internet content caching for medical data has received much attention mainly
in the field of healthcare centers as a primary solution to save network resources
and improve quality of Service (QoS). Rapidly increasing of medical data in health-
care centers brings a challenge of how to efficiently deliver data in remote healthcare
locations [5]. During last one decade, researchers are continuously improving the per-
formance of medical data delivery in remote healthcare centers. This research focuses
the performance of medical data delivery by using content caching based congestion
control scheme for healthcare centers using advanced IoT based SDN networks.

The target of IoT based SDN networks is to increase the network bandwidth to be
1000 times greater than 4G networks [6,7]. It implies that advanced IoT based SDN
networks would be perfectly suitable for the healthcare centers that are deployed to
many remote locations [8,9] . However, compared huge amounts of medical data and
healthcare networks overhead, there is an obvious paradox in advanced IoT based SDN
network [10]. In Fig. 1, numerous advanced IoT based devices ubiquitously connect
to the SDN network, making the backhaul become the bottleneck and congestion in
the network. Thus there is a need to design a content caching based congestion control
scheme for these kinds of healthcare SDN networks.

Packet loss event is an indication of congestion occurrence in the SDN networks,
so to remedy the congestion in the network, content caching scheme or congestion
control scheme are used. At each packet loss event, TCP Reno, which is trademark
congestion control scheme and TCP Compound, which is default congestion control
scheme in Microsoft Windows operating system, reduce the size of its Congestion
Window (cwnd) by 50% of its previous cwnd size. However, TCP CUBIC reduces
its cwnd size by only 20% of its actual size. Growth and reduction parameters of
(cwnd) are defined by the AIMD algorithm of the congestion control scheme [12].
AIMD consists of two parameters, additive increase, which refers as cwnd growth
parameter (α) andmultiplicative decrease, which refers as cwnd reduction parameters
(β).General formofAIMDalgorithm forTCPReno is described inEq. 1,whereα = 1,
represents the cwnd growth parameter and β = 0.5 represents the cwnd reduction
parameter at each loss event. Figure 2 illustrates the behavior of TCP Reno by using
AIMD algorithm. At each packet loss event, it reduces the size of cwnd by 50% from
its previous size. TCP Compound uses similar α and β values being used by TCP
Reno. Most of new congestion control schemes use enhanced values of α and β as
cwnd growth and reduction parameters respectively. TCPCUBICmodified the AIMD

123



International Journal of Parallel Programming (2020) 48:213–243 215

Fig. 1 SDN architecture [11]

Fig. 2 Behavior of TCP Reno congestion control mechanism

algorithm of TCP Reno, with enhanced values of α and β parameters.

AI MD :
{
ACK = cwnd ← cwnd + α

cwnd
Loss = cwnd ← (1 − β) × cwnd

}
(1)

In TCP CUBIC values of α and β are equal to 0.3 and 0.2 respectively. That is
why TCP CUBIC has reduction rate of cwnd 20% instead of 50% as in TCP Reno

123



216 International Journal of Parallel Programming (2020) 48:213–243

and TCP Compound. Equation 2 describes the reduction percentage in cwnd size
at each loss event of TCP Reno, TCP Compound and TCP CUBIC [13–15]. Due to
this reason, after each packet loss event, TCP flows, configured with TCP CUBIC
in the network does not release sufficient amount of link bandwidth to remedy the
congestion. As a result, new incoming TCP flows cannot get the properly available
link bandwidth. Thus, unfair share of available link bandwidth and slow convergence
of flows occur in the network. These problems are mostly happened in advanced IOT
based SDN networks. These issues faced by congestion control schemes are measured
by using protocol fairness and convergence time performance metrics [16–20]. As the
cwnd reduction percentage of TCP CUBIC flow is lower than the TCP Reno and TCP
Compound flows, the average cwnd size of TCP CUBIC flow is also higher than TCP
Reno and TCP Compound flows.

Loss:
⎧⎨
⎩
cwnd = (1 − β) × cwnd 50% Reduction TCP Reno β =0.5
cwnd = (1 − β) × cwnd 50% Reduction TCP Compound β =0.5
cwnd = (1 − β) × cwnd 20% Reduction TCP CUBIC β =0.2

⎫⎬
⎭
(2)

The remaining of the paper is organized as follows: Sect. 2 highlights the research
gap. Section 3 provides the extensive literature review of congestion control schemes.
Section 4 explains the design, development and implementation of the CCM-LE in
TCP CUBIC. Section 5 is dedicated to the results discussion and future work.

2 Research Gap

After each packet loss event, the percentage of cwnd reduction rate is vary in different
congestion control schemes. The minimum reduction rate of cwnd in percentage is
equal to 12.5%, which is the default reduction rate of cwnd of Scalable TCP [21]. The
maximum percentage of cwnd reduction rate is equal to 50%, which is the default
reduction rate of TCP Reno. Many high speed congestion control schemes are also
configured with 50% cwnd reduction parameter, such as in TCP Compound, High-
Speed TCP [22] and Hamilton TCP [23]. The reduction rate of cwnd after each packet
loss event, effects the protocol behavior and slow convergence of TCP flows. Based
on the research of [19,24], TCP CUBIC is still a congestion control scheme that is
under development, so, there is a need for more evaluation studies of TCP CUBIC.
According to their research, TCP CUBIC has lower cwnd decrease parameter (β) and
it should release more bandwidth for new incoming flows. That is why, TCP CUBIC
has RTT fairness problem. Thus, more research is needed on TCP CUBIC by adoptive
adjustment of cwnd reduction parameter (β), which is also known as the percentage
of reduction in cwnd size after each loss event. Thus, to overcome the issue of fair
sharing of available link bandwidth and the convergence of TCP flows, a scheme is
proposed to increase the cwnd reduction rate which is based on content caching based
congestion control.

The above research gap leads this research to address the problems about reduction
percentage in cwnd size of TCP CUBIC at each packet loss event. Thus, there is a

123



International Journal of Parallel Programming (2020) 48:213–243 217

Fig. 3 TCP Tahoe congestion window growth behavior [12]

need to increase the cwnd reduction percentage of TCP CUBIC flows at each packet
loss event, such that available link bandwidth can be shared fairly and fast among
TCP flows. The aim of this research is to enhance the performance of TCP CUBIC
congestion control scheme for advanced IoT based SDNnetworks. The aim is achieved
by designing and developing a new content caching based congestion control scheme
for loss event to increase the cwnd reduction percentage after each packet loss event,
such that available link bandwidth can be shared fast and fairly among flows of TCP
CUBIC.

3 Literature Review

Following is a history of different congestion control schemes that are proposed to
solve the various congestion issues in the network. Due to the change in network
distance, link bandwidth and operating system, old versions of congestion control
schemes are enhanced and upgraded. Legacy and new congestion control schemes are
discussed as follows:

TCP Tahoe [12] is the oldest of all TCP congestion control schemes. TCP Tahoe
added three new congestion control modules: slow start, congestion avoidance and fast
retransmit. Major contribution in TCP Tahoe is the enhancement of the RTT estimator.
However, if the timer expires before the ACK is received, the source assumes that the
segment is lost and needs to be retransmit it. This kind timer expiration is called
timeout . TCP Tahoe does not work efficient if multiple packets are dropped. At each
packet loss event, it resets the value of cwnd to 1 i.e., cwnd = 1 as shown in Fig. 3.
It uses packet loss event as a congestion indication thus it is also known as loss-based
congestion control scheme.

TCP Reno is developed by Van Jacobson and it is an enhanced form of TCP Tahoe.
TCP Reno is considered as a trademark of TCP congestion control schemes. After
each loss event the size of cwnd is set to half of its previous value as shown in Fig. 4.
Thus, it decreases the size of cwnd by 50% and having cwnd reduction parameter

123



218 International Journal of Parallel Programming (2020) 48:213–243

Fig. 4 TCP Reno congestion window growth behavior [26]

(β) is equal to 0.5. If the source is still able to receive the ACKs and after receiving
a number of duplicate ACKs, TCP Reno enters in the fast recovery phase and the
source retransmits the lost packet, but unlike Tahoe, it will not fall back into slow start
state [25]. The Main problem in TCP Reno is that fast retransmit scheme assumes
that only one segment is lost, if more than one segments are lost, it results in loss
of ACK clocking and timeouts. ACK starvation is another problem in TCP Reno,
which occurs due to the ambiguity of duplicate ACKs. It uses packet loss event as
a congestion indication in network and also known as loss-based congestion control
scheme.

TCP Vegas [27] is a delay-based congestion control mechanism which uses varia-
tions in measured throughput as an indication of congestion instead of packet loss
event. TCP Vegas calculates the difference, which is denoted as di f f , between
the expected throughput RE = (cwnd/RT Tmin) and actual throughput RA =
(cwnd/RT T ), where RT Tmin is the based RTT of first segment and (RT T ) is the
sample RTT. RE and RA are updated once per each RTT. TCP Vegas adjusts the cwnd
according to phases it performed and the value of di f f . It compares Δ with γ in slow
start phase and with α, β in congestion avoidance phase to determine cwnd adjust-
ments. In TCP Vegas, the value of β is equal to 0.5, hence the reduction rate of cwnd
size is 50% at each packet loss event. Estimation of this gap Δ is calculated per RTT
and is given in Eq. 3.

Δ = (RE − RA) × RT Tmin (3)

TCP Newreno [28] is same as TCP Reno, however, behaves more intelligent during
fast recovery. The wait for the retransmit timer is eliminated when multiple packets
are lost. TCP Newreno is based on the idea of partial ACKs. In case of multiple
packets losses, the ACK for retransmitted packet will acknowledge some but not all
the packets sent before the fast retransmit. TCP Newreno retransmits one packet per
RTT until all lost packets are retransmitted. Fast recovery mechanism only begins
when three duplicate ACKs are received. It also uses packet loss event as a congestion

123



International Journal of Parallel Programming (2020) 48:213–243 219

Fig. 5 Typical behavior of CUBIC congestion window curve [30]

indication in the network and known as loss-based congestion control mechanism.
Scalable TCP [21] is an enhanced form or TCP Newreno. Scalable TCP increases the
size of cwnd 1% per at receipt of each ACK and at loss event, it decreases 12.5% from
the current cwnd size. Therefore values of congestion window increase parameter α

and decrease parameter β are 0.01 and 0.125 respectively.
Compound TCP [14] is developed by Microsoft for the Vista operating system

and is designed for long distance, high bandwidth network uses a scalable delay-
based component of TCP Vegas into the TCP Reno. Thus, it is called loss and delay-
based congestion control mechanism. Compound TCP maintains two cwnd sizes
concurrently, a regular cwnd based on TCP Reno and a delay window (dwnd) based
on TCPVegas. The sending rate of Compound TCP is determined bywin by summing
the above two congestion windows as described in Equation 4. The value of cwnd
reduction parameter β is equal to 0.5 same as in TCP Reno.

win =
{
cwnd + 0 Slow Start
cwnd + dwnd Congestion Avoidance

}
(4)

TCP CUBIC [15] is an enhanced form of BIC TCP [29] and TCP Reno. TCP
CUBIC is a loss-based congestion control mechanism. TCP CUBIC uses packet-train
concept for the estimation of available link bandwidth. TCP CUBIC adapts new slow
start module HyStart, which uses a Safe exit point during slow start phase to switch the
connection from slow start to congestion avoidance phase. TCP CUBIC uses a cubic
growth function of the elapsed time from the last congestion event. It uses both the
concave and convex features of a cubic function for cwnd growth as shown in Fig. 5.
After a cwnd reduction due to a loss event, TCP CUBIC registers Wmax as the cwnd
size where the loss even occurred. Then it decreases the cwnd by a constant decrease
parameter β whose value is equal to 0.2 and enters into congestion avoidance phase
and begins to increase the cwnd size by using a concave feature of cubic function,
until the cwnd size becomes Wmax . The cwnd grows very fast after reduction, but
as it gets close to Wmax , it slows down its growth, around Wmax , the cwnd growth
becomes almost zero.

123



220 International Journal of Parallel Programming (2020) 48:213–243

Fig. 6 TCP CUBIC congestion window growth behavior

After that, TCP CUBIC increases the size of cwnd by convex growth of cubic
function. Under steady state, the size of cwnd is almost close toWmax , thus achieving
highest network utilization. Equation 5 shows the growth function of TCP CUBIC,
where C is the TCP CUBIC parameter, t is the elapsed time from the last window
reduction and K is the time period that the function requires to increase the size of
cwnd fromW toWmax (when there are no further loss events occur). K is calculated by
using the function given in Eq. 6. TCP CUBIC sets the W (t + RT T ) as the candidate
target value of cwnd.

W (t) = C(t − K )3 + Wmax (5)

K = 3

√
Wmax β

C
(6)

Based on the value of current cwnd size, TCPCUBIC runs in three different modes.
Suppose cwnd is the current size of cwnd, if cwnd is less than the cwnd size that TCP
Renowould reach at time t after the last loss event, then TCPCUBIC is in TCPMode.
Otherwise, if cwnd is less than Wmax , then TCP CUBIC is in ConcaveMode and if
cwnd is greater than Wmax , TCP CUBIC is in ConvexMode as described in Eq. 7.

TCP CUBIC Mode =
⎧⎨
⎩
TCP Mode i f cwnd < cwndTCPReno

Concave i f cwnd < Wmax

Convex i f cwnd > Wmax

⎫⎬
⎭ (7)

The cwnd growth of this protocol is shown in Fig. 6. cwnd increases exponentially
during slow start phase and at each packet loss event, TCP CUBIC reduces its cwnd
size only 20%.

Marfia et al. [31] proposed TCPLibra, which is an enhanced form of TCPNewreno.
They used NS-2 to evaluate the performance of TCP Libra. They used Jain’s fairness
formula to show the intra and inter protocol fairness of TCP Libra flows. They also

123



International Journal of Parallel Programming (2020) 48:213–243 221

compared TCP Libra performance with TCP SACK [32], TCP Vegas, TCP CUBIC
and TCP Hybla [33] in terms of fairness, goodput and fast convergence.

Xu et al. [34] combined the loss-based congestion estimation component of TCP
BIC [29] and the delay-based congestion estimation component of EEFAST [35] to
propose aHybridCongestionControlmechanism (HCCTCP) for high speednetworks.
Xu et al. [34] used NS-2 with dumbbell topology to evaluate the performance of HCC
TCP with high speed TCPs in terms of efficiency, fairness and TCP friendliness. Xu
et al. [34] found that HCC TCP is better than TCP Illinois [36] and FAST TCP [37].
Fu et al. [38] proposed a BIPR congestion control mechanism for satellite networks,
by using probe method of TCP BIC. Fu et al. [38] used NS-2 with dumbbell topology
to evaluate the performance of TCP BIPR in terms of throughput, link utilization and
Jain’s fairness.

To tackle the shortcomings of Scalable TCP,Wang et al. [39] proposed an improved
DSTCP, which can dynamically adjust the cwnd size according to the link’s conges-
tion level. DSTCP is an improved form of Scalable TCP. DSTCP improved the TCP
friendliness and stability of Scalable TCP. Wang et al. [39] compared the performance
of DSTCP with TCP Reno, YeAH TCP [40], TCP CUBIC and Scalable. They used
NS-2with drop-tail algorithm and throughput, bandwidth utilization, TCP friendliness
and stability as performance metrics. Elmannai et al. [41] proposed TCP University of
Bridgeport (TCP UB) by integrating the features of TCP Westwood and TCP Vegas
for Ad Hot Networks (MANET). By using NS-2, Elmannai et al. [41] compared the
performance of TCP UBwith TCPWestwood and TCP Vegas in terms of goodput and
found that TCP UB is outperformed as compared to TCP Westwood and TCP Vegas.

Hagag and El-Sayed [42] proposed a new congestion control mechanism called
TCPWestwoodNew to increase the performance of TCPWestwood by enhancing the
congestion avoidance feature of TCPWestwood. To evaluate the performance of TCP
WestwoodNew, Hagag and El-Sayed [42] used NS-2 and compared the throughput
and packet loss rate of TCP Reno, TCP Newreno, TCP Tahoe, TCP Westwood, TCP
SACK and TCP Vegas with TCP WestwoodNew. Lv and Zhang [43] proposed a new
congestion control mechanism TCP PN to optimize the performance of the private
network. TCP PN is based on the features of TCP BIC and TCP Vegas. Froldi and
Fonseca [44] proposed a Datagram Congestion Control Protocol (DCCP) for high-
speednetworks. Froldi andFonseca [44] usedNS-2with dumbbell topology to evaluate
the new protocol regarding Jain’s fairness index.

Because of the popularity of Linux—based HTTP servers, TCP CUBIC is close to
the new de facto standard for Internet congestion control [18]. Thus, in 2013, many
researchers worked on TCP CUBIC to improve its performance. Wang et al. [18]
introduced first time the idea of delay-based information as congestion indication
into the TCP CUBIC congestion control mechanism. By using NS-2 with dumbbell
topology, Wang et al. [18] compared the performance of CUBIC-FIT, TCP CUBIC,
TCP Reno, TCP FIT and Compound TCP in terms of throughput and protocol fairness
(Jain’s index fairness).

Kozu et al. [17] improves the protocol fairness of TCP BUBIC by tuning the value
of K of TCPCUBIC. K is a time period required for TCP CUBIC to increase its cwnd
size fromWlast−max toWmax . Kozu et al. [17] used an emulator on FreeBSD operating
system and repeated the experiments by tuning the value of K of TCP CUBIC. Kozu

123



222 International Journal of Parallel Programming (2020) 48:213–243

et al. [17] also proposed a method to improve the protocol fairness of TCP CUBIC
by adjusting the value of K according to the RTT as described in Eq. 8. x(RT T ) is a
function of RTT, x(RT T ) monotonically decrease as RTT increases.

K = 3

√
Wmax β

C
× x(RT T ) (8)

Today most of the mobile devices use Android operating system, and TCP CUBIC
is also default congestion control mechanism in Android operating system [45]. For
mobile devices, Gwak et al. [45] proposed WiCUBIC, which is an enhanced form of
TCP CUBIC.WiCUBIC can distinguish between the losses induced by wireless chan-
nel and the losses induced by network congestion.WiCUBIC improved the throughput
performance of TCP CUBIC in a wireless environment slightly. At each packet loss
event, WiCUBIC decreases the size of cwnd by 20% of its actual size (similar to TCP
CUBIC).

Goyzueta and Chen [19] worked in the concave region of cwnd curve of TCP
CUBIC. By using NS-2 Goyzueta and Chen [19] analyzed the fast convergence mech-
anism of TCP CUBIC. According to them, TCP CUBIC is still a protocol that is under
development. There is a need for more evaluation studies of TCP CUBIC. According
to [19], TCP CUBIC has lower cwnd decrease parameter (β), and it should release
more bandwidth for new incoming flows.

To solve the problem issues of HighSpeed TCP, Qureshi et al. [24] proposed Quick
TCP (Q-TCP) for high-speed networks. Q-TCP integrated the features of HighSpeed
TCP and TCP CUBIC. The Q-TCP is based on optimization of HighSpeed TCP slow
start algorithm and Additive Increase and Multiplicative Decrease (AIMD) algorithm
of TCP CUBIC. Q-TCPwas evaluated by using a dumbbell topology in NS-2. Qureshi
et al. [24] compared the performance of Q-TCP with TCP Newreno, HighSpeed TCP,
TCP CUBIC, BIC TCP, Scalable TCP, Hamilton TCP and FAST regarding through-
put and inter-protocol/intra-protocol fairness between flows. According to [24] TCP
CUBIC has RTT fairness problem. Thus, more research is needed on TCP CUBIC
by adaptive adjustment of cwnd reduction parameter (β), which is also known the
percentage of reduction in cwnd size after each loss event.

For ultra high speed networks,Wang et al. [46] proposed TCPFAST-FIT to improve
the link utilization and TCP friendliness of FAST TCP [37]. Wang et al. [46] used
hardware based emulator for performance analysis. Wang et al. [46] used network
utilization and TCP friendliness as performance metrics.

3.1 Analysis of TCP Congestion Control Mechanisms

In Sect. 3, a systematic literature review has been conducted for the study of vari-
ous TCP congestion control mechanisms. After literature analysis, it is observed that
mostly new or enhanced congestion control mechanisms are based on the features of
either TCPReno or TCPVegas. A summary of literature analysis of congestion control
mechanisms is briefly described in Table 1. Few congestion control mechanisms are
based on the features of both TCP Reno and TCP Vegas. Congestion control mecha-

123



International Journal of Parallel Programming (2020) 48:213–243 223

nisms that are based on the characteristics of TCP Reno, they use packet loss event,
as an indication of congestion occurrence in the network. Thus, this kind of conges-
tion control mechanisms is known as loss-based congestion control mechanisms. The
congestion control mechanisms that are based on the features of TCP Vegas, they use
delay (variation in throughput) as an indication of congestion imminent in the network.
So, this kind of congestion control mechanisms is known as delay-based congestion
control mechanisms. Few congestion control mechanisms use features of both TCP
Reno and TCP Vegas, referred to as hybrid congestion control mechanisms, and they
use both packet loss event and delay variation as indications for congestion occurrence
in the network. Other two types of congestion control mechanisms are rate based and
ECN based congestion control mechanisms, however, they are beyond the scope of
this research.

A new or enhanced congestion control mechanism is designed at two levels: flow-
level and packet-level. The flow-level design aims to achieve high utilization, low
queuing delay, low packet loss rate, fairness and stability while packet-level design
implements these flow level goals within the constraints imposed by end-to-end con-
trol. The congestion avoidance mechanism of TCP Reno and its variants are based on
packet level model of AIMD. This packet level model induces certain flow level prop-
erties, such as, throughput, fairness and stability. There are three major approaches of
congestion control mechanisms, depending on the congestion detection techniques.
Table 2 summarize these approaches with congestion control methodologies being
used by these mechanisms. The approaches of congestion control mechanisms are
described as follows:

(i) Loss-Based Approach
Loss-based congestion control mechanisms use a packet-loss event as an indi-
cation of congestion in the network. All congestion control mechanisms of this
category have modified the cwnd growth and reduction parameter of TCP Reno.
In other words, they enhanced the Additive Increase and Multiplicative Decrease
(AIMD) algorithm of TCP Reno. The congestion control mechanisms in this
category are TCP Tahoe, TCP Reno, TCP Newreno, Scalable TCP, HighSpeed
TCP, Hamilton TCP, BIC TCP and TCP CUBIC.

(ii) Delay-Based Approach
Delay-based congestion control mechanisms use variations in throughput as an
indication of congestion occurrence in the network. However, the major weak-
ness of delay-based mechanisms is that they are not competitive with loss-based
approaches. Thus, this weakness is difficult to be remedied by delay-based mech-
anisms themselves [14]. In delay based mechanisms, when queue begins to fill,
the delay increases. Delay-based mechanisms are least aggressive when sending
rate of packets is near to the capacity of the link. Means that when link capacity
of the network is near to fill, delay-based congestion control mechanisms did
not increase the size of cwnd aggressively. Examples of delay-based congestion
control mechanisms are TCP Vegas and FAST TCP.

(iii) Loss and Delay-Based Approach
Loss-based and delay-based congestion control mechanisms use both packet loss
events and throughput variations as indications of congestion. The mechanisms

123



224 International Journal of Parallel Programming (2020) 48:213–243

Table 1 Analysis of TCP congestion control mechanisms

Year Mechanisms Techniques of congestion control mechanisms

1988 TCP Tahoe It enhanced RTT estimator

1990 TCP Reno It introduced fast recovery module and concept of three
duplicate ACKs

1995 TCP Vegas TCP Vegas calculates a difference (di f f ) between expected
throughput and actual throughput and it adjusts the size of
cwnd by using the value of di f f

1999 TCP Newreno It is based on partial ACK technique

2003 Scalable TCP It uses Multiplicative Increase and Multiplicative Decrease
(MIMD) algorithm

2006 Compound TCP It combined TCP Reno and TCP Vegas techniques

2008 TCP CUBIC It is based on packet train concept. It uses safe exit point in
slow start phase

2010 TCP Libra TCP Libra is an enhanced form of TCP Newreno

2011 HCC TCP [34] combined the loss-based congestion estimation
component of TCP BIC [29] and the delay-based
congestion estimation component of EEFAST [35] to
propose a Hybrid Congestion Control mechanism (HCC
TCP) for high speed networks

2011 TCP BIPR It uses probe method of TCP BIC

2012 DS TCP It is an enhanced form of Scalable TCP, which can
dynamically adjusts the size of cwnd according to the
link’s congestion level

2012 TCP UB Elmannai et al. [41] proposed TCP University of Bridgeport
(TCP UB) by integrating the features of TCP Westwood
and TCP Vegas for Ad Hot Networks (MANET)

2012 TCP
WestwoodNew

Hagag and El-Sayed [42] proposed a new congestion
control mechanism, called TCP WestwoodNew to
increase the performance of TCP Westwood by enhancing
the congestion avoidance feature of TCP Westwood

2012 TCP PN Lv and Zhang [43] proposed a new congestion control
mechanism TCP PN to optimize the performance in
private network. TCP PN is based on the features of TCP
BIC and TCP Vegas

2012 DCCP Froldi and Fonseca [44] proposed a Datagram Congestion
Control Protocol (DCCP) for high speed networks

2013 CUBIC-FIT Wang et al. [18] introduced first time the idea of
delay-based information as congestion indication into the
TCP CUBIC congestion control mechanism

2013 WiCUBIC Gwak et al. [45] proposed WiCUBIC, which is an enhanced
form of TCP CUBIC. WiCUBIC can distinguish between
the losses induced by wireless channel and the losses
induced by network congestion

2013 CUBIC FIT It introduced delay-based information as congestion
indication into TCP CUBIC

123



International Journal of Parallel Programming (2020) 48:213–243 225

Table 1 continued

Year Mechanisms Techniques of congestion control mechanisms

2013 Q-TCP The Q-TCP is based on optimization of HighSpeed TCP
slow start algorithm and Additive Increase and
Multiplicative Decrease (AIMD) algorithm of TCP
CUBIC [24]

2014 TCP FAST-FIT It is an improved form of FAST TCP [46]. TCP FAST-FIT
combined the in-flight packet queue management
advantage of both FAST TCP and TCP Reno

of this approach are also known as hybrid congestion control mechanisms. Africa
TCP, Compound TCP, YeAH TCP and Fusion TCP are popular mechanisms of
this approach.

In this research, an end-to-end, loss-based congestion control mechanism TCP
CUBIC is enhanced for long distance, high bandwidth networks. Enhanced TCP
CUBIC modified the cwnd reduction percentage of TCP CUBIC. By this enhance-
ment, protocol fairness and convergence time of flows are improved.

4 Congestion Control Module for Loss Event

In a network, when multiple flows of a congestion control mechanism are transmitting
data over the same link, did not fairly share available link bandwidth among each other.
Initial flows in the network occupy all the available link bandwidth very quickly and
during packet loss event, did not reduce enough bandwidth. As a result, congestion
occurs while more flows are still entering into the network causing a shortage of
bandwidth. This problem happened in TCPCUBIC, because, at each packet loss event,
TCP CUBIC reduces its cwnd size only 20% from its actual size, thus, TCP CUBIC
flows did not free up sufficient amount of bandwidth for new incoming flows and the
remedy of the congestion. Due to this reason, congestion prolongs in the network and
performance of the network decreases.

To solve this shortage bandwidth issue, Congestion Control Module for Loss Event
(CCM-LE) is proposed, which is based on the reduction mechanism of the cwnd of
TCP CUBIC. The purpose of CCM-LE is to decrease the sufficient amount of cwnd
at each loss event. Thus, the amount of available link bandwidth can be increased,
such that, all new competing flows on the link can share the bandwidth fairly and fast
among each other.

4.1 Design of CCM-LE

CCM-LE is based on Additive Increase and Multiplicative Decrease (AIMD) algo-
rithm and cwnd reduction mechanism of TCP CUBIC. Based on AIMD, if there is
no congestion in a network, the sender increases its cwnd additively and in the pres-
ence of congestion, sender drops its cwnd by 50% of its current cwnd size. AIMD

123



226 International Journal of Parallel Programming (2020) 48:213–243

Table 2 Strength and weakness of TCP congestion control mechanisms

Mechanism Strength of mechanisms Weakness in mechanisms

TCP Tahoe It added slow start, congestion
avoidance and fast retransmit
modules

It does not work well if multiple
packets are dropped. At each
packet loss event, it resets the
cwnd size to 1 (cwnd = 1)

TCP Reno TCP Reno is better than TCP Tahoe
only in case of single packet loss.
At each packet loss event, it does
not reset cwnd to 1

If more than one segments are lost, it
results in loss of ACK clocking and
timeouts. It suffers from ACK
starvation due to ambiguity of
duplicate ACKs

TCP Newreno It can perform well even in the
presence of multiple packet losses

After packet loss event, it takes very
long time to full utilize the
available link bandwidth

Scalable TCP The main contribution of STCP is
that it rejects the core AIMD
(Additive increase and
Multiplicative Decrease) concept
and introduces the MIMD strategy.
It takes very short time to full
utilize the available link bandwidth

STCPs stable 70 RTTs to double the
cwnd is not optimal in many
situations [39]. TCP friendliness
and stability issues

BIC TCP It is modification of congestion
avoidance module [47]

BIC performs poor in satellite
networks [38]. It suffers RTT
fairness problem [24]

TCP BIPR Binary increase of cwnd and probe
method is also adopted in TCP
BIPR [38]

It only performs well in satellite
networks [38]

CUBIC FIT It improved the throughput of TCP
CUBIC [18]

It needs to improve protocol fairness
and TCP friendliness

Q-TCP It improved the performance of
HighSpeed TCP [24]

Throughput issue as the number of
nodes increases [24]

TCP Vegas It is better than TCP Reno, TCP
SACK, TCP Tahoe, TCP
Westwood and TCP Newreno [41]

It has an issue of rerouting because
of using BaseRTT to adjust its
cwnd size [48]

TCP CUBIC It improved the RTT fairness
problem of BIC TCP [24]

Lower performance in long distance,
high bandwidth networks

TCP FAST-FIT It improved the TCP friendliness
behavior of FAST TCP

The FAST-FIT flows may occupy
some bandwidth of other TCP
Reno flows

algorithm for TCP Reno having α = 1 and β = 0.5 as its default values, is described
in Eq. 9. As TCP Reno and TCP Compound did the same after each packet loss
event. This reduction of cwnd after each packet loss event increases the available link
bandwidth on the network path. AIMD algorithm has two parts: additive increase in
cwnd and a multiplicative decrease in cwnd. The first part of AIMD algorithm is
related to convergence time of flows (sharing of available link bandwidth in a shorter
time) and the second part of this algorithm is responsible for the protocol fairness
(fair share of available link bandwidth) among competing flows. General form of

123



International Journal of Parallel Programming (2020) 48:213–243 227

Fig. 7 Design concept of CCM-LE

AIMD is described in Eq. 10, where α represents additive increase and β represents
the multiplicative decrease parameter of cwnd. That is, α represents the cwnd growth
parameter and β represents the cwnd reduction parameter after each packet loss event.

AI MDFor Standard TCP :
{
ACK : cwnd ← cwnd + 1

cwnd
Loss : cwnd ← (1 − 0.5) × cwnd

}
(9)

AI MD :
{
At each ACK : cwndnew ← cwnd + α

cwnd AdditiveIncrease
At each Loss Event : cwndnew ← (1 − β) × cwnd MultiplicativeDecrease

}
(10)

CCM-LE uses the concept of multiplicative decrease in cwnd from the second part
of AIMD algorithm. Figure 7 shows the relation between AIMD, default version of
TCP CUBIC, which refers as TCP CUBIC-Default and Enhanced TCP CUBIC with
the implementation of CCM-LE, which refers as TCP CUBIC-(CCM-LE). At each
packet loss event, TCP CUBIC-Default decreases the size of cwnd by a multiplicative
decrease parameter (1 − β), means 20% reduction, whereas TCP CUBIC configured
with CCM-LE reduces by a factor (1 − μ × β), means, 30% reduction. AIMD algo-
rithms for TCP CUBIC-Default and TCP CUBIC-(CCM-LE) are denoted in Eqs. 11
and 12 respectively. In Eq. 11, 0.3 represents the value of α and 0.2 represents the
value of β. Whereas in Eq. 12, the value of α is equal to 0.5 and β is equal to 0.3.

AI MDTCP CUBIC−(Def ault) :
{
ACK : cwnd ← cwnd + 0.3

cwnd
Loss : cwnd ← (1 − 0.2) × cwnd

}
(11)

AI MDTCP CUBIC−(CCM−LE) :
{
ACK : cwnd ← cwnd + 0.5

cwnd
Loss : cwnd ← (1 − 0.3) × cwnd

}
(12)

123



228 International Journal of Parallel Programming (2020) 48:213–243

Fig. 8 Dynamics of congestion window growth

The purpose of the CCM-LE is to decrease the size of cwnd after a loss event,
such that, the fairness of the protocol is maximized and convergence time of flows is
minimized by mitigating the unfair share of available link bandwidth among flows.
This is done by using an enhanced rule of decrease parameter for cwnd after each
loss event. CCM-LE increases the multiplicative decrease parameter β of cwnd that is
being used inTCPCUBIC.After each congestion occurrence or each packet loss event,
current flows can releasemorebandwidth for new incomingflows.Thedefault decrease
parameter (β) of cwnd in TCP CUBIC reduces the size of cwnd of flows only by 20%
for each packet loss event,which is a very lowpercentage.Due to this reason, newflows
cannot use or get properly available bandwidth, causing unfairness, long convergence
time and congestion in the network. CCM-LE increases the multiplicative decrease
parameter (β) of cwnd by a new variable μ, whose experimental and statistical value
is equal to 1.5. So, that, after each packet loss event, flows can reduce the size of
cwnd by 30%, thus, releasing more bandwidth for other incoming flow. This change
in decrease parameter assures fair bandwidth distribution and shorter convergence
time among competing flows. The results of CCM-LE improve the overall protocol
fairness and convergence time.

The CCM-LE uses the concept of TCP CUBIC cwnd dynamics which uses only
packet loss event as an indication of congestion, because, it is a loss-based congestion
control mechanism. Figure 8 shows the dynamics of cwnd growth of CCM-LE, which
registers Wmax as the cwnd size when the loss even occurred and Wlast_max is the
previous maximum cwnd size. Figure 8 shows the previous maximum and current
maximum size of cwnd graphically. It also shows the instant of packet loss event and
the time period K . At each loss event, it decreases the size of cwnd by a constant
decrease factor (1− μ × β) and later on enters into congestion avoidance phase. The
pseudo code of CCM-LE at each packet loss event is described in Algorithm 1. As the
size of cwnd gets close to Wmax , it slows down its growth and near Wmax , the cwnd
increment becomes almost zero as shown in Fig. 8. Equation 13 shows the growth
function of CCM-LE, where C is the original TCP CUBIC parameter, t is the elapsed
time from the last cwnd reduction and K̄ is the time period that the function requires
to increase the size of cwnd from Wlast_max to Wmax (when there are no further loss

123



International Journal of Parallel Programming (2020) 48:213–243 229

events occur). CCM-LE increases the time period required to increase the size of cwnd
from Wlast_max to Wmax . K̄ for CCM-LE is calculated by using Eq. 15. The original
value of K for TCP CUBIC is denoted in Eq. 15 and the difference between two time
periods (K̄CCM−LE and KCUBIC ) is denoted by Δ.

Algorithm 1 Reduction of cwnd at each Packet Loss Event in CCM-LE
Reduction of cwnd at each Packet Loss Event
epoch_start ← 0
if cwnd < (Wlast_max & f ast_convergence) then

Wlast_max ← cwnd × (2−μ×β)
2

else
Wlast_max ← cwnd
ssthresh ← cwnd ← cwnd × (1 − μ × β)

end if

W(t) = C(t − K̄ )3 + Wmax (13)

K̄TCP CUBIC−(CCM−LE) = 3

√
Wmax × μ × β

C
(14)

KTCP CUBIC−(Def ault) = 3

√
Wmax × β

C
(15)

For the calculation of Δ, different variables are used which are summarized in
Table 3. "W " represents the size of cwnd right before the loss event occurred. μ × β

is the multiplicative decrease parameter of cwnd being used CCM-LE. iT is the i th
round trip time of the flow. C represents the scaling factor of original TCP CUBIC. K̄
is the time period required to increase the size of cwnd from W to Wmax . Packet loss
probability for a given network is defined as p and the probability that a packet has
acknowledged successfully is denoted by q. Equation 16 shows a relation between
the values of p and q. However, based on TCP CUBIC, after loss event, in i th RTT,
the size of cwnd is C(iT − K̄ )3 + Wmax , where iT is the i th RTT of the flow. The

Table 3 Variable used for the
calculation of
CCM-LE-difference (Δ)

Variable Definition of variables

W The cwnd size right before the loss event

μ × β Multiplicative decrease parameter of cwnd

iT The i th RTT of a flow

C The scaling factor of TCP CUBIC

K̄ Time interval (W to Wmax )

p Loss probability

q Probability of acknowledged packets

w Wmax

Δ Difference between K and K̄

123



230 International Journal of Parallel Programming (2020) 48:213–243

total number of packets that has been sent in a loss epoch (time interval between two
consecutive loss events) are defined in Eq. 17.

q = 1

p
(16)

q = 1

p
=

i=n∑
i=0

(C(iT − K̄ ) + Wmax ) (17)

Solving Eq. 17 by using the value of (K̄ ) from Eq. 15,

1

p
=

i=n∑
i=0

(
C

(
iT − 3

√
Wmax × μ × β

C

)
+ Wmax

)
(18)

If Wmax is equal to w, by solving Eqs. 13 and 15 by using μ, β and C values,
Eqs. 19 and 20 can calculates the time interval (required for cwnd to increase its size
from W to Wmax ) for CCM-LE and TCP CUBIC as:

K̄TCP CUBIC−(CCM_LE) = 3

√
w × 1.5 × 0.2

0.4
(19)

KTCP CUBIC−(Def ault) = 3

√
w × 0.2

0.4
(20)

By subtracting Eqs. 19 and 20, Eq. 21 shows the difference Δ between these two time
intervals.

(K̄ − K ) = 3
√
0.25 × w (21)

However, (K̄ − K ) denotes the value of Δ, Eq. 22 is represents the required result.

Δ = 3
√
0.25 × w (22)

Due to this differenceΔ, TCPCUBIC configured with CCM-LE as its cwnd reduc-
tionmechanism improves its protocol fairness and convergence time. For the validation
of the results, an experimental setup is designed for the evaluation of TCP CUBIC
with its default reduction mechanism and TCP CUBIC with CCM-LE in short RTT
and long RTT networks. In these experiments, CCM-LE is evaluated based on intra-
protocol fairness, inter-protocol fairness and convergence time of competing flows.
The results of the CCM-LE provide the best solution for cwnd decrease mechanism
with minimized convergence time and maximize protocol fairness. Thus, CCM-LE
provides higher protocol fairness and better convergence time results as compared to
TCP CUBIC and state-of-the-art congestion control mechanisms (TCP Compound,
TCP BIC, HighSpeed TCP and TCP Reno). The findings of this contribution written
as follows:

123



International Journal of Parallel Programming (2020) 48:213–243 231

(i) At each packet loss event, TCP CUBIC flows configured with default cwnd
reduction mechanism decreases the size of cwnd 20% from actual size, which
causes less availability of use of available link bandwidth for new incoming
flows in the network. However, when TCP CUBIC configured with CCM-LE as
its default cwnd reductionmechanism, it increases cwnd reduction percentage at
each packet loss event, which causes the increase in availability of use of available
link bandwidth for new incoming flows in the network.

(ii) At each packet loss event, default version of TCP CUBIC flows decreases the
size of cwnd 20% from actual size, which, in turn, causing less time for flows to
increase the size of cwnd from Wlast_max to Wmax as shown in Fig. 8. However,
TCP CUBIC configured with CCM-LE, increases cwnd reduction percentage at
each packet loss event, which in turn, increases the time required for a flow to
increase the size of cwnd from Wlast_max to Wmax as refers to Fig. 8.

(iii) Due to the enhancement in congestion window reduction mechanism of TCP
CUBIC, the performance of flows in the form of protocol fairness and conver-
gence time is increased.

5 Results and Discussion

This section presents the results of Congestion Control Module for Loss Event (CCM-
LE) to verify the performance of this module. Results of CCM-LE are presented in the
form of protocol fairness and convergence time. Performance comparison of CCM-LE
is conducted with default Congestion Window (cwnd) reduction mechanism of TCP
CUBIC. For this purpose, CCM-LE is implemented in TCP CUBIC in replacement of
its default cwnd reduction mechanism. TCP CUBIC with its default cwnd reduction
mechanism is referred to as TCP CUBIC-Default and TCP CUBIC configured with
CCM-LE is referred to as TCPCUBIC-(CCM-LE). The results are also comparedwith
state-of-the-art congestion control mechanisms. Protocol fairness and convergence
time of TCP CUBIC-Default, TCP CUBIC-(CCM-LE), BIC TCP, TCP Compound,
TCP Reno and HighSpeed TCP are graphically presented with detailed explanation
as follows:

5.1 Protocol Fairness Comparison

Fair distribution of available link bandwidth among all the competing flows of a par-
ticular congestion control mechanism has a significance importance in order to utilize
the total available link bandwidth of the network, fairly and fast. Figure 9 shows
the comprehensive comparison of protocol fairness of TCP CUBIC-Default and TCP
CUBIC-(CCM-LE), with respect to buffer queue size, link bandwidth, long RTT and
short RTT networks. Buffer queue size which is calculated as a percentage of Band-
width Delay Product (BDP) value, affect the performance of protocol fairness. Link
bandwidth in Mbps and RTT configurations of flows in millisecond (ms) can also
change the behavior of protocol fairness of congestion control mechanisms. Figure 9a
illustrates that for any percentage of BDP value, fairness value of TCPCUBIC-(CCM-

123



232 International Journal of Parallel Programming (2020) 48:213–243

Fig. 9 Protocol fairness comparison of TCP CUBIC-Default and TCP CUBIC-(CCM-LE). a Buffer queue
wise protocol fairness. b Link bandwidth wise protocol fairness. c Long RTTwise protocol fairness. d Short
RTT wise protocol fairness

LE) is higher than TCP CUBIC-Default. Thus, TCP CUBIC-(CCM-LE) shows higher
protocol fairness as compared to TCP CUBIC for any possibility of buffer queue size.
Thus, flows of CCM-LE share available link bandwidth fairly to each other as com-
pared to flows of TCP CUBIC-Default. Figure 9b illustrates that for any configuration
of link bandwidth (100, 200, 300, 400 and 500 Mbps), CCM-LE flows have higher
protocol fairness as compared to TCP CUBIC-Default flows.

Figure 9c illustrates the protocol fairness of TCPCUBIC-Default and TCPCUBIC-
(CCM-LE), when individual competing flows are configure in long RTT network
scenario that are referred to as long distance, high bandwidth networks. For any value
of RTT (50, 70, 90, 110, 130, 150, 170 and 190 ms), individual competing flows of
TCP CUBIC-(CCM-LE) have higher protocol fairness as compared to flows of TCP
CUBIC-Default. Thus, CCM-LE flows share available link bandwidth more fairly to
each other as compared to TCP CUBIC-Default flows in long distance, high band-
width networks. Figure 9d shows the protocol fairness in short RTT network scenario
that are referred to as short distance, high bandwidth networks. Protocol fairness of
CCM-LE is higher as compared to TCP CUBIC-Default when individual flows are
configured in short RTT network scenario. Finally, it is concluded that flows release
more bandwidth (reduce more percentage of cwnd size) on each packet loss event

123



International Journal of Parallel Programming (2020) 48:213–243 233

Fig. 10 Protocol fairness comparison of TCP CUBIC-(CCM-LE) with state-of-the-art congestion control
mechanisms at 100 Mbps link bandwidth. a Inter-protocol fairness (Short RTT). b Intra-protocol fairness
(Short RTT). c Inter-protocol fairness (Long RTT). d Intra-protocol fairness (Long RTT)

when they are configured with CCM-LE, so that, incoming flows can take sufficient
amount of available link bandwidth for communication. As a result available link
bandwidth is fairly distributed among the competing flows. Moreover, it can be con-
cluded that, flows are sharing available link bandwidth fairly among themselves when
they are configured with CCM-LE.

Figures 10 and 11 shows the comparison results of CCM-LE with state-of-the-art
congestion control mechanisms at 100 and 500 Mbps link bandwidth respectively.
Results show that TCP CUBIC performs higher inter and intra-protocol fairness when
it is configured with CCM-LE as cwnd reduction mechanism instead of its default
cwnd reduction mechanism. It is also concluded that all the six congestion control
mechanisms show very high inter-protocol fairness in short RTT networks. Overall, it
is observed that TCP CUBIC improves its performance by using CCM-LE.

Figure 12 shows the mean protocol fairness comparison of CCM-LE with state-of-
the-art congestion mechanisms at 100, 200, 300, 400 and 500 Mbps link bandwidth.
Results show that, by using CCM-LE cwnd reduction mechanism, TCP CUBIC
improves its inter and intra-protocol fairness both in short and long RTT networks.
Thus, by using TCP CUBIC-(CCM-LE), flows share available link bandwidth fairly
with each other as compared to flows of TCP CUBIC-Default. Results show that TCP

123



234 International Journal of Parallel Programming (2020) 48:213–243

Fig. 11 Protocol fairness comparison of TCP CUBIC-(CCM-LE) with state-of-the-art congestion control
mechanisms at 500 Mbps link bandwidth. a Inter-protocol fairness (Short RTT). b Intra-protocol fairness
(Short RTT). c Inter-protocol fairness (Long RTT). d Intra-protocol fairness (Long RTT)

Fig. 12 Mean protocol fairness comparison of TCP CUBIC-(CCM-LE) with state-of-the-art congestion
control mechanisms. a Mean protocol fairness (Short RTT). b Mean protocol fairness (Long RTT)

CUBIC-(CCM-LE) improved 13%protocol fairness performance as compared to TCP
CUBIC-Default.

To validate the stability of CCM-LE regarding protocol fairness, Coefficient ofVari-
ance (CoV) is calculated, which divides the standard deviation with the mean of all
fairness values obtained from simulation results. Higher CoV value means lower sta-

123



International Journal of Parallel Programming (2020) 48:213–243 235

Fig. 13 Stability comparison of TCP CUBIC-Default and TCP CUBIC-(CCM-LE) with respect to protocol
fairness. a Buffer queue wise stability. b Link bandwidth wise stability. c Long RTT wise stability. d Short
RTT wise stability

bility of that congestion control mechanism. Figure 13 shows the stability comparison
of TCP CUBIC-Default and TCP CUBIC-(CCM-LE) in four different ways: queue
buffer size, link bandwidth, long RTT wise and short RTT wise. Figure 13a compares
the stability of protocol fairness with respect to queue buffer size. Fairness of both
congestion control mechanisms is more stable at lower values of queue buffer size
as compared to higher values. However, for any value of buffer queue size (0.0–2.0),
stability value of TCP CUBIC-(CCM-LE) is lower than TCP CUBIC-Default, which
validates the high stability of TCP CUBIC-(CCM-LE) flows with respect to proto-
col fairness. Figure 13b illustrates the stability comparison of protocol fairness with
respect to link bandwidth. Fairness stability of both congestion control mechanisms
increases with the increase in link bandwidth, which means that fairness stability of
bothmechanisms, is lower at the high value of link bandwidth. For any configuration of
link bandwidth, 100, 200, 300, 400 and 500 Mbps, the stability of protocol fairness of
TCP CUBIC-(CCM-LE) flows is higher than TCP CUBIC-Default flows. Figure 13c
illustrates the stability of both mechanisms when individual flows of mechanisms are
configured in long RTT network scenario. Stability values of both mechanisms are
very high at longer round trip time values, which indicate low stability of these both
mechanisms in longRTTnetworks at longer round trip times. Fairness stability of these

123



236 International Journal of Parallel Programming (2020) 48:213–243

two congestion control mechanisms is same at 50 ms RTT. Figure 13d illustrates the
fairness stability of both mechanisms in short RTT networks. Moreover, the stability
of protocol fairness of TCP CUBIC-(CCM-LE) is higher than TCP CUBIC-Default
in short RTT networks. Finally, it is concluded that fairness stability of TCP CUBIC-
(CCM-LE) is greater than TCP CUBIC-Default in any network configuration. Thus,
it can be found that flows are sharing available link bandwidth fairly with each other
when using CCM-LE as reduction mechanism.

5.2 Convergence Time Comparison

In this section, convergence time results of two flows of TCP CUBIC are presented.
TCP CUBIC flows that are configured with its default cwnd reduction mechanism,
are referred to as TCP CUBIC-Default flows, whereas TCP CUBIC flows configured
with CCM-LE are referred to as TCP CUBIC-(CCM-LE) flows. First of all, con-
vergence time comparison of two flows of TCP CUBIC-Default and two flows of
TCP CUBIC(CCM-LE) is graphically presented with respect to RTTs at 200 Mbps
link bandwidth. In the second step, convergence time results of two flows of TCP
CUBIC-Default and two flows of TCP CUBIC-(CCM-LE) are presented with respect
to link bandwidth in Mbps. In the third step, convergence time results of two flows of
TCP CUBIC-(CCM-LE) is compared comprehensively with state-of-the-art conges-
tion control mechanisms (TCPBIC, TCPCompound, TCPReno andHighSpeed TCP)
with respect to short RTT, long RTT, buffer queue and link bandwidth. Finally, mean
convergence time results of two flows of the above congestion control mechanisms are
presented graphically in the form of bar graphs. The short value of convergence time
means the flows converge into each other in short time, which implies that existing
flows shares available link bandwidth very fast (in less time) with new incoming flows
in the network.

Figure 14 shows the comparison of convergence time of two flows of TCP CUBIC-
Default and TCP CUBIC-(CCM-LE). As per simulation parameters, flow 1 starts
transmitting data on 1 second and flow 2 starts transmission on 150 s. As the flow 2
enters into the network, flow1 starts decreasing its cwnd sizewhile flow2continuously
increasing its cwnd size. After some time, both flows convergewith each other to share
available link bandwidth fairly. In Fig. 14, both flow 1 and flow 2 are configured with
200 Mbps link bandwidth with 8 ms and 16 ms round trip time respectively. Results
show that convergence time of flows of TCP CUBIC-(CCM-LE) is shorter than that of
TCP CUBIC-Default. In other words, TCP CUBIC-(CCM-LE) flows share available
link bandwidth fairly to each other in shorter convergence time as compared to flows
of TCP CUBIC-Default.

Figure 15 illustrates themean convergence time results of twoflowsofTCPCUBIC-
Default and TCP CUBIC-(CCM-LE) with respect to link bandwidth. Figure 15 shows
the results of convergence time of two flows in the form of bar graph. In this figure,
each bar line is representing the mean convergence time results of two flows of these
mechanisms. Figure 15 shows that during link bandwidth 100Mbps to 200Mbps, TCP
CUBIC-(CCM-LE) flows have longer convergence time as compared to TCP CUBIC-
Default flows.Whereas, TCPCUBIC-(CCM-LE) flows have shorter convergence time

123



International Journal of Parallel Programming (2020) 48:213–243 237

Fig. 14 Convergence time comparison of two flows of TCP CUBIC-Default and TCP CUBIC-(CCM-LE).
a Link bandwidth = 200 Mbps, RTTs = 8 ms. b Link bandwidth = 200 Mbps, RTTs = 16 ms. c Link
bandwidth = 200 Mbps, RTTs = 8 ms. d Link bandwidth = 200 Mbps, RTTs = 16 ms

during link bandwidth 300–500 Mbps. Arrows in Fig. 15 pointing the improvement in
convergence time by using CCM-LE as cwnd reduction mechanism instead of default
reduction mechanism of TCP CUBIC. At 300 Mbps link bandwidth, the convergence
time of TCP CUBIC-(CCM-LE) is very shorter than that of TCP CUBIC-Default.
In a network, having link bandwidth 300 Mbps, competing flows configured with
CCM-LE can share available link bandwidth with new incoming flows very fast (in a
short time) as compared to TCP CUBIC-Default flows. In high bandwidth networks,
TCP CUBIC-(CCM-LE) flows have shorter convergence time as compared to TCP
CUBIC-Default flows. Finally, it is concluded that TCP CUBIC-(CCM-LE) proved
better convergence time as compared to the default version of TCP CUBIC.

Figure 16 shows the comparison results of convergence time TCP CUBIC-(CCM-
LE) and state-of-the-art congestion control mechanisms (TCP BIC, TCP Compound,
TCP Reno and HighSpeed TCP). Results are explained regarding short RTT, long
RTT, buffer queue size and link bandwidth. Results show that convergence time of all
congestion control mechanism is very low in short RTT networks as shown in Fig. 16a.
It means that the individual flows of each congestion control mechanisms, share avail-
able link bandwidth very fast when they are configured in short RTT networks. In
short RTT networks, the convergence time of TCP CUBIC-(CCM-LE) is shorter than

123



238 International Journal of Parallel Programming (2020) 48:213–243

Fig. 15 Convergence time comparison of TCP CUBIC-Default and TCP CUBIC-(CCM-LE)

Fig. 16 Convergence time comparison of TCP CUBIC-(CCM-LE) with state-of-the-art congestion control
mechanisms. a Short RTT wise convergence time. b Long RTTwise convergence time. c Buffer queue wise
convergence time. d Link bandwidth wise convergence time

123



International Journal of Parallel Programming (2020) 48:213–243 239

TCP CUBIC-Default and TCP Compound, whereas it is longer than TCP BIC, TCP
Reno andHighSpeed TCP as shown in Fig. 16a. Thus, TCPCUBIC-(CCM-LE) shows
higher performance regarding convergence time as compared to TCP CUBIC-Default
and TCP Compound. However, in long RTT networks, these six congestion control
mechanisms shows relative lower performance regarding convergence time as com-
pared to short RTT networks. In long RTT networks, the convergence time of TCP
CUBIC-(CCM-LE) is longer than TCP BIC, TCP Reno and HighSpeed TCP but
shorter than TCP CUBIC-Default and TCP Compound, as shown in Fig. 16b. TCP
CUBIC-(CCM-LE) improved its performance regarding convergence time both in
short and long RTT networks as compared to TCP CUBIC-Default.

Figure 16c shows the convergence time of congestion control mechanisms with
respect to queue buffer size. Results show that TCP CUBIC-(CCM-LE) improved its
performance as compared to the state-of-the-art congestion control mechanisms. Fig-
ure 16d shows the convergence time of congestion control mechanisms with respect
to link bandwidth among nodes. Convergence time of all TCP congestion control
mechanisms is compared by varying link bandwidth from 100, 200, 300, 400 and 500
Mbps among the nodes. It is observed that change in link bandwidth did not affect the
convergence time of TCP CUBIC and BIC TCP flows, however, at higher link band-
width 300–500 Mbps, convergence time of HighSpeed TCP and TCP Reno increases.
Figure 16d indicates that TCP CUBIC-(CCM-LE) performance is also higher than
TCP CUBIC-Default, TCP Compound, TCP Reno and HighSpeed TCP.

Figure 17 illustrates the comprehensive performance analysis of TCP CUBIC-
(CCM-LE) with state-of-the-art congestion control mechanisms. Figure 17 compares
the results of convergence time of two flows of each congestion control mechanism
in four different ways: similar RTTs, non-similar RTTs, long RTT and short RTT
networks. Results show that all the congestion control mechanisms show excellent
performance regarding convergence time in short RTT networks and show relative

Fig. 17 Mean convergence time comparison of TCP CUBIC-(CCM-LE) with state-of-the-art congestion
control mechanisms

123



240 International Journal of Parallel Programming (2020) 48:213–243

low performance in long RTT networks. Results also show that when both flows of
congestion control mechanisms have similar RTTs, congestion control mechanisms
show better convergence time performance as compared to non-similar RTTs. Arrows
in the Fig. 17 show that TCP CUBIC-Default increases its convergence time in long
RTT networks: means, TCP CUBIC-Default flows required more time to share avail-
able link bandwidth fairly to each other as compared to short RTT networks. Results
also show that TCP CUBIC-(CCM-LE) improved convergence time performance as
compared to TCP CUBIC-Default in all four cases as previously discussed. Over-
all TCP CUBIC-(CCM-LE) flows improved 17% convergence time performance as
compared to the TCP CUBIC-Default flows.

6 Conclusion and FutureWork

This research has addressed the issues of TCP CUBIC at the time of each packet
loss event. In the congestion control module for loss event, reduction percentage of
cwnd size after each packet loss event is increased by 10%, which improved the
protocol fairness and convergence time. The focus of this research is to maximize the
performance of enhanced TCP CUBIC in long distance, high bandwidth networks by
using enhanced cwnd reduction parameter.

In a network topology, initial flows grab all the available link bandwidth very
quickly and at packet loss events, did not reduce the size of cwnd sufficiently. As a
result, congestion occurs while more flows are still entering into the network, causing
the shortage of available link bandwidth, which, in turn, causes low performance of the
network. To overcome this issue, Congestion Control Module for Loss Event (CCM-
LE) is proposed in this research which is based on the reduction parameter of cwnd
at the time of each packet loss. The purpose of CCM-LE is to decrease the sufficient
amount of cwnd at each packet loss event so that the amount of available link bandwidth
can be increased and all new competing flows on the link can share the bandwidth fairly
and fast among each other. CCM-LE increased the reduction percentage of cwnd size
after each packet loss event, which is done by increasing the multiplicative reduction
parameter β of cwnd being used in TCP CUBIC, so that, at each packet loss event,
current flows can release more bandwidth for new incoming flows. Thus, at each
packet loss event, CCM-LE reduces the size of cwnd by a multiplicative decrease
parameter (μ × β) instead of (β) as used in TCP CUBIC. CCM-LE is evaluated
based on protocol fairness and convergence time of competing flows. The graphical
results of the CCM-LE provide the best solution for cwnd reduction parameter with
a fair distribution of available link bandwidth among all competing flows in shorter
convergence time. CCM-LE provides higher protocol fairness and better convergence
time results in long distance, high bandwidth networks as compared to TCP CUBIC.
By using CCM-LE in enhanced TCP CUBIC, 13% of protocol fairness and 17% of
convergence time is improved in performance as compared to the default version of
TCP CUBIC. This research can be further extended to develop RTT dependent cwnd
reduction mechanism.

Some suggestions are discussed here which can be considered to expand and
improve the future research and projects. This research focused on the methodology

123



International Journal of Parallel Programming (2020) 48:213–243 241

to control and avoid congestion and a mechanism is used to deal with the issues that
could affect the performance of SDN and its underlying platforms. However, desirable
performance is achieved for TCP CUBIC in SDN network environment by proposing
the CCM-LE technique. Therefore, we will extend our research work and include the
high-speed transmission rate, buffer limit and develop RTT dependent cwnd reduction
mechanism to investigate the performance of TCP CUBIC in SDN environment.

References

1. Gupta, V., Kaur, K., Kaur, S.: Developing small size low-cost software-defined networking switch
using raspberry pi. In: Next-Generation Networks, pp. 147–152. Springer (2018)

2. Song, S., Lee, J., Son, K., Jung, H., Lee, J.: A congestion avoidance algorithm in SDN environment.
In: 2016 International Conference on Information Networking (ICOIN), pp. 420–423. IEEE (2016)

3. Huang, Y.-Y., Lee, M.-W, Fan-Chiang, T.-Y., Huang, X., Hsu, C.-H.: Minimizing flow initializa-
tion latency in software defined networks. In: Network Operations and Management Symposium
(APNOMS), 2015 17th Asia-Pacific, pp. 303–308. IEEE (2015)

4. Horvath, R., Nedbal, D., Stieninger, M.: A literature review on challenges and effects of software
defined networking. Proc. Comput. Sci. 64, 552–561 (2015)

5. Sung, J., Kim, M., Lim, K., Rhee, J.-K.K.: Efficient cache placement strategy in two-tier wireless
content delivery network. IEEE Trans. Multimed. 18(6), 1163–1174 (2016)

6. Gupta, A., Jha, R.K.: A survey of 5G network: architecture and emerging technologies. IEEE Access
3, 1206–1232 (2015)

7. Zhang, N., Cheng, N., Gamage, A.T., Zhang, K., Mark, J.W., Shen, X.: Cloud assisted HetNets toward
5G wireless networks. IEEE Commun. Mag. 53(6), 59–65 (2015)

8. Bhalla, M.R., Bhalla, A.V.: Generations of mobile wireless technology: a survey. Int. J. Comput. Appl.
5(4), 26–32 (2010)

9. Dohler, M., Fettweis, G.: The tactile internet IoT, 5G and cloud on steroids. In: Proceedings of IET
Conference, pp. 1–16 (2015)

10. Loshkarev, A., Markhasin, A.: Performance modeling and optimization of flexible QoS-guaranteed
multifunctional MAC for rural profitable ubiquitous 5G IoT/M2M systems. In: International Confer-
ence on Information Science and Communications Technologies (ICISCT), pp. 1–5. IEEE (2016)

11. Xavier, H.F., Seol, S.: A comparative study on control models of software-defined networking (SDN).
Contemp. Eng. Sci. 7(32), 1747–1753 (2014)

12. Jacobson, V.: Congestion avoidance and control. In: Proceedings of ACM SIGCOMM Computer
Communication Review, vol. 18, pp. 314–329. ACM (1988)

13. Allman, M., Falk, A.: On the effective evaluation of TCP. ACM SIGCOMM Comput. Commun. Rev.
29(5), 59–70 (1999)

14. Song, K.T.J., Zhang, Q., Sridharan, M.: Compound TCP: a scalable and TCP- friendly congestion
control for high-speed networks. In: Proceedings of Sixth International Workshop on Protocols for
Fast Long-Distance Networks (PFLDnet-2006), vol. 2, pp. 345–390. PFLD (2006)

15. Ha, S., Rhee, I., Xu, L.: TCP cubic: a new TCP-friendly high-speed TCP variant. ACM SIGOPS Oper.
Syst. Rev. 42(5), 64–74 (2008)

16. Leith, D.J., Shorten, R.N., McCullagh, G.: Experimental evaluation of cubic-TCP. J. Hamilt. Inst. Irel.
44(3), 212–232 (2008)

17. Kozu, T., Akiyama, Y., Yamaguchi, S.: Improving RTT fairness on cubic TCP. In: Proceedings of First
International Symposium on Computing and Networking (CANDAR), pp. 162–167. IEEE (2013)

18. Wang, J., Wen, J., Han, Y., Zhang, J., Li, C., Xiong, Z.: Cubic-FIT: A high performance and TCP cubic
friendly congestion control algorithm. IEEE Commun. Lett. 17(8), 1664–1667 (2013)

19. Goyzueta, RIL., Chen, Y.: A deterministic loss model based analysis of cubic. In: Proceedings of
International Conference on Computing, Networking and Communications (ICNC), pp. 944–949.
IEEE (2013)

20. Cao, N., Zhang, W.: TCP cubic with faster convergence: an improved TCP cubic fast convergence
mechanism. In: Proceedings of the 2nd International Conference on Computer Science and Electronics
Engineering, pp. 521–542. Atlantis Press (2013)

123



242 International Journal of Parallel Programming (2020) 48:213–243

21. Kelly, T.: Scalable TCP: improving performance in high speed wide area networks. ACM SIGCOMM
Comput. Commun. Rev. 33(2), 83–91 (2003)

22. Floyd, S.: Highspeed TCP for large congestion windows. In: An Experimental Network Working
Group, Request for Comments: RFC-3649, ICSI, vol 1, No. 2 pp. 157–169 (2003)

23. Leith, D., Shorten, R.: H-tcp: Tcp for high-speed and long-distance networks. In: Second International
WorkshoponProtocols for Fast Long-DistanceNetworks (PFLDnet-2004)., PFLD, pp. 111–131 (2004)

24. Qureshi, B., Othman, M., Subramaniam, S., Wati, N.A.: QTCP: improving throughput performance
evaluation with high-speed networks. Arab. J. Sci. Eng. 38(10), 2663–2691 (2013)

25. Kerkar, S.: Performance analysis of TCP/IP over high bandwidth delay product networks. J. Comput.
Sci. Netw., University of South Florida, 1–235 (2004)

26. Jacobson, V.: Modified tcp congestion avoidance algorithm. End-to-End-Interest Mail. List 5(1), 556–
589 (1990)

27. Brakmo, L.S., Peterson, L.L.: TCP vegas: end to end congestion avoidance on a global internet. IEEE
J. Select. Areas Commun. 13(8), 1465–1480 (1995)

28. Floyd, S., Henderson, T., Gurtov, A.: The NewReno modification to TCPS fast recovery algorithm. In:
ATechnical Report of StandardsTrack inNetworkWorkingGroup,Request forComments: RFC-2582,
pp. 223–251 (1999)

29. Xu,L.,Harfoush,K.,Rhee, I.: Binary increase congestion control (BIC) for fast long-distance networks.
In: Proceedings of Twenty-third Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM-2004), vol. 4, pp. 2514–2524. IEEE (2004)

30. Ha, S., Rhee, I.: Taming the elephants: new TCP slow start. Comput. Netw. 55(9), 2092–2110 (2011)
31. Marfia, G., Palazzi, C.E., Pau, G., Gerla, M., Roccetti, M.: TCP Libra: derivation, analysis, and com-

parison with other RTT-fair TCPS. Comput. Netw. 54(14), 2327–2344 (2010)
32. Mathis,M.,Mahdavi, J., Floyd, S.,Romanow,A.: TCP selective acknowledgment options. In: Technical

Report on Network, Request for Comments: RFC-3245, pp. 213–245 (1996)
33. Caini, C., Firrincieli, R.: TCP Hybla: A TCP enhancement for heterogeneous networks. Int. J. Satell.

Commun. Netw. 22(5), 547–566 (2004)
34. Xu, W., Zhou, Z., Pham, D.T., Ji, C., Yang, M., Liu, Q.: Hybrid congestion control for high-speed

networks. J. Netw. Comput. Appl. (JNCA) 34(4), 1416–1428 (2011)
35. Xu, W., Zhou, Z., Pham, D.T., Ji, C., Yang, M., Liu, Q.: Unreliable transport protocol using congestion

control for high-speed networks. J. Syst. Softw. 83(12), 2642–2652 (2010)
36. Liu, S., Başar, T., Srikant, R.: TCP-Illinois: a loss-and delay-based congestion control algorithm for

high-speed networks. Perform. Eval. 65(6), 417–440 (2008)
37. Jin, C.,Wei,D.X., Low, S.H.: Fast TCP:motivation, architecture, algorithms, performance. In: Proceed-

ings of Twenty-Third Annual Joint Conference of the IEEE Computer and Communications Societies,
vol. 14, No. 6, pp. 1246–1259. IEEE Press (2004)

38. Fu, X., Sun, L., Wang, R., Fang, Y.: BIPR: a new TCP variant over satellite networks. J. China Univ.
Posts Telecommun. 18, 34–39 (2011)

39. Wang, G., Ren, Y., Li, J.: DSTCP: an improved TCP to increase scalable TCPS friendliness and
stability. In: Proceedings of 14th International Conference on Communication Technology (ICCT),
pp. 546–549. IEEE (2012)

40. Baiocchi, A., Castellani, A.P., Vacirca, F.: YeAH-TCP: Yet another highspeed TCP. In: Proceedings of
Fifth International Workshop on Protocols for Fast Long-Distance Networks (PFLDnet-2007), vol. 7,
pp. 37–42. PFLD (2007)

41. Elmannai,W., Elleithy, K., Razaque, A.: A high performanceand efficient TCP variant. In: Proceedings
of ASEE Northeast Section Conference, University of Massachusetts Lowell, vol. 2, pp. 331–346
(2012)

42. Hagag, S., El-Sayed, A.: Enhanced TCPwestwood congestion avoidance mechanism (TCPwestwood-
new). Int. J. Comput. Appl. 45(5), 21–29 (2012)

43. Lv, W., Zhang, J.: Research of TCP optimization technology for long-distance and high bandwidth-
delay private network. In: Proceedings of International Conference on Computer Science and
Information Processing (CSIP), pp. 381–384. IEEE (2012)

44. Froldi, C.A., Fonseca, N.L.S.: A DCCP variant for high speed networks. Trans. Rev. Am. Latina 10(4),
1947–1953 (2012)

45. Gwak, Y., Kim, Y.Y., Kim, R.Y.: WiCUBIC: Enhanced cubic TCP for mobile devices. In: Proceedings
of IEEE International Conference on Consumer Electronics (ICCE), pp. 96–97. IEEE (2013)

123



International Journal of Parallel Programming (2020) 48:213–243 243

46. Wang, J., Gao, F., Wen, J., Li, C., Xiong, Z., Han, Y.: Achieving TCP Reno friendliness in fast TCP
over wide area networks. In: Proceedings of International Conference on Computing, Networking and
Communications (ICNC), pp. 445–449. IEEE (2014)

47. Callegari, C., Giordano, S., Pagano, M., Pepe, T.: Behavior analysis of TCP linux variants. Comput.
Netw. 56(1), 462–476 (2012)

48. Meher, PK.,Kulkarni, P.J.: Analysis and comparison of performance of TCP-Vegas inMANET. In: Pro-
ceedings of International Conference on Communication Systems and Network Technologies (CSNT),
pp. 67–70. IEEE (2011)

Affiliations

Mudassar Ahmad1 · Usman Ahmad2 ·Md Asri Ngadi3 ·
Muhammad Asif Habib1 · Shehzad Khalid4 · Rehan Ashraf1

Mudassar Ahmad
mudassar@ntu.edu.pk

Usman Ahmad
usman.ahmad82@yahoo.com

Md Asri Ngadi
dr.asri@utm.my

Shehzad Khalid
shehzad_khalid@hotmail.com

Rehan Ashraf
rehan@ntu.edu.pk

1 Department of Computer Science, National Textile University, Faisalabad, Pakistan

2 Computer Science Department, Lahore College for Women University, Lahore, Pakistan

3 Department of Computing, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia

4 Department of Computer Engineering, Bahria University, Islamabad, Pakistan

123


	Loss Based Congestion Control Module for Health Centers Deployed by Using Advanced IoT Based SDN Communication Networks
	Abstract
	1 Introduction
	2 Research Gap
	3 Literature Review
	3.1 Analysis of TCP Congestion Control Mechanisms

	4 Congestion Control Module for Loss Event
	4.1 Design of CCM-LE

	5 Results and Discussion
	5.1 Protocol Fairness Comparison
	5.2 Convergence Time Comparison

	6 Conclusion and Future Work
	References




