
Int J Parallel Prog (2018) 46:1283–1303
https://doi.org/10.1007/s10766-018-0568-8

Variable Length Instruction Compression on Transport
Triggered Architectures

Timo Viitanen1 · Janne Helkala2 ·
Heikki Kultala1 · Pekka Jääskeläinen1 ·
Jarmo Takala1 · Tommi Zetterman3 ·
Heikki Berg3

Received: 7 May 2015 / Accepted: 29 March 2018 / Published online: 6 April 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract The memories used for embedded microprocessor devices consume a large
portion of the system’s power. The power dissipation of the instruction memory can
be reduced by using code compression methods, which may require the use of vari-
able length instruction formats in the processor. The power-efficient design of variable
length instruction fetch and decode is challenging for static multiple-issue processors,
which aim for low power consumption on embedded platforms. The memory-side

The authors would like to thank Business Finland (funding decisions 40081/14 and 1846/31/2014),
Academy of Finland (funding decisions 253087 and 297548), and ARTEMIS JU under Grant Agreement
No. 621439 (ALMARVI).

B Timo Viitanen
timo.2.viitanen@tut.fi

Janne Helkala
janne.helkala@nsn.com

Heikki Kultala
heikki.kultala@tut.fi

Pekka Jääskeläinen
pekka.jaaskelainen@tut.fi

Jarmo Takala
jarmo.takala@tut.fi

Tommi Zetterman
tommi.zetterman@nokia.com

Heikki Berg
heikki.berg@nokia.com

1 Department of Pervasive Computing, Tampere University of Technology, Tampere, Finland

2 Nokia Networks, Tampere, Finland

3 Nokia Technologies, Tampere, Finland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-018-0568-8&domain=pdf
http://orcid.org/0000-0003-1082-9587

1284 Int J Parallel Prog (2018) 46:1283–1303

power savings using compression are easily lost on inefficient fetch unit design.
We propose an implementation for instruction template-based compression and two
instruction fetch alternatives for variable length instruction encoding on transport
triggered architecture, a static multiple-issue exposed data path architecture. With
applications from the CHStone benchmark suite, the compression approach reaches
an average compression ratio of 44% at best. We show that the variable length fetch
designs reduce the number of memory accesses and often allow the use of a smaller
memory component. The proposed compression scheme reduced the energy consump-
tion of synthesized benchmark processors by 15% and area by 33% on average.

Keywords Transport triggered architecture · Instruction compression · Instruction
fetch · Embedded systems

1 Introduction

Modern systems-on-a-chip are becoming more and more advanced as an increasing
amount of CMOS transistors can be fit on a single integrated circuit. Larger programs
can be stored on the on-chipmemories of devices, which consume a significant portion
of the system’s power and chip area. This makes it important to focus on reducing the
memory size and accesses to reach a better power consumption level on the whole.

The power consumption of a circuit is divided into two categories: dynamic power
and static power. The majority of the power dissipated in an integrated circuit is due
to dynamic activity: net switching power, internal cell power and short-circuit power
during logic transitions in the transistors [16]. However, the proportion of static power,
i.e. leakage power dissipation is quickly growing towards half of all power consumed
as the deep submicron technology nodes continue to decrease in size [2].

The program code, which is often stored on on-chip memory for embedded micro-
processors, is an important aspect to consider for power savings. IfHigh Performance
(HP) SRAM is used on the chip, a substantial amount of current leakage is present [12].
Slower Low Standby Power (LSTP) SRAM can be used to avoid large leakage, but
LSTP memory cells have higher on-currents, consuming more dynamic power as a
trade-off. For either technology used, reducing the size of the memory via program
code compression is beneficial: HPSRAMleaks less currentwhen thememorymodule
is smaller,while less dynamic power is used on expensiveLSTPmemory read-accesses
if multiple instructions can be read per cycle.

Static multiple-issue architectures such as Very Long Instruction Word (VLIW),
Explicitly Parallel Instruction Computing (EPIC) [13] and Transport Triggered Archi-
tecture (TTA) [9] can gain a lot of power savings from program code compression
due to their long and loose instruction formats, which require large on-chip memories
for the program code. The challenge brought by some code compression approaches,
such as instruction template-based compression, is the requirement of variable length
instruction fetch and decode units. They are especially difficult to design power-
efficiently on embedded devices employing static-scheduled data paths, which have
fairly simple fetch and decode hardware as the starting point. If a low-power variable

123

Int J Parallel Prog (2018) 46:1283–1303 1285

Fig. 1 Example TTA processor with 6 interconnection buses. Computational resources include four
arithmetic-logic units (ALU), two multipliers (MUL), a load-store unit (LSU), a general control unit
(GCU), a 64-entry register file (RF) and 2-entry boolean register file (BOOLRF), and finally an immediate
unit (IMMU). Some resources are paired to form larger ALU+LSU and ALU+MUL function units [8]

length encoding support can be designed for the processor, power can be saved through
sufficient minimum memory size reduction.

We propose an instruction template-based compression method for TTA proces-
sors, which is used for NOP removal, and implement power-efficient variable length
instruction encoding fetch and decode stages required. Two alternative fetch unit
designs are synthesized and benchmarked on a 40 nm ASIC technology for area and
power consumption measurements. The efficiency of the code compression is mea-
sured by creating custom processors tailored for the applications in the CHStone [4]
test suite and compressing each test program’s code for the processors using four and
eight different instruction templates. Feasibility of the implementation is evaluated
by comparing the power consumption of each test’s program memory pre- and post-
compression with CACTI [17] and comparing the savings with the instruction fetch
units’ power consumption. LSTP SRAMcells are used for the programmemory power
estimation as they function at the 600 MHz clock frequency of the synthesized TTA
processor. Finally, the implementations are benchmarked in complete TTA processors
synthesized in a 28 nm FD-SOI process technology.

This paper is an extended version of a conference article [8]. Adding to the original
work, this paper includes an algorithm for template customization, and a more com-
prehensive evaluation with system-level benchmarks where the proposed fetch units
are integrated into TTA processor test cases.

This paper is structured as follows. Section 2 is an overview of TTA. Section 3
introduces the compression approach and variable length instruction encoding. Section
4 describes the hardware implementation. In Sect. 5, the proposed method is evaluated
in terms of area, compression ratio and power consumption. Section 6 discusses related
work. Section 7 concludes the paper.

2 Transport Triggered Architecture

TTA is a highly modular exposed-datapath relative of VLIW [1]. The main benefit
of TTA comes from software bypassing operation results as inputs to other operations
without going through the register file (RF). As many as 80% of RF accesses may
be eliminated through bypassing [5]. Since the many-port RF is a major power sink

123

1286 Int J Parallel Prog (2018) 46:1283–1303

Fig. 2 Instruction encoding for the example TTA processor, using two instruction templates [8]

in a VLIW, this allows significant power savings. Figure 1 shows an example TTA
processor, comprised of several function units (FU), two register files and a 6-bus
interconnection network.

The original work on TTA proposed various instruction encodings for TTAs includ-
ing connection encoding, socket encoding and bus encoding [1]. All contemporary
TTAs use bus encoding, in which each bus has a corresponding move slot in the
instruction word which contains either a move instruction or a NOP. A partial bus
encoding for the example processor is shown in Fig. 2. The move instruction con-
sists of a source field, a destination field, and an optional guard field for predicated
execution. Opcodes and RF indices are encoded in the source and destination fields.
Moreover, our TTA processor design toolset [3] supports long immediate encoding
using instruction templates, which replace some move slots with immediate values.
The example encoding has two templates, toggled by a one-bit template field which is
located at the instruction’s MSB. This is the minimal template amount for encoding
the move operations and the long immediate for this particular processor. The tem-
plate 0 is a base template which has a move operation for each of the six buses, while
template 1 replaces moves 5 and 6 with a special long immediate move.

3 Variable Length Instruction Compression

Instruction template-based compression removes a part of information in instructions,
which can lead to a variable length format. The instruction formats defined by the
templates can be used, e.g., for NOP removal. Superscalar processors need to decode
each incoming instruction and search for instruction level parallelism simultaneously,
whereas in static architectures the operations are fetched as a bundle, readily scheduled

123

Int J Parallel Prog (2018) 46:1283–1303 1287

Fig. 3 A short program before (left) and after (right) assigning two new instruction formats, which define
two move slots to be used out of the five in the processor. Most of the NOP operations are removed by using
the shorter instruction formats in the 2nd, 3rd, and 4th instruction [8]

for function units. The effective design of fetching, decompressing and decoding
remains as the challenge for the static architectures, as well as the optimal selection
of instruction templates for particular processor configurations.

3.1 Template-Based Compression

Instruction template-based compression approach re-encodes the processor’s instruc-
tion set by adding a template field to the instructions. This template field is used for
defining instruction formats which contain information for only a subset of the avail-
able fields in the architecture’s instruction encoding. On TTA this compression can be
employed by considering the available move slots in the processor as the information
which to include in the different instruction formats. A template defines which move
slots are included in the instruction format, hence the instruction’s size is also tied
to the template. The move slots that are left out of the selection of a template are
implicitly assigned NOPs in the decoding stage, therefore called NOP slots.

The problem becomes the optimal selection of such instruction templates that the
majority of the NOP operations can be removed from the program codewith aminimal
amount of templates, as the hardware complexity andpower usageof the decoder grows
with each additional template. There is a large design space of possible instruction
template encodings and their compression ratio depends on theworkload. For example,
a template which can encode loads and stores is more efficient for data copying than
branch-heavy control logic.

123

1288 Int J Parallel Prog (2018) 46:1283–1303

An example of template selection and NOP removal for a 5-bus TTA is displayed
in Fig. 3. In this example, a large amount of NOPs are seen in four instructions. Two
new instruction formats are assigned to the templates ‘10’ and ‘11’, which only use
the buses A, B and D, E . The rest of the buses in these two formats are considered as
NOP slots. If NOPs are seen in the NOP slots, they are removed from the instruction.
These templates can be used in three instructions to remove a majority of the NOP
operations in the program code.

As seen in the example above, we merged the template previously used only for
long immediate unit selection to be used for NOP removal as well. This means that
in addition to the necessary base template which defines a move for each bus, at least
one template is required by immediate unit selection if an immediate FU is available
in the machine, reducing the amount of templates that can be used for NOP removal
by 2. Due to the binary representation of templates in the template field, the amount
of templates for each machine is optimally a power-of-two number.

The actual use of the templates for compression happens during program schedul-
ing. Each instruction is attempted to match to the list of defined templates starting with
the template with most NOP slots used, resulting in best compression. If an instruc-
tion can be matched with a NOP slot template, the given template is assigned to the
instruction and the bits for each of the matched NOP moves are removed by a com-
pressor during program image generation. The instruction template field is read during
run-time in the decoder and the instruction is pieced back together from the variable
length representation to the processor’s maximum instruction length by inserting the
missing NOP bits to the NOP slots. The complexity of the re-assembly depends on
the amount of slots in the processor, number of templates, maximum instruction width
and the bus widths [10].

In order to simplify the fetch unit, it is useful to constrain instruction templates
to be multiples of a quantum q. The q and maximum instruction size Imax define
the size of the shifter network generated. This q can be increased from instruction
template bit field width I Tw + 1 to Imax for the least complex shifter network, but
worst decompression ratio of the instruction template compression. If q equals Imax ,
the instructions become fixed length. In practice we use power-of-two values for q
and Imax in order to further simplify fetch logic.

3.2 Template Customization Algorithm

This section describes an algorithm for optimizing instruction template selection for
TTAs based on a given target program. The algorithm first compiles the program and
computes a histogramofNOPpatterns found in themachine code, proceeds to evaluate
all possible templates, and selects the template which gives the best compression ratio.
Templates are added in this manner until an user-set target is reached.

On line 4, the function slotMask constructs a binary number whose bit-pattern
corresponds to active move slots. Bits corresponding to NOP slots are set to 0. On line
12, the function computeTemplateSize computes how many bits are needed to encode
a template with the given NOP pattern, rounded up to the next multiple of the user-
defined quantum. The bitwise logic on line 16 tests whether the template described by

123

Int J Parallel Prog (2018) 46:1283–1303 1289

Algorithm 1 Template Customization
1: program ← compile(test_program)
2: Initialize slot_histogram[2num_buses] to 0.
3: for all instructions in program do
4: slot_histogram[slotMask(instruction)] ++
5: end for
6: Initialize instruction_sizes[2num_buses] to full instruction size.
7: for tmpl= 1 to target_nof_templates do
8: best_pattern ← 0
9: best_template_size ← 0
10: best_program_size ← ∞
11: for pattern = 0 to 2num_buses − 1 do
12: template_size ← computeTemplateSize(pattern);
13: program_size ← 0
14: for pattern2 = 0 to 2num_buses − 1 do
15: n ← slot_histogram[pattern2]
16: if (pattern ∧ ¬pattern2) = 0 then
17: program_size + = n ×min(instruction_sizes[pattern2], template_size)
18: else
19: program_size + = n × instruction_sizes[pattern2];
20: end if
21: end for
22: if program_size < best_program_size then
23: best_pattern ← pattern
24: best_template_size ← template_size
25: best_program_size ← program_size
26: end if
27: end for
28: for pattern2 = 0 to 2num_buses − 1 do
29: if (best_pattern ∧ ¬pattern2) = 0 then
30: instruction_sizes[pattern2] ← best_template_size
31: end if
32: end for
33: end for

the bitmask pattern can encode an instruction with the mask pattern2. Multiple target
programs can be supported by computing a weighted average of their NOP pattern
histograms.

The algorithm has an unfavorable complexity class O(2b)with respect to the num-
ber of transport buses b in the target architecture, but with most practical TTAs, the
exponent is small enough that compiling the test programs takes more time than the
iteration. For example, the 256-bit test processor in this paper has 14 buses, and
optimization for 6 templates completes in ca. 20 s, while compilation accounts for
> 90% of the total runtime. However, some proposed TTAs have significantly larger
bus counts. For example, the processor of Shahabuddin et al. [15] has 30 buses and,
extrapolating roughly, would take more than a week to optimize. With TTAs of more
than ca. 20 buses, a method with better asymptotic complexity is desirable.

123

1290 Int J Parallel Prog (2018) 46:1283–1303

3.3 Variable Length Instruction Encoding

Variable length instruction encoding’s main purpose is to encode some instructions in
a smaller amount of bits than others to savememory required to represent the program.
This immediately introduces a problem: since instructions become tightly packed in
the memory, they might no longer be aligned at the beginning of memory words for
convenient fetching and execution.

The incoming instructions must be found from the memory words being fetched
and expanded back to the full instruction length before decoding. In order to be able
to splice the bit patterns into decipherable instructions while guaranteeing continuous
execution, a buffer is required in the fetch unit. The design of this buffer is crucial,
because its complexity can grow rapidly on the logic level if an inefficient implementa-
tion is used, consuming more dynamic power than is saved by the reduced instruction
bits. The decoder’s complexity must be taken into account as well, as its size will
increase undesirably unless constraints are set on the design.

Finally, amethod for handling randomaccess support is required, i.e. how to execute
control flow operations such as jump or call, which require finding an instruction to
execute from the misalignedmemory. Especially the execution of calls is complicated,
because the return address of the program flow must be recorded. In a fixed length
instruction architecture, saving the return address is as simple as saving the program
counter’s value, because each instruction is neatly aligned in the memory. In a variable
length fetch design, there’s an unknown amount of instructions with unknown sizes
remaining in the buffer when a call is detected. A pure hardware solution to return
address calculation requires knowing which memory address each instruction comes
from, the track-keeping of which bloats the hardware.

We investigated two alternative fetch units to estimate the power consumption
of different buffer architectures: ring buffer fetch and shift register fetch. The fetch
units are capable of continuous instruction splicing from the memory words and both
handle the execution of jump instructions. On-hardware return address calculationwas
implemented for the former design. Due to the additional complexity from recording
the return addresses, we found out that it is easier to implement function calls and their
return stack completely in software, therefore, the shift register design was designed
without a call operation.

Our solution for random access support on TTA is addressed partially by the com-
piler and partially inside the fetch unit. Jumps are supported by aligning all control
flow operation targets in the program code at memory addresses. This means that
the code is divided into blocks which are mostly misaligned due to variable length
instructions, but occasionally aligned again at the locations of jump targets. An issue
with jump target alignment is that the instruction prior to an aligned instruction may
contain redundant information, padding bits, which are not to be executed. In our
implementation, we append a padding indication bit to the MSB-end of each instruc-
tion, indicating whether the current instruction contains padding bits in the memory
word after the actual instruction bits. This bit is ‘1’ if padding bits exist.

123

Int J Parallel Prog (2018) 46:1283–1303 1291

Fig. 4 The structure of the ring buffer fetch unit for Imax = 2q. An instruction has been written to the
MSB register on the previous cycle and is currently being read out of the buffer, indicated by the RP. WP is
assigning the next memory word to the LSB register. The RB’s contents are rotated with a rot_r-function
by RP + 1 for output. Other possible RP locations are defined by the q. The data goes directly to fetch
output port from the buffer [8]

4 Implementation of Hardware Unit

The major changes to TTA processor micro architecture required for variable length
instruction support are in the decoder and the fetch units. The changes in the decoder are
generated per-processor according toNOP instruction templates. The decoder contains
a look-up table -based re-assembly network for the instruction template decompres-
sion.

The names of the two fetch alternatives, Ring Buffer (RB) and Shift Register (SR),
describe how the fetch unit handles the incomingmemorywords.RBuses amultiplexer
network which targets different parts of the buffer for writing and reading. SR uses a
shifter network to store and consume the instructions in the buffer in a First In First
Outmanner. The former is aminimalist approach that has a buffer width of only 2Imax ,
while the latter’s buffer width is 3Imax and has more relaxed control logic.

The RB fetch unit’s basic buffer structure during execution is displayed in Fig. 4.
It was designed based on the constraint that without needing to stall during execution,
a minimum buffer width of 2Imax is required for continuous instruction fetching. Its
internal logic cycles a Read Pointer (RP) to point at theMSB of the current instruction
being read from the buffer, andWrite Pointer (WP) to define whether the next memory
word is to be assigned to the upper or lower half of the buffer. The granularity of the
RP and the complexity of the internal multiplexer structure are directly affected by
the minimum instruction size q. The content of the buffer is stored in a variable and
rotated each cycle by a rot_r function with RP + 1 amount to align the instruction
being read to the buffer’s MSB for output. The rot_r operation is needed when the
content inside the buffer becomes misaligned, causing instructions to wrap around
from the LSBs of the buffer to the MSBs.

123

1292 Int J Parallel Prog (2018) 46:1283–1303

Fig. 5 The shift register fetch structure for Imax = 2q. An instruction is seen in the data_in port and
treated as a part of the buffer. The incoming instruction is Imax length and is shifted left to the MSB for
output, indicated by the SA value, which is calculated from a virtual RP value. Other possible SA amounts
are defined by the q. The data propagates through a data_out register before output [8]

Because of the buffer’s limited size, need for uninterrupted execution and the mem-
ory read latency of one cycle, the implementation needs to check whether the current
instruction pointed by RP is large enough to free the buffer half targeted by WP for
the next cycle. The size of the variable length instruction is decoded with the help
of a look-up table during the same cycle as an instruction is read out to determine
buffer fullness, next RP calculation and WP selection. Due to RB’s minimal size, the
cycle-accurate internal control logic becomes complicated. The WP and RP synchro-
nization after a control flow instruction ultimately required the use of one stall cycle
to simplify the control logic and to flush the buffer.

The shift register design was created to simplify the internal logic of the fetch unit
and to address the RB’s stall cycle. The buffer width was increased by one instruction
to 3Imax to alleviate the need for complex control logic, using the data_in port of the
unit as one of the buffer slots. The wider buffer simplifies checking buffer fullness and
reduces the critical path inside the fetch unit, allowing higher clock frequencies to be
reached. However, an extra register with the width of Imax is required at the output,
as otherwise data_in would be routed directly to data_out, disrupting the processor’s
pipeline.

An example of the SR unit is displayed in Fig. 5. The memory words are always
read to the LSB-end of the buffer. Instead of a RP, the SR tracks the current instruction
to be forwarded with a Shift Amount (SA) value. This can be imagined as a virtual RP
with the conversion: SA = Imax − (RP + 1). For output, the entire buffer’s contents
are stored into a variable which is shifted left by SA, aligning the current instruction
pointed by RP to MSB.

Every cycle the buffer’s contents are shifted left by Imax bits, and every cycle an
instruction is consumed from the buffer. If only instructions with the size of Imax are
written in and read out, the buffer stays at equilibrium. The buffer begins to fill up
when smaller instructions are written in, with the RP approaching the left side of the
buffer. When an instruction the size of Imax would no longer fit in, the fetching is

123

Int J Parallel Prog (2018) 46:1283–1303 1293

stalled and instructions are read out from the buffer until an instruction the size of
Imax fits to the buffer again.

5 Evaluation

Two TTA processors with Imax of 128 and 256 bits were customized for a subset
of the CHStone test suite to measure the compression efficiency of two different
instruction template compression configurationswith four and eight templates. In these
configurations, two and six templates were used for NOP removal, respectively. The
power consumption of the program memory was estimated with web-based CACTI
5.3 (rev 174) pre- and post-compression. The power consumption of the two fetch
designs were measured with three different quanta using synthetic tests to scope out
the worst case power dissipation. Additionally, the used chip area of the designs are
provided.

5.1 Compression Efficiency

We used the CHStone C-based high-level synthesis test bench for measuring the com-
pression ratio of the instruction template-based compression. A TTA machine with
an Imax of 256 was customized for the benchmarks. We started with a 6-issue VLIW
equivalent processor architecture and reduced it by combining rarely used buses until a
256-bit instruction length was reached. This process is described inmore detail in [18].
The benchmark programs’ uncompressed sizes were in the range of 14–50 KB, with
the exception of the large jpeg test which was approximately 376 KB.

We created instruction templates using the algorithm described in Sect. 3.2. The
whole CHStone testbench was used as the target workload. For the machine with 2
NOP templates, we set q to 64, and the algorithm produced two short templates of
lengths 64 and 128. For the machine with 6 NOP templates, we reduced q to 32,
resulting in a range of templates between 32 and 192 bits, two of which encode a
32-bit long immediate.

When compiling the test programs, we used a compiler pass which attempts to
reschedule instructions to utilize available instruction templates better [10]. This
improved compression ratios by 2–3%.

Resulting compression ratios are shown in Fig. 6. The 2-template TTA reached an
average ratio of 33% and a maximum of 43%, and the 6-template TTA improved to
an average of 44% and a maximum of 56%. Some ratios are lower than in [8], which
appears to be due to a newer version of the compiler generating up to 16% more
compact baseline code, which has fewer NOPs to compress.

5.2 Program Memory Power Consumption

The power consumption of the program memory when assuming the component is
scaled down to the minimum required by the program at hand was estimated with
CACTI before and after instruction template compression. ITRS-LSTP was chosen
for the SRAM transistor type, interconnect projection type was set to conservative and

123

1294 Int J Parallel Prog (2018) 46:1283–1303

(a)

(b)

Fig. 6 Compression ratios in the CHStone benchmark

wire outside of mat as semi-global. Technology node used was 40 nm and temperature
was set to 300 K for all measurements. The number of bits read out per cycle was
matched with the memory width, i.e., the full instruction length of 256 bits. One
read/write port was used. For the estimation, SRAM size was set to exactly the size of
the program, which is unrealistic as SRAM is typically not manufactured in arbitrary
sizes, but gives an estimate of power savings achieved by the instruction template
compression. Finally, the total dynamic read power per read port Pdyn is calculated
with

Pdyn = Edyn

tclk
= Edyn fclk (1)

where Edyn is the dynamic energy per read port estimated by CACTI and fclk is the
clock frequency of 600 MHz for the SRAM, which is the target frequency used in the
synthesis of the fetch units. tclk is the cycle time of the 600 MHz clock. Since LSTP
SRAM cells were used in the measurements, the portion of leakage power was much
less than 0.1% of the total power consumed and could be left out of consideration. The

123

Int J Parallel Prog (2018) 46:1283–1303 1295

(a)

(b)

Fig. 7 Power saved with instruction template compression, using 2 and 6 instruction templates

overhead of the instruction template bits and padding bits required by the proposed
TTA’s variable length instruction format are taken into account in the results, while
their effect is minimal (< 1%).

The power savings per CHStone benchmark are presented in Fig. 7. The difference
between 2 and 6 instruction templates used for the NOP removal is also visible in
the power results: 6 templates covered much more of the NOP moves, allowing much
better compression ratio and smaller SRAMmemory size. In order to compensate for
the jpeg test results, where the benchmark contains a significantly larger instruction
count, a geometric mean of the power saved in all the tests is presented: 4.74 mW
with six instruction templates and 3.91 mW with just two instruction templates. The
power saved was not linear with the amount of bytes reduced from the program code,
because the size of the program memory affects the consumption, especially when
power of two values are crossed. Despite approximately 21 KB was saved in the aes
test with six templates, only 3.45 mW less power was consumed, while 6.42 mW of

123

1296 Int J Parallel Prog (2018) 46:1283–1303

Fig. 8 Memory power saved when LSTP SRAM memory size is reduced by half [8]

power was saved in the blowfish test with 13 KB memory reduction. As examples,
the program code for aes could be fitted on a 32 KB memory instead of 64 KB after
compression, and blowfish on 16 KB instead of 32 KB.

Since SRAM memory is typically not manufactured in arbitrary sizes, the power
saved when switching to a half smaller memory size was estimated with CACTI with
the same parameters as for instruction compression. These results are presented in
Fig. 8. The chart shows that a considerable saving is seen each time when a reduction
is possible, until 16KB. This highlights that a good amount of power can be saved even
if the program image does not compress significantly, but if it compresses sufficiently
to fit on a smaller memory module.

5.3 Fetch Unit Power Consumption

The original and the two alternative fetch designswere synthesized on a 40 nmstandard
cell technology, using quanta of 2, 32, and 128 bits. The target clock speed was set to
600 MHz and each variable length design variant was subjected to three synthetic test
cases, which explored the units’ worst case power consumption. The three test cases
consisted of a varying degree of Imax = 256-bit and quantum (q) length instructions:
either all q-length, all Imax -length or alternating Imax - and q-length instructions.

The test result with the highest power consumption for each design variant is dis-
played in Fig. 9. In most cases, the worst power consumption was seen when the fetch
unit had to repeatedly fetch and handle q-length instructions, as its internal multiplexer
and shifter structures had to operate on bits. The best results are seen with a q of 128
bits, which is half of the maximum instruction length. On the ring buffer design, the
other q-values follow closely, while the power consumption grows rapidly on the SR
design.

At best, the variable length fetch unit requires 3.50 mW of extra power to operate
at worst case, when the q of 128 bits is used. However, a much better compression
ratio is seen with a q of 32 bits, which is the quantum used in the instruction template
compression results of this paper. The SR approach for a q of 32 consumes more
power than would be saved with 6 instruction templates on average, unless a reduction
from a 128 KB memory or larger to a smaller category can be made. The ring buffer
is much more efficient, reaching the break-even of average power savings when just
two instruction templates are used for compression.

123

Int J Parallel Prog (2018) 46:1283–1303 1297

Fig. 9 Fetch units’ total power consumption with quanta (q) of 2, 32 and 128 bits, showing worst case test
results. [8]

As long as a SRAM memory power saving of approximately 4.0 mW or more is
reached with compression, the variable length ring buffer fetch’s usage is favorable.
These results do not include the overhead from the instruction template decompres-
sion which is integrated in the decoder unit, which most likely consumes some more
dynamic power to re-assemble the decompressed instructions. This can be projected
to be a fairly efficient operation, as it is a multiplexer network which is simplified by
choosing a reasonably large q and using few instruction templates.

5.4 Chip Area

The area of each of the fetch designs was collected from the 40 nm standard cell
synthesis results and is presented in Fig. 10 in kilogates. The fetch designs were
synthesized successfully for the performance range of 500–1000 MHz.

A similar trend is seen in the area as in the power consumption: the SR designs
with a small q grow rapidly, while the ring buffer stays more compact even when
q is increased. Worth noting is that SR design’s area exploded when the maximum
instruction length of a power of two value − 1 was used, while the ring buffer’s
area followed a linear trend with maximum instruction size increase. It is interesting
to note that at their simplest form at q of 128, the ring buffer and SR are of similar size.
This implies that the extra logic the ring buffer requires to function roughly equals the
extra logic required by the SR design’s buffer, which is one instruction longer. Finally,
with the least logic generated from a q of 128 bits, both of the new designs are 431%
larger than the original fetch design, which only handles fixed length instructions.

5.5 System Benchmark

The previous synthetic benchmarks characterize the proposed fetch units in general
terms, but excludes some dynamic behavior which may have a large effect on the
power consumption of a complete system. For one example, the power consumption
of the instruction decoder varies depending on the runtimemixture of templates it has to
expand into full instructions.On the other hand, ifmanyof the executed instructions use

123

1298 Int J Parallel Prog (2018) 46:1283–1303

Fig. 10 Fetch units’ area in kilogates with quanta (q) of 2, 32, and 128 bits, using target clock speed of
600 MHz [8]

small templates, the processor needs fewer memory accesses to fetch them, reducing
SRAM power.

In order to gauge the relative importance of these dynamic effects, we performed
synthesis and power estimation of processors with different memory sizes and fetch
units. The processors were synthesized on a 28 nm FD-SOI process technology using
Synopsys Design Compiler. We used operating conditions of 1V, 25C, and typi-
cal resistance-capacitance models. Basic power optimizations are enabled, including
clock gating and poly-bias, which replaces multi-Vth optimization in the target pro-
cess. Design Compiler is run in a topographical mode, which provides estimates of
wire delays and clock tree power consumption. Clock frequency is constrained to 1
GHz, except for the cases with very large memories, which are set to 0.8 GHz.

We concentrate on the 128-bit wide instruction processor, since the 256-bit pro-
cessor rarely achieves good utilization with this benchmark: there is only an average
performance penalty of 10%. The processor is synthesizedwith the two proposed fetch
options and a baseline fetch without variable-length coding. Each option is synthe-
sized with several instruction memory sizes, so that each benchmark program can be
run on the smallest memory that can accommodate it, rounded to the next power of
two. Amemory compiler which prioritizes, in order of decreasing importance, density,
speed, leakage power and dynamic power, is used to generate SRAM blocks of sizes
128 × 512, 128 × 1024, 128 × 2048 and 128 × 4096. The jpeg test requires more
memory than the largest block, so in this case the memory is constructed in RTL from
multiple blocks and a multiplexer. The compiler produces timing and power models
which are used in simulation. Data memory is not included in synthesis, since it is
unaffected by the choice of instruction compression.

Power estimation is based on switching activity recorded from RTL simulation
of the CHStone benchmark on Mentor Modelsim. The tests blowfish, jpeg and sha
have long runtimes, so we simulate them for only 105 clock cycles. Instruction-level
simulation shows that the utilization profile of computational resources after this period
is similar to a complete run. The shorter tests are run until completion.

Results are shown in Table 1 and in Fig. 11. Our memory components have an
approx. 50%higher dynamic power than estimatedwithCACTI for 32 nm, balanced by
a one-third smaller area and a shorter access time. This is likely due to design tradeoffs
in the memory compiler, which favors density at the cost of dynamic power. Another

123

Int J Parallel Prog (2018) 46:1283–1303 1299

Table 1 Synthesis and power estimation results

ADPCM AES

Base rb sr Base rb sr

Power (mW)

SRAM 17.90 11.32 11.25 17.91 14.19 14.21

Fetch unit 0.65 1.71 3.97 0.70 1.86 3.93

Decoder 0.76 1.04 1.10 0.91 1.19 1.25

Core 3.40 3.67 3.92 3.86 4.34 4.71

Total 22.70 17.73 20.24 23.37 21.58 24.10

Power diff. −21.9% −10.8% −7.7% 3.1%

Energy diff. −20.2% −10.8% −5.6% 3.1%

Stall rate 0.0% 2.1% 0.0% 0.0% 2.3% 0.0%

Access rate 100.0% 71.3% 70.7% 100.0% 78.4% 78.1%

Memory size (kB) 32 16 16 32 32 32

Blowfish GSM

Base rb sr Base rb sr

Power (mW)

SRAM 15.68 11.91 11.91 17.90 10.95 10.74

Fetch unit 0.64 1.79 3.93 0.67 1.82 4.21

Decoder 0.83 1.06 1.11 0.81 1.08 1.17

Core 4.14 4.46 4.68 5.77 6.74 7.12

Total 21.28 19.22 21.62 25.15 20.60 23.23

Power diff. −9.7% 1.6% −18.1% −7.6%

Energy diff. −9.0% 1.6% −14.7% −7.6%

Stall rate 0.0% 0.8% 0.0% 0.0% 4.1% 0.0%

Access rate 100.0% 75.2% 75.0% 100.0% 68.9% 67.3%

Memory size (kB) 16 16 16 32 16 16

JPEG Motion

Base rb sr Base rb sr

Power (mW)

SRAM 29.01 19.94 19.52 15.67 8.91 8.86

Fetch unit 0.64 1.65 3.34 0.61 1.60 3.81

Decoder 0.79 0.96 0.92 0.71 0.95 0.97

Core 2.94 3.17 3.62 2.92 2.87 3.06

Total 33.38 25.72 27.40 19.91 14.33 16.69

Power diff. −23.0% −17.9% −28.0% −16.2%

Energy diff. −19.1% −17.9% −25.8% −16.2%

Stall rate 0.0% 5.1% 0.0% 0.0% 3.1% 0.0%

Access rate 100.0% 69.0% 67.7% 100.0% 60.8% 60.1%

Memory size (kB) 256 128 128 16 8 8

123

1300 Int J Parallel Prog (2018) 46:1283–1303

Table 1 continued

SHA Average

Base rb sr Base rb sr

Power (mW)

SRAM 15.69 11.29 11.29 18.54 12.64 12.12

Fetch unit 0.68 1.82 4.31 0.66 1.75 3.93

Decoder 0.88 1.18 1.21 0.81 1.07 1.10

Core 5.80 6.42 6.85 4.12 4.52 4.85

Total 23.04 20.70 23.66 24.12 19.98 21.87

Power diff. −10.1% 2.7% −16.9% −6.5%

Energy diff. −8.1% 2.7% −14.6% −6.5%

Stall rate 0.0% 2.3% 0.0% 0.0% 2.8% 0.0%

Access rate 100.0% 77.2% 76.7% 100.0% 71.5% 70.8%

Memory size (kB) 16 8 8

Fig. 11 Power estimation results with different fetch units on the 128-bit TTA and the CHStone benchmark

factor is that our simulated dynamic activity may differ from the statistical model in
CACTI that does not account for the switching activity of real application execution.
As a result, the instruction memory dominates the power profile of each processor.
Since compressed programs have fewer instruction memory accesses, compression
gives 5–9% power savings even in the aes and blowfish tests, where the instruction
memory cannot be shrunk since the program size does not fall past a power-of-two
boundary.

The RB and SR designs both reduce instruction SRAM power by an average of
32% and area by an average of 30%, resulting in overall power savings of 16.9% and
an area reduction of 32%. However, the shift register incurs a considerable power
penalty in the instruction fetch. Due to stalls on jump instructions, the circular buffer
design incurs a slowdown of 0.7–4.1%. Consequently, the shift register design may

123

Int J Parallel Prog (2018) 46:1283–1303 1301

Fig. 12 Processor designs after routing: baseline fetch with 1024-word memory (left) and RB fetch with
512-word memory (right). The RB design has a prominent fetch unit (red), but takes up less area overall
(Color figure online)

be preferable in performance-critical applications. Taking the slowdown into account,
the average energy savings per program run for the RB design are 14.6%. In the jpeg
case, instruction compression allowed the ring buffer design to reach a higher clock
frequency than the baseline. However, this is likely an unrealistic scenario, since a
memory of this size would be accessed through a cache hierarchy.

In order to improve confidence in the synthesis results, we took two of the designs
through a rudimentary place and route flow in Synopsys IC Compiler and ran power
estimation with the sha case. We targeted an utilization of 70% and used congestion-
placed routing. The total power of each design was approx. 5% higher after routing
and clock tree synthesis. Figure 12 shows plots of the routed designs with the design
hierarchy highlighted.

6 Related Work

Program code compression has been vastly researched and eventually adopted inmany
instruction set architectures. Similarly, variable length instructions are used in many
architectures such asARMThumb [14], EPIC[13] and x86, not only forNOP-removal,
but also for executing other instructions of varying sizes. Some papers introducing new
compression methods based on variable length instruction encoding list impressive
compression ratios, but do not show either performance, area, or power consumption
results, such as in [11].

Heikkinen evaluated instruction template-based compression in [6,7]. The com-
pression was performed with 2–32 templates on DSP tests with different processor
configurations. In his benchmarks, the designs consumed more power than saved,
despite a compression ratio of 46.5% was reached with maximum templates for the
processors. The results in this paper are more favorable for several reasons: the quan-
tum in [6] is limited to 16 bits, while we explored the effect of quanta of 2, 32, and 128
bits, which are all power of two factors of the selected maximum instruction length of
256 bits. The two processor configurations in [6] had instruction widths of 127, and
192 bits, which are not a power of two, causing more complex hardware structures to
be generated in synthesis. Also both of the fetch designs in this work contained less
registers due to more optimized design.

123

1302 Int J Parallel Prog (2018) 46:1283–1303

A very similar instruction template-based compression is used in EPIC [13], where
two variable length encoding schemes can be used to eliminateNOPs from the program
code:MultiTemplate andVariOp. In addition, EPIC’s fixed lengthMultiOp instruction
format contains a field for how many full NOP instructions are to be issued after the
current instruction, allowing instructions which contain only null data transports to be
omitted completely from the program code.MultiTemplate instruction format involves
the use of templates, each of which defines a subset of function units to target with
the operations of the variable length instruction. The rest of the FUs are implicitly
provided with a NOP. The VariOp instruction format is different, as it permits any
subset of operation slots to be included within any instruction up to the maximum
FU amount. Each operation is explicitly targeted to a FU and the remaining empty
operation fields are implicitly filled with NOPs on a per instruction basis.

7 Conclusion

This paper proposed a solution for compressingNOP instructions onTTAarchitectures
using a variable length instruction encoding approach and instruction template-based
compression. The compression reduces the required SRAM memory size required
for the program code, lowering the total power consumption of the processor. Two
instruction fetch designs were proposed: the ring buffer and shift register buffer. The
former is a more minimalist design with a buffer of two maximum length instructions.
The latter uses one more buffer slot to reduce the control logic complexity and reach a
better clock frequency for the processor. A simple template customization algorithm
was also proposed.

The compression achieved 44% program size reduction on average with 6 NOP
removal templates and 37% reduction with 2 templates. The fetch designs consume
an extra 3.50 mW of power at minimum on a TTA processor with 256-bit maximum
instruction length. Even though the savings from the template compression do not
always directly surpass the extra power consumed by the fetch unit in our bench-
mark suite, the target program can often be fitted on a half smaller memory module
after compression. For SRAM memory sizes between 32–512 KB and beyond, this
reduction is sufficient to get benefit from the variable length architecture.

In benchmarks on complete processor cores, the ring buffer design saved energy
even in cases where it was not possible to shrink the memory module, by reducing the
number of memory accesses, as multiple instructions could be fetched with a single
access. In the cases where the memory module could be shrunk, savings were more
substantial. Even a small, high-density memory is comparable in area to the bench-
marked processor, therefore, the potential area savings are significant. On average,
the ring buffer design saved 14.6% of core energy. The shift register design gave less
consistent energy savings, but may be preferable in performance-critical designs since
it does not incur stall cycles on jumps.

As future work we are investigating compiler techniques to take better advantage
of the NOP templates. It would also be interesting to combine the variable-length
instruction compression with a small L0 instruction cache or a loop buffer for further
power savings.

123

Int J Parallel Prog (2018) 46:1283–1303 1303

References

1. Corporaal, H.: Microprocessor Architectures: From VLIW to TTA. Wiley, Chichester (1997)
2. Deepaksubramanyan, B.S., Nun̋ez, A.: Analysis of subthreshold leakage reduction in CMOS digital

circuits. In: Proc. Midwest Symp. Circ. Syst., pp. 1400–1404. Montreal, QC (2007). https://doi.org/
10.1109/MWSCAS.2007.4488809

3. Esko, O., Jääskeläinen, P., Huerta, P., de La Lama, C., Takala, J., Martinez, J.: Customized exposed
datapath soft-core design flow with compiler support. In: Proc. Int. Conf. Field Programmable Logic
and Applications, pp. 217–222. Milan, Italy (2010). https://doi.org/10.1109/FPL.2010.51

4. Hara, Y., Tomiyama, H., Honda, S., Takada, H.: Proposal and quantitative analysis of the CHStone
benchmark program suite for practical C-based high-level synthesis. J. Inf. Process. 17, 242–254
(2009). https://doi.org/10.2197/ipsjjip.17.242

5. He, Y., She, D., Mesman, B., Corporaal, H.: MOVE-Pro: a low power and high code density TTA
architecture. In: Proc. Int. Conf. Embedded Comput. Syst.: Architectures, Modeling and Simulation,
pp. 294–301. Samos, Greece (2011)

6. Heikkinen, J.: Program compression in long instruction word application-specific instruction-set pro-
cessors. Ph.D. thesis, Tampere Univ. Tech., Finland (2007)

7. Heikkinen, J., Takala, J., Corporaal, H.: Dictionary-based program compression on customizable pro-
cessor architectures. Microprocess. Microsyst. 2, 139–153 (2009)

8. Helkala, J., Viitanen, T., Kultala, H., Jääskeläinen, P., Takala, J., Zetterman, T., Berg, H.: Variable
length instruction compression on Transport Triggered Architectures. In: Proc. Int. Conf. Embedded
Comput. Syst.: Architectures, Modeling and Simulation, pp. 149–155. Samos, Greece (2014)

9. Jääskeläinen, P., Guzma, V., Cilio, A., Takala, J.: Codesign toolset for application-specific instruction-
set processors. In: Proc. SPIEMultimedia onMobile Devices, pp. 65,070X–1 – 65,070X–11. San Jose,
USA (2007)

10. Kultala, H., Viitanen, T., Jääskeläinen, P., Helkala, J., Takala, J.: Compiler optimizations for code
density of variable length instructions. In: Proc. IEEE Workshop on Signal Processing Systems, pp.
1–6. Belfast, UK (2014)

11. Pan, H., Asanović, K.: Heads and tails: a variable-length instruction format supporting parallel fetch
and decode. In: Proc. Int. Conf. Compilers Arch. Synthesis for Embedded Syst., pp. 168–175. Atlanta,
Georgia (2001). https://doi.org/10.1145/502217.502244

12. Pilo, H., Adams, C.A., Arsovski, I., Houle, R.M., Lamphier, S.M., Lee, M.M., Pavlik, F.M., Sambatur,
S.N., Seferagic, A., Wu, R., Younus, M.I.: A 64 Mb SRAM in 22 nm SOI technology featuring fine-
granularity power gating and low-energy power-supply-partition techniques for 37% leakage reduction.
In: Proc. IEEE Int. Solid-State Circ. Conf. Digest Tech. Papers, pp. 322–323. San Francisco, USA
(2013). https://doi.org/10.1109/ISSCC.2013.6487753

13. Schlansker, M.S., Rau, B.R.: EPIC: An Architecture for Instruction-Level Parallel Processors. Tech.
rep, Hewlett-Packard (2000)

14. Segars, S., Clarke, K., Goudge, L.: Embedded control problems, thumb, and the ARM7TDMI. IEEE
Micro 15(5), 22–30 (1995). https://doi.org/10.1109/40.464580

15. Shahabuddin, S., Janhunen, J., Bayramoglu, M.F., Juntti, M., Ghazi, A., Silvén, O.: Design of a unified
transport triggered processor for LDPC/turbo decoder. In: Proc. Int. Conf. Embedded Comput. Syst.:
Architectures, Modeling and Simulation, pp. 288–295. IEEE (2013)

16. Sheng, L., Ahn, J.H., Strong, R., Brockman, J., Tullsen, D., Jouppi, N.: McPAT: an integrated power,
area, and timing modeling framework for multicore and manycore architectures. In: Proceedings of
Annual International Symposium on Microarchitecture, pp. 469–480. New York, USA (2009)

17. Thoziyoor, S., Ahn, J.H., Monchiero, M., Brockman, J.B., Jouppi, N.P.: A comprehensive memory
modeling tool and its application to the design and analysis of future memory hierarchies. In: Proc.
ACM/IEEE Int. Symp. Comp. Arch., pp. 51–62. Beijing, China (2008)

18. Viitanen, T., Kultala, H., Jaaskelainen, P., Takala, J.: Heuristics for greedy transport triggered architec-
ture interconnect exploration. In: Proc. Int. Conf. Compilers, Architecture and Synthesis for Embedded
Systems, pp. 1–7 (2014)

123

https://doi.org/10.1109/MWSCAS.2007.4488809
https://doi.org/10.1109/MWSCAS.2007.4488809
https://doi.org/10.1109/FPL.2010.51
https://doi.org/10.2197/ipsjjip.17.242
https://doi.org/10.1145/502217.502244
https://doi.org/10.1109/ISSCC.2013.6487753
https://doi.org/10.1109/40.464580

	Variable Length Instruction Compression on Transport Triggered Architectures
	Abstract
	1 Introduction
	2 Transport Triggered Architecture
	3 Variable Length Instruction Compression
	3.1 Template-Based Compression
	3.2 Template Customization Algorithm
	3.3 Variable Length Instruction Encoding

	4 Implementation of Hardware Unit
	5 Evaluation
	5.1 Compression Efficiency
	5.2 Program Memory Power Consumption
	5.3 Fetch Unit Power Consumption
	5.4 Chip Area
	5.5 System Benchmark

	6 Related Work
	7 Conclusion
	References

