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Abstract We introduce a parallel kd-tree construction method for 3-dimensional
points on a GPU which employs a sorting algorithm that maintains high parallelism
throughout construction. Typically, large arrays in the upper levels of a kd-tree do
not yield high performance when computing each node in one thread. Conversely,
small arrays in the lower levels of the tree do not benefit from typical parallel sorts.
To address these issues, the proposed sorting approach uses a modified parallel sort
on the upper levels before switching to basic parallelization on the lower levels. Our
work focuses on 3D point registration and our results indicate that a speed gain by a
factor of 100 can be achieved in comparison to a naive parallel algorithm for a typical
scene.

Keywords GPU computing · kd-Tree construction · Parallel radix sort · 3D-point
registration

1 Introduction

Sorting and searching data is a key function of many computer science applications.
Thus, it is all the more important that sorting data and searching can be performed as
efficiently as possible. Our research addresses real-time object tracking for augmented
reality (Fig. 1a) using point datasets obtained from range cameras [18,19]. The object
of interest is typically a subset of the scene point set. To identify and track it, we
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Fig. 1 a Tracking a piston motor allows one to register virtual objects, spatially aligned with the physical
object. b–d A visualization of the matching and registration process in order to align a reference dataset
(green) with its counterpart in the environment (red)

match a reference dataset with the related point set. Technically, we solve a matching
by alignment task in two steps. First, we use feature descriptors (axis-angle descriptors)
to obtain a rough alignment between a reference point set and the related points in the
environment point set. This estimate is further refined using the Iterative Closest Point
algorithm (ICP). The result is a reference object, which is perfectly aligned with the
counterpart in the environment (Fig. 1b–d). Repeating this frame by frame allows for
object tracking.

Feature descriptor matching and ICP algorithms require nearest neighbors for
execution. Feature descriptors rely on adjacent neighbors to represent the surface
characteristic of the object. ICP uses neighboring point pairs to align the two point
sets. A state-of-the-art solution to efficiently find nearest neighbors is a kd-tree. A
kd-tree represents the data in a spatial tree which increases the performance of nearest-
neighbor search toO(n log(n)) [3], in comparison to a brute force approachwithO(n2).
Although the kd-tree increases the performance of finding nearest neighbors, the pro-
cedural generation of a kd-tree is the bottleneck of the entire method.

Parallel kd-tree generation on a GPU is one approach to increase the performance.
Several algorithms were already introduced [12,17,22]. Each follow different strate-
gies; however, the most complex part remains the sort operation. The sort algorithm
that yields the highest performance on a GPU for large datasets is the radix sort
algorithm [20]. Its sequential implementation sorts a dataset in O(n); parallel imple-
mentations are even faster. However, the parallel radix sort solutions work well only
if the dataset saturates the GPU, meaning many threads are utilized and each thread
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sorts an adequate amount of data. Performance is lost for large data arrays and very
small ones, which typically occur on the upper and lower levels of a kd-tree.

The goal of this effort is to investigate a sort algorithm and strategy which can
maintain high parallelism at all levels of the tree by using a modified parallel sort as
well as switch to different sequential algorithms with respect to the number of points
to sort. In contrast to the related research, we work with medium-size (300.000) point
sets and switch between a parallel radix sort, sequential insertion sort, and a sequential
radix sort for large arrays, normal sized arrays, and small arrays of points. We tested
our approach with random data and a typical scene setup and compared it to a naive
GPU solution. The results indicate a speed increase by factor 100.

The remaining paper is structured as follows. Section 2 reviews the related research
and provides the required background information for this paper. Afterwards, we
explain our GPU realization in Sect. 3. Section 4 describes performance tests and
comparison. The last section closes the paper with a conclusion and an outlook.

2 Background and Related Work

A kd(imensional)-tree is a data structure to organize points with k dimensions, in our
case, 3-dimensional points x = {x, y, z} ∈ R

3. It belongs to the binary search tree
family andwas originally examined in [3–5]. In difference to a binary tree, it constrains
the dimensions on each level of the tree: Each level splits all points along one specific
dimension (x, y, or z) using a hyperplanewhich is perpendicular to the related axis. The
hyperplane separates all points into two areas: All points lower than the split value can
be considered left of the hyperplane, the other points at the right. The split dimension
changes at each level, starting with x at the root, to y, to z, and re-starting at x again. To
identify the hyperplane, a kd-tree algorithm needs to find a pivot point for each node
of the tree, which incorporates sorting the area and determining the median value,
which is typically used as the split value (the hyperplane). Sorting a large dataset is
the performance sink of a kd-tree algorithm and subject for optimization.

In recent years, plenty of GPU solutions to speed up the construction and the
nearest neighbor search with a kd-tree were introduced. In an early work, Garcia et
al. [6] compared a brute-force nearest neighbor search implemented on a GPU with a
MATLAB implementation. The authors report a speedup up to a factor of 100.

Zhou et al. [22] introduced a kd-tree construction algorithm for a GPU with a focus
on computer graphic primitives and ray-tracing. The algorithm constructs the tree
nodes in breadth-first search order. The authors examined a strategy for upper level
nodes, i.e. nodes withmany points to sort, in order tomaintain fine-grained parallelism
of a GPU. They employ a combination of spatial median splitting and empty space
maximizing, to sort the arrays of large nodes, which first computes bounding boxes
per node and further splits the array into chunks to yield an optimal GPU saturation
[11]. Although the authors introduce a similar strategy as we follow, their dataset is
assembled to support ray tracing. The paper reports a speedup factor in the range of
9–13.
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The authors of [17] published a nearest neighbor search solution for a GPU. A
kd-tree is built on the CPU and copied to the GPU to execute the search. The authors’
work is on 3D object registration, thus, they have to solve the same problems we
address. However, they did not construct a kd-tree on a GPU.

Leite et al. [14,15] construct a kd-tree on a gpu using a grid spatial hashing. The
grid size can be set by users to tailor the algorithm for different scenarios. The authors
also perform the search on the gpu to minimize the amount of data that need to be
copied between the gpu and the host memory.

Karras [13] suggested an in-place algorithm to construct binary radix trees. The
approach sorts the data for the tree in parallel and the connection between the segments
of the array ismaintained by assigning indices to nodes. In [8], Ha et al. present a 4-way
radix sort algorithm for a gpu, which demonstrate a significant performance increase.
Singh et al. [21] published a survey addressing several sort algorithms optimized for
a gpu.

Although the results of the previous work show a high performance gain in compar-
ison to a brute-force approach, the efforts focus on 3-dimensional datasets. Recently,
Hu et al. [12] introduce parallel algorithms for KD-tree construction and nearest neigh-
bor search with a focus on high dimensional datasets. In their implementation, each
node at the same level of the tree is processed in an individual thread, computing the
split index and dimension for the current node and redistributes all points. The authors’
algorithm yields a speedup ranging from a factor of 30 to a factor of 242 for point sets
of different sizes.

Our effort is inspired by Hu et al. [12] and Zhou et al. [22].Wemaintain the strategy
to compute each node in a single thread. However, we design a sort algorithm that
utilizes many threads, regardless of the number or size of arrays to sort, which yields
further speedup. Sorting the point set along the split dimension is the most costly
procedure of the kd-tree generation. Running a single sort algorithm for each node
limits the performance, especiallywhen the number of points per array are small. At the
upper levels of a kd-tree, the array is split into just two or four nodes, so assigning each
node to a thread does not yield a significant performance gain, since the GPU remains
under-saturated. Designing the algorithm to utilize all available threads throughout
the entire construction yields the highest performance, as the GPU can remain fully
saturated.

3 GPU Realization

The following section describes our parallel kd-tree construction algorithm. The tree
is built iteratively in a top-down manner. Input data is an array of N points, and the
output is a kd-tree data structure.

Sorting the points along a dimension for each node causes the largest performance
bottleneck during kd-tree construction. This is the performance limiter which we
optimize in our algorithm. Sorting is performed in parallel to utilize the increased
computation resources on the GPU. However, the workload is not trivially paralleliz-
able, especially at the beginning of the construction process, when only a few arrays
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Fig. 2 Level 1 handles the entire array, and splits on the median between 0 and N . Nodes in level 2 each
handle corresponding sub-arrays (“chunks”) from their parent. This pattern continues until each node only
handles a single element

need to be sorted. To prevent bottlenecks in the upper levels, we use amodified parallel
radix sort to evenly distribute the work across the GPU (Sect. 3.2). In the lower levels,
there are enough nodes being independently created that parallelization is achieved by
simply running a single standard sort per node. Additionally, to avoid the overhead of
storing the median and bounds of each node during construction, we use a closed-form
median approximation formula, as in [7].

The following subsections provide an overview of the parallel kd-tree construction,
explanation of memory management, and a closer look at the particular parts of the
algorithm. We utilize CUDA and CUB1 for our implementation.

3.1 kd-Tree Construction for Vector Data in R
3

Algorithm 1 describes the strategy for our parallel kd-tree construction. The main
algorithm runs on the CPU and invokes work units to run in parallel on the GPU. First,
each d-dimensional point is split into d separate datasets and scaled by a factor F
to quantize the values so they can be sorted by an integer sort. Separating the points
by dimension coalesces memory access since only one dimension is sorted at a time,
which improves GPU performance [9,16]. We also compute the maximum element
of the dataset per dimension to minimize the number of iterations required during
radix sort. At each level of the kd-tree, we sort the points by dimension, compute the
median splitting elements, and add themedian elements to the tree. Figure 2 shows how
each node corresponds to both a subsection of the array and a splitting element. The
proposed algorithm recursively constructs a kd-tree using linear-time radix sort on the
upper layers of a kd-tree, resulting in O(nlog(n)) runtime. The time spent performing
insertion sort on the final levels (see Algorithm 2) can be considered overall linear,
since only arrays less than a fixed size (16 in our case) are sorted using insertion sort,
and the number of sub-arrays less than a constant size is linear in N .

1 https://nvlabs.github.io/cub.
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Algorithm 1: The construction algorithm

Input : Array of N points in R
3

Output: kd-tree data structure
initialization (memory allocation);
(x, y, z, index) ← parallel index generation: store an array index for each point pi
(p0, p1, p2) ← parallel split, scale, and quantize: split array in R3 into components of 3 arrays in
{0 . . . F};
(max0,max1,max2) ← Find max values;
l ← 0
1: for l = 0 to l = ⌊

log2 N
⌋
do

2: (pd , index) ← Sort (different strategies);
3: (p0, p1, p2) ← Parallel reorganization: Re-organize all other points to align with the sorted pd ;
4: Parallel create tree nodes for current level
5: end for

3.2 Sorting Strategy

The key reason for the performance of our approach is the ability to evenly distribute
the sorting load across the GPU, since our profiling shows that 95% of the time
constructing the tree is spent sorting.

The challenge in evenly distributing the load is that the number of arrays and their
size change with each level of the kd-tree data structure. For example, with N points,
the first level requires 1 sort of N points. The second level requires 2 sorts of N−1

2
points each, and so forth, until the final level requires N

2 sorts of 1 point each. Typical
parallel sorting algorithms typically work best sorting large arrays, but have too much
overhead for sorting smaller arrays.

Our primary method for optimizing sorting to work with the wide range of array
sizes is to use a variation on parallel radix sort that can operate on the entire array
of N points by handling each sub-array independently. The second optimization is to
switch to executing multiple sequential sorts in parallel when the number of sorts is
large enough to saturate the threads.

Algorithm 2: Sort
Input : Array of N points in N

Output: pd , index
(chunksi ze) ← N

2l
1: if chunksi ze ≥ cutoff then
2: (pd , index) ← Parallel radix sort
3: else if 16 ≤ chunksi ze < cutoff then
4: (pd , index) ← Sequential radix sort
5: else
6: (pd , index) ← Sequential insertion sort
7: end if

Algorithm 2 depicts the overall sorting strategy. The utilized sorting algorithm
depends upon chunksi ze, where a chunk is the sub-array that is handled by a particular
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node (Fig. 2). The total number of points to be sorted is constant, thus chunksi ze can
be computed from Eq. 1, where l is the level of the kd-tree to be constructed and the
root node is at level 0.

chunksi ze = N

2l
(1)

If the chunk size is at least as large as a specified cutoff point, we sort the entire array at
once using our parallel radix sort algorithm (Algorithm 3).When the chunksi ze drops
below cutoff, we sort each chunk using a sequential radix sort, with one chunk per
thread. The final levels with a chunksi ze of less than 16 are sorted with a sequential
insertion sort running on a separate thread for each chunk.

The explanation for a certain cutoff size is further elaborated in Sect. 3.3. The
number 16 as threshold between radix sort and insertion sort is inspired by common
techniques among hyrbid sorts for small arrays, since the O(n2) performance is offset
by a low constant factor. For instance, the C++ standard template library (libstdc++
specifically) switches to insertion sort when arrays fall below 15 elements. We chose
a similar value in an attempt to have good performance over a variety of GPUs.

Algorithm 3: Parallel Radix sort
Input : Array of N points in N, maxd
Output: pd , index
magnitude ← 1

1: while
⌊

maxd
magnitude

⌋
> 0 do

2: Clear memory H
3: (H) ← parallel histogram creation
4: (H ′) ← parallel inclusive prefix sum of H .
5: (T ) ← parallel distribute counts
6: (N ) ← parallel copy of T
7: magnitude ← magnitude · base
8: end while

3.3 Parallel Radix Sort

Algorithm 3 describes the main steps in our parallel radix sort. It can be viewed as
a segmented version of standard parallel radix sort [9]. Radix sort requires multiple
iterations of a stable sort—in our case, count sort. As in standard radix sort, we loop
over increasing magnitudes of base until we have sorted the largest magnitude which
occurs in our dataset.

To allow for sorting segments independently, each chunk has a separate set of
histograms kept in global memory, visualized as layers in the diagram (Fig. 3). Each
block handles TPB (threads per block) number of points in the array and computes a
block-local histogramof the digits. These histograms are stored in block-localmemory
(called shared memory in CUDA) during construction for fast access.

The amount of block-localmemory required per block is proportional to the number
of chunks it overlaps. Because chunk size decreases by half at each level, the number
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Fig. 3 Schematic of the memory management for the parallel radix sort

of chunks that are overlapped, and thus the memory required, grows exponentially
in the final levels. To prevent this exponential memory requirement, we limit each
block to overlapping at most two chunks, resulting in two histograms: h0 and h1. This
implies the cutoff parameter for switching must be at least TPB. We set cutoff = TPB
to allow the parallel sort to execute on as many levels of construction as possible.
Setting cutoff as low as possible is validated in Sect. 4.1.

Once the local histograms are computed, they are copied to the corresponding
location in the global histogram, H . As in [20], we store the histograms in column-
major order to allow a prefix sum operation to compute the final location of each point
in the array. The chunks are stored back-to-back in memory to uphold this property
across the entire array.

Lastly, the points are distributed to their corresponding final location in a temporary
array (Algorithm 5) using the offsets from the prefix-sum of H . Because the distri-
bution must be stable, we distribute each local histogram (column) in a sequential
manner, requiring TPB iterations of a loop.

The parallel histogram creation is shown in Algorithm 4. It is executed with one
thread per point. The general approach is to take advantage of fast atomic operations
on block-local memory for computing a block-local histogram, then copying that into
global memory. Each thread handles a single point, but works cooperatively with the
other threads within the block via block-local memory. The initialization of h0 and h1
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is done once per block, as is the transfer of h0 and h1 to global memory. Determining
which chunk a point belongs to is described in the appendix.

Algorithm 4: Parallel histogram creation
Input : Array of N points in N, maxd , chunksi ze, H , e, thread_index
Output: H
1: if thread_index = 0 then
2: (h0, h1) ← Initialize block-local memory arrays, each of size base, to 0
3: end if ;
4: thread barrier;
5: i ← Point index in N this thread is assigned to
6: spli t ← Splitting if chunk(i) �= chunk(i + 1)
7: chunk_rel ← chunk(i) − chunk(first point in this block); chunk_rel ∈ {0, 1}
8: if ¬spli t ∧ i < N then
9: d ← digi t of Ni for magnitude e
10: atomic(Cchunk_rel [d] ← Cchunk_rel [d] + 1)
11: end if
12: thread barrier;
13: if thread_index = 0 then
14: H ← Add h0 and h1 to their corresponding locations in the histogram
15: end if

Algorithm 5 describes the parallel distribution of values in detail. It is similar to
standard radix sort, with the exception that each thread only handles a single histogram
(columns in Fig. 3). We additionally populate an index array so the dimensions that
are not being sorted can be rearranged to correspond to the currently sorted dimension
array.

Algorithm 5: Parallel Distribution
Input : Array of N points in N, Temporary array N ′ of N points, Array of indices I H , e, TPB
Output: N ′, I ′
1: ib ← Index of block assigned to this thread;
2: ic ← Chunk index for block ib;
3: ncb, nce ← Start and end indices in N for chunk;
4: hb ← max(ncb, ib · TPB) (Begin index of histogram);
5: he ← min(nce, (ib + 1) · TPB) (End index of histogram);
6: for i = he to i = hb do
7: digi t ← digi t of Ni for magnitude
8: H ← Decrement value in H for block ib and digit digi t
9: iout ← Value from H for block ib and digit digi t
10: N ′[iout ] ← N [i]
11: I ′[iout ] ← I [i]
12: end for

The number of threads per block chosen (the value of TPB) has an impact on the
overall performance. Theoretically, we expect that running a higher TPB count is more
beneficial for larger point sets, while a low TPB is faster for smaller sets. This can
be understood by noting that there are two steps contributing to the majority of the
runtime: the local histogram creation, and the global histogram distribution. For higher
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numbers of threads per block, fewer blocks in the histogram creation allow for better
parallelization when many (hundreds of thousands) of threads are involved, as well
as fewer writes to global memory. On the other hand, higher numbers of threads per
block causes the distribution step to run fewer threads that each take longer, which is
a disadvantage for parallelism.

Theoretically, it is possible to identify an ideal value analytically, however, there are
many factors that contribute to the performance, including GPU scheduling, memory
access latencies, and cache timing, i.e. the GPU at hand. Therefore, the ideal TPB
is dependent upon the number of points to sort, and we recommend a search among
candidate values to find it. Any multiple of 32 up to 1024 is a viable block size
candidate for TPB, since GPU warps are of 32 threads, and blocks cannot exceed
1024 threads. Searching among potential dataset sizes with a granularity of 10 results
in 10 · 32 = 320 combinations of hyper-parameters to test. As the algorithm is meant
for real-time applications, 320 tests amounts to very low total time, and the hyper-
parameter search data can be collected only once for a particular GPU. See Sect. 4.1
for results of hyper-parameter searching.

3.4 Create Node

Node creation is done once per level, with one thread per newly created node. Each
node needs to record the median element that it splits along, as visualized in Fig. 2.
The computation for the median is done by computing the start index of the right
child chunk, using the method outlined in the appendix. The array for the tree is pre-
allocated, so we simply copy the point information into the corresponding location
within the tree array.

3.5 Nearest Neighbor Search

For searching the kd-tree, we first copy the query points to the GPU so the search can
be conducted in parallel with one thread per query point. For the application of object
tracking, an approximate nearest neighbor search is sufficient, so we use a priority
queue to handle the backtracking required for nearest neighbor search [1]. We extend
this approach to use a double-ended priority queue, allowing us to place a bound on the
number of enqueued nodes and only keep the most likely candidates [2]. The search is
performed by descending the tree, and at each branch, placing the node not taken into
the queue. If the queue is full and the new node is closer, then the furthest enqueued
item will be removed and replaced. Once a leaf node is reached, the next nearest item
in the queue is removed, and search continues from that point. Traversal of a node can
be terminated based on the “bounds-overlap-ball” test [5].

4 Performance Tests

We ran several experiments to measure the performance of our approach. For vari-
ety, we chose three point sets for testing, including simulated and real-world data.
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Fig. 4 Performance loss from setting cutoff = TPB versus the fastest experimental cutoff value for various
data set sizes

First, we empirically chose the hyper-parameters which yield the best performance
(Sect. 4.1). We further compared our approach with a current state-of-the-art method
and a naive parallelization approach (Sect. 4.2). All experiments, except where noted,
were executed on an NVIDIA Titan X GPU using CUDA 8.0.

4.1 Performance Analysis

Our approach has three adjustable parameters—namely the number of threads per
block (TPB), the base for radix sort, and the cutoff point betweenparallel and sequential
sorts. We ran a hyper-parameter experiment to verify our assumptions regarding the
expected behavior.

We choose to set the cutoff point equal to the number of threads per block to
maximize the time spent using the parallel sorting algorithm. Figure 4 shows the
performance difference between setting cutoff = TPB versus the fastest experimental
value of cutoff. We find that setting cutoff to TPB is nearly always ideal, with a loss of
at most 0.0025%, which matches our expectations.

Our tests showed that setting the base parameter to 32 was optimal for all scenarios.
All following experiments were done with base = 32.

The only hyper-parameter remaining is TPB, or threads per block. Figure 5 shows
the execution times for different TPB values with mean and one standard deviation
marked. Each experiment was repeated 25 times to obtain statistically significant
results.

The results show that on average, 2.5 ms are required to construct a kd-tree with
2000 points and 30 ms for 500,000 points. It is also noticeable that 32 and 64 TBP
yield the lowest runtime for a low number of points, up to 200,000. For larger numbers
of points, 128 or even 256 threads per block are preferable.
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Fig. 5 Comparison of the performance for different numbers of randomly generated points and the numbers
of threads per block (TPB) using the suggested method

Fig. 6 Point set of a typical work environment

As mentioned above, we work on rigid object tracking which requires finding a
small object of interest in a larger point dataset as described in [18,19]. Therefore, to
verify the results on a practical application, a scan of a typical work environment was
captured (Fig. 6) for testing. Note that a typical scene scan contains up to 280,000
points, which is the limit of our camera hardware. For repeatability, we also performed
tests with the Stanford bunny. These results are depicted in Fig. 7. We find that the
performance is similar to random points.
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Fig. 7 Comparison of the performance for different numbers points from a typical scene with the numbers
of threads per block (TPB) using the suggested method

The quantitative data for construction and nearest-neighbor search experiments are
shown in Table 2 in the appendix.

To see the impact of each sort on the overall time, we recorded the amount of time
spent executing parallel radix sort, sequential radix sort, and sequential insertion sort.
The proportion of total time spent in parallel radix sort, serial radix sort, and serial
insertion sort are 96.5 ± 0.36, 0.86 ± 0.39, and 2.64 ± 0.39%, respectively, with
one standard deviation. This, in conjunction with the observation that best times are
achieved by switching from parallel radix sort as late as possible (staying within mem-
ory constraints), indicates that the modified parallel radix sort is the major contributor
to the performance.

4.2 Comparisons

We compared our approach with the method suggested by Hu et al. [12] and ran
experiments using the same GPU model (NVIDIA GeForce GTX 660) as they tested
with. The times for each method are shown in Table 1. The results suggest that for
small datasets (< 102,400), the proposed method is faster than current state of the
art methods, which is reasonable. Hu et al. gain performance from a larger number of
threads, thus, on lower levels of a kd-tree. For small numbers, the suggested method
yields better performance due to the independent number of threads on each level of
the tree.

We also anticipate that our approachmay be able to better take advantage ofmodern
GPUs for two reasons—firstly, it is able to utilize all threads (whichmodernGPUs have
more of), even when there are few nodes being constructed. Secondly, the NVIDIA
Maxwell architecture (CUDA Compute Capability 5.x) introduced hardware support
for sharedmemory atomics [10], and fast atomic sharedmemory operations are crucial
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Table 1 Time to construct kd-tree for 3-dimensional randomly generated points on an NVIDIA GeForce
GTX 660

Number of points Time (ms)

Proposed method Hu, Nooshabadi, Ahmadi

3200 3.5 4.6

6400 4 7.2

1280 4.8 8.2

25,600 5.9 8.8

51,200 9.5 12.4

102,400 22.2 20.2

Fig. 8 Comparison of the
performance for different
numbers of randomly generated
points and the type of sort using
a simple parallelization
technique

to our algorithm. Therefore, when running on a GeForce GTX 660 (CUDA compute
capability 3.0), the histogram creation is significantly slower than on a newer GPU.
Investigating these hypotheses remains as future work.

We further compared our approach with a simple parallelization technique by sort-
ing each chunk independently on a single GPU thread. Radix sort and insertion sort
were chosen because we use them in our hybrid sorting method. Figure 8 shows the
results. Generating a kd-tree with only 10,000 points requires 61 ms for radix sort, and
for 5000 points using insertion sort, already 4000 ms. Testing insertion sort with data
sizes comparable to what we tested on the GPU was infeasible due to the quadratic
runtime of insertion sort.

Lastly, we compared to a typical kd-tree construction on the CPU, shown in Fig. 9.
The data were collected by running on an Intel Core i7-7700HQ processor.

Comparing the results with the suggested method, we yield a performance gain by
a factor of up to ∼ 150 against both CPU construction and a simple parallelization
method.

4.3 Discussion

Our results are roughly in line with what we expected regarding runtime growth, as
radix sort is a linear-time algorithm. One of the interesting results is how higher TPB
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Fig. 9 Time for constructing a
kd-tree on the CPU for different
numbers of randomly generated
points

Fig. 10 Times for sorting final levels, using different sequential algorithms

values result in better performance for large data sizes, but worse for smaller datasets.
As noted in Sect. 3.2, higher TPB makes the histogram creation more efficient since
more work is done in block-local memory, but makes the distribution step slower, as
it needs to loop over a larger number of points.

The final levels of the tree must be sorted using a non-parallel version, because of
memory limitations, as described in Sect. 3.2. The switch to insertion sort for the final
levels, although not a new idea, has a measurable impact on runtime, particularly for
real-time systems. Figure 10 compares the amount of time to sort each level of the
tree using only radix sort, only insertion sort, and the hybrid approach. As the level
gets deeper, each sort is of fewer points, and thus the overhead of radix sort becomes
more significant. We verified this behavior with the NVIDIA Visual Profiler.

5 Conclusion and Outlook

This paper introduced an approach for kd-tree generation on aGPUwhich improves the
performancewhenworkingwithmedium-size point datasets (≤ 500,000) by focusing
on sorting, which is the major performance bottleneck. Typical sorting algorithms are
not tailored toworkwith the highly variable data sizes encountered in kd-trees, making
full GPU saturation difficult. Our approach to improve previous work is to adapt a
parallel sorting algorithm to sort sub-sections of the data independently. Although the
algorithm is limited to sorting larger sub-sections because of memory constraints, our
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approach mitigates this by switching to a simple parallelization model for the final
levels of construction. The time is further decreased by switching from radix sort to
insertion sort for very small arrays.

A comparison with a typical approach on the CPU indicates a performance gain
of up to a factor of 150. Performance is also on comparable to a current state-of-
the-art GPU kd-tree construction, with reason to believe it may be better on newer
GPUs. Therefore, we conclude that a modified parallel radix sort in combination with
switching sorting strategies improves the GPU performance of kd-tree construction in
comparison to previously reported approaches.

The kd-tree implementation is currently used as part of our tracking software
TrackingExpert [19] to find nearest neighbors to refine object alignment with ICP.
In future work, we intend to use it for feature descriptor matching as well.

Appendix

Median Splitting Determination

I To determine which chunk a point belongs to, we use the technique described in
[7] to compute a median. In brief, we consider the width w of a chunk to be a
real number w = N

2l
, where l is the zero-indexed tree level. Therefore, given a

particular index i , we can determine the chunk by c = i
w
.

II Determining whether a point is a median splitting element is also necessary during
the histogram calculation. That can be determined with the following criteria, as
per [7].

spli t ting =
{⌈ i

w

⌉
< i+1

w
∧ i �= 0; true

else; f alse

III Finally, we need the ability to calculate the starting index of a chunk, excluding
the splitting element. Because the chunk width is constant, the starting index is of
a chunk c can be computed by:

is =
{
c = 0; 0

i �= 0; 
(w · c)� + 1

Experimental Data

See Tables 2 and 3.
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Table 2 Quantitative results for all construction operations

Points TPB Comparison Suggested method

R WB B R WB B

2000 32 61 24 18 1.5 1.8 1.9

64 61 24 18 1.8 2.2 2.2

128 61 24 18 2.4 3.0 2.8

256 61 24 18 3.2 4.2 4.2

50,000 32 302 485 315 3.0 3.8 3.6

(36,000)a 64 302 489 315 3.6 4.5 4.4

128 302 489 315 5.1 6.6 6.0

256 301 489 315 9.5 13 9.7

100,000 32 605 958 – 4.2 4.7 –

64 605 958 – 4.6 4.7 –

128 605 958 – 6.0 6.3 –

256 605 958 – 11 12

300,000 32 1918 2545 – 19 16 –

64 1916 2478 – 16 11 –

128 1917 2511 – 13 11 –

256 1912 2579 – 18 18 –

400,000 32 2559 – – 29 – –

64 2555 – – 28 – –

128 2559 – – 21 – –

256 2555 – – 23 – –

500,000 32 3245 – – 37 – –

64 3249 – – 41 – –

128 3251 – – 31 – –

256 3249 – – 29 – –

The time in ms shows the mean value of all tests per item. R Random, WB Workbench Scene, B Stanford
Bunny
aBunny has only 36,000 points rather than 50,000

Table 3 Quantitative results for all nearest-neighbor queries

Tree size Query size

100 10,000 50,000 100,000

2000 676 ± 71 1024 ± 103 4897 ± 115 9672 ± 128

5000 762 ± 104 1055 ± 90 5421 ± 160 10,781 ± 174

50,000 871 ± 154 1502 ± 234 7851 ± 190 15,769 ± 174

100,000 849 ± 158 1466 ± 152 8454 ± 109 17,104 ± 145

200,000 844 ± 102 1763 ± 250 9293 ± 172 18,896 ± 180

500,000 899 ± 122 1976 ± 348 10,082 ± 283 20,535 ± 255

The time in ms shows the mean and standard deviation of all tests
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