
Int J Parallel Prog (2019) 47:184–212
https://doi.org/10.1007/s10766-018-0562-1

Automatic Cost Analysis for Imperative BSP Programs

Arvid Jakobsson1,2

Received: 23 September 2017 / Accepted: 11 February 2018 / Published online: 21 February 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Bulk Synchronous Parallel (BSP) is a model for parallel computing with
predictable scalability. BSP has a cost model: programs can be assigned a cost which
describes their resource usage on any parallel machine. However, the programmer
has to manually derive this cost. This paper describes an automatic method for the
derivation of BSP program costs, based on classic cost analysis and approximation of
polyhedral integer volumes.Ourmethod requires and analyzes programswith textually
aligned synchronization and textually aligned, polyhedral communication. We have
implemented the analysis and our prototype obtains cost formulas that are parametric
in the input parameters of the program and the parameters of the BSP computer and
thus bound the cost of running the program with any input on any number of cores.
We evaluate the cost formulas and find that they are indeed upper bounds, and tight for
data-oblivious programs. Additionally, we evaluate their capacity to predict concrete
run times in two parallel settings: a multi-core computer and a cluster. We find that
when exact upper bounds can be found, they accurately predict run-times. In networks
with full bisection bandwidth, as the BSP model supposes, results are promising with
errors <50%.

Keywords Parallel programming · Bulk Synchronous Parallelism · Static analysis ·
Cost analysis

B Arvid Jakobsson
arvid.jakobsson@huawei.com

1 LIFO EA 4022, Univ. Orléans, INSA Centre Val de Loire, Orléans, France

2 Huawei Technologies France Research Center, Boulogne-Billancourt, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-018-0562-1&domain=pdf
http://orcid.org/0000-0001-6028-8972

Int J Parallel Prog (2019) 47:184–212 185

List of symbols

n ∈ N Non-negative integer
S ∈ N Number of supersteps
aexp Syntactic group of arithmetic expressions
bexp Syntactic group of Boolean expressions
cexp Syntactic group of cost expressions
seq Syntactic group of sequential programs
par Syntactic group of parallel programs
A�·� : aexp × Σ → N Semantics of arithmetic expressions
B�·� : bexp × Σ → {tt,ff} Semantics of Boolean expressions
C�·� : cexp × Σ → Nω Semantics of cost expressions
T Termination states
u ∈ U = {a,b, ...} Cost unit
w ∈ W = (N × U)∗ Work trace
ε Empty sequence
R Communication requests
Costseq : W → (U → N) The cost of a sequential execution
Costpar : Wp×S × R

p×S → (U → N) The cost of a parallel execution
sca : seq → (U → cexp) Sequential cost analysis
ω The expression of unbounded cost
++ : A∗ → A∗ → A∗ Concatenation of sequences
(:) : Ap × Ap×S → Ap×(S+1) Left concatenation of vector to matrix
Comm : Σ p × R × Σ p Implementation specific communication

relation
σ ∈ Σ = X → N Environment
σ i,p ∈ Σ Process local environment
(;) : P(seq) → seq Sequential composition of a set of state-

ments

1 Introduction

Limits of sequential computing have led to an explosion of parallel architectures,which
are now present in systems ranging from small embedded devices to supercomputers.
Parallel programs must be scalable: ideally their performance should grow linearly
with the number of cores. We also want the performance of a given program on any
architecture to be predictable. Manual performance analysis quickly becomes tedious
and even intractable as the size of programs grows. Furthermore, use cases such as on-
line scheduling, algorithmprototyping and evaluationmotivateautomatic performance
prediction of programs as another desirable quality of any parallel model.

Bulk Synchronous Parallelism [20] is a parallel model which gives the programmer
a high-level view of parallel computers and programs. Like PRAM it offers a high
degree of abstraction. Furthermore it has a simple but realistic cost model, giving
BSP programs predictable scalability. BSPlib [12] is an API standard for imperative
BSP programming with many implementations. However, to our knowledge, there

123

186 Int J Parallel Prog (2019) 47:184–212

are no methods for automatic cost analysis of imperative BSP programs: the BSPlib
programmer is charged with manually deriving the cost of his or her program.

Contributions This paper presents a method for automatic parametric cost analysis
of BSPlib programs. Specifically, our contributions are:

– An adaptation of cost analysis for sequential programs [3,24] to imperative Bulk
Synchronous Parallel programs by sequentialization.

– The application of the polyhedral model to the estimation of communication costs
of imperative BSP programs.

– A prototype implementation combining these two ideas into a tool for static cost
analysis of imperative BSP programs.

– Two evaluations, one symbolic and one concrete, of the implementation on 8
benchmarks.

The obtained cost formulas are parameterized by the input variables of the analyzed
program. These variables can represent things such as the size of input arrays and other
arguments, but can also include the special variable nprocs, which contains the
number of processors executing the program. Thus the obtained cost formula bound
the cost of running the program on any number of processors with any input.

The limitation of our work is that we require that analyzed programs are structured,
and thus that they have a reducible control flow graph. Furthermore, we require that
they have textually aligned barriers. In our previouswork [14],we argue that imperative
BSP programs of good quality have textually aligned barriers and describe a static
analysis verifying that a program has this property.

We obtain a tight bound on communication cost when the input program has tex-
tually aligned, polyhedral communications. When this is not the case, we still obtain
safe upper bounds. However, progress in the applicability of the polyhedral model [4]
leads us to believe that the communication of most real-world BSP programs can be
represented in this model.

Processes in BSPlib communicate by generating requests which are executed when
processes synchronize. The BSPlib interface specification [12] defines the effect of
processes reading the same memory area from the same target process. However, the
effect of two processes writing to the same memory area on the same target process
(i.e. concurrent writes) is not defined and the result is implementation specific. To
cover any BSPlib implementation, we parameterize our BSPlib formalization by a
communication relation as detailed in Sect. 3.2.

The article proceeds as follows. In Sect. 2 we present BSP and its cost model. In
Sect. 3 we present the sequential language of our formalization and the sequential cost
analysis, as well as the extensions for BSP programming. In Sect. 4, we present the
main contribution: the cost analysis for parallel programs. In Sect. 5, we describe the
implementation and its evaluation. InSect. 6wepresent relatedworkbefore concluding
in Sect. 7.

2 The BSP Model and Its Cost Model

Bulk Synchronous Parallel is a model for parallel computing. It provides an abstract
view of both parallel computers and algorithms and, notably, it provides a cost model.

123

Int J Parallel Prog (2019) 47:184–212 187

sscan =
[i := 1]1;
while [i < nprocs]2 do

if [pid ≥ i]3 then
get4(pid − i, x, xin)

end;
[sync]5;
if [pid ≥ i]6 then

{1 w} [x := x + xin]7

end;
[i := 2 ∗ i]8

end

Process 0:

Process 1:

Process 2:

Process 3:

1

1

1

1

1

Superstep 1 Superstep 2 Superstep 3

(a) (b)

Fig. 1 A parallel prefix calculation in an imperative BSP language, program text and execution. a The
program sscan implementing parallel prefix calculation. The syntax and the semantics of the language is
given in Sect. 3. More details on this program and, in particular, the work annotation {1 w} at label 7 are
given in Example 3 in the same section. bGraphic representation of the execution of sscan with 4 processes
in three supersteps. Local computation is drawn as thick horizontal bars, which are annotated with the
sequential cost. The communication of one word is drawn as an arrow, and synchronization barriers as
vertical thick bars. The first superstep has no local computation. The last has no communication

BSP computations are performed by a fixed number of p processor–memory pairs.
The computation is divided into supersteps. Each superstep consists of three phases:
(1) local, isolated computation in each process (2) communication, and (3) global
synchronization. Figure 1b graphically depicts a BSP computation.

BSPlib is an API standard and an implementation thereof for imperative BSP pro-
gramming in C. It follows the Single Program, Multiple Data (SPMD) paradigm.
Formally, an SPMD computation can be seen as P(0)‖P(1)‖ . . . ‖P(p − 1) where P
is a program taking the process identifier as argument, p is the number of processes,
and ‖ is parallel composition. Communication in BSPlib is enabled by either Direct
Remote Memory Access (using the bsp_put and bsp_get functions) or message
passing. We focus on DRMA in this article since the two modes are interchangeable
in terms of cost in the BSP model. The use of bsp_put and bsp_get generates
communication requests: these are logically deferred until the communication phase
of the superstep that occurs when all processes call the bsp_sync function.

BSP Cost model The cost model is one of the distinguishing features of BSP. It allows
algorithm developers to gauge the performance of their algorithms on different types
of parallel computers, and conversely, for hardware developers to understand how
different algorithms will perform on their machine.

In addition to p, a BSP computer is specified by the three parameters r , g, and l,
which denote the cost of one step of local computation, the cost of communicating
one word, and the cost of one barrier synchronization, respectively. The cost of the
execution of a BSP algorithm is expressed by the summation

Wr + Hg + Sl

where W is the total number of computation steps on the critical path, H is the total
communication volume, and S is the number of supersteps. Precisely, W and H are
given by

123

188 Int J Parallel Prog (2019) 47:184–212

W =
S−1∑

k=0

p−1
max
i=0

(wi,k) H =
S−1∑

k=0

p−1
max
i=0

(max(H+
i,k, H

−
i,k))

where wi,k is the cost of the local computation performed by process i at superstep k
while H+

i,k and H−
i,k are the number of words sent, respectively received, by process i

at superstep k. The cost of a BSP algorithm is typically given as a function of input
parameters and the number of processes.

Example 1 The BSP cost of the execution in Fig. 1b is

(0 + 1 + 1)r + (1 + 1 + 0)g + 3l

since the longest running computation of the three supersteps is 0, 1, and 1 respectively.
The first two supersteps contain communication with the cost 1, while the last has no
communication.

3 Sequential Language and Parallel Extensions

We first define a sequential language. Its semantics is instrumented to return the infor-
mation needed to compute the sequential cost of each execution: the cost is a measure
on what abstract computational resources are needed to complete that execution.Units
are used as arbitrary labels for different kinds of resources (arithmetic operations, float-
ing point operations, I/O, etc.). We assume that the instructions of the input program
are annotated with their individual cost and unit. Such annotations can also be added
by an automatic pre-analysis. This scheme abstracts away from the specificities of
different computer architectures and allows for the segmentation of costs.

We assume the existence of a Sequential Cost Analysis, which is a static analysis
giving a safe upper bound on the cost of any execution (as determined by the annotation
of each evaluated instruction in that execution) of a given program. The computed
worst-case cost is parameterized by the input variables of the program. The description
of such analyses can be found in literature [3,24].

We extend the sequential language with parallel primitives which enable Bulk Syn-
chronous Parallel-programming and give the semantics of this new language. The
parallel semantics is also instrumented to return the information needed to obtain the
parallel cost of each execution.

3.1 Sequential Language

The sequential language seq with annotations is defined by the following grammar:

aexp � e ::= n | x | f A(ē)
bexp � b ::= true | false | fR(ē) | fB(b̄)
seq � c ::= [skip]� | [x :=e]� | [x :=any]� | [x :=[el .. eu]]� | if [b]� then c else c end

| while [b]� do c end | c; c | {e u} c

123

Int J Parallel Prog (2019) 47:184–212 189

where X is the set of variables, x ∈ X, n is a numeral denoting a natural number, L is
a set of labels and � ∈ L. We write ē and b̄ to denote sequences of expressions. The
function symbols f A, fR and fB denote members of a predefined set of arithmetic,
relational, and Boolean functions which take sequences of expressions as arguments.

The statements include the no-op, regular assignments, non-deterministic updates,
non-deterministic updates constrained to a range, conditional statements, loops,
sequences of two statements and work-annotated statements.

Work annotations {e u} can be added to any statement, and consists of an arithmetic
expression e and a cost unit u ∈ U = {a,b, ...}. The expression gives the cost of the
annotated statement and the unit the group of costs in which it should be counted.
For instance, let a ∈ U denote the cost of arithmetic operations. Then the annotated
assignment {1 a} [x :=x + 1] signifies that the cost of the assignment is 1 and that
when executed this cost should be added to the total cost of arithmetic operations.
Statements can have multiple annotations, thereby enabling modeling of statements
with costs in different units. The cost of a program is given solely by these annotations:
statements without annotations do not contribute to the cost of an execution.

In addition to arithmetic expressions, variables can be assigned non-deterministic
values (any), optionally constrained to a range given by two arithmetic expressions
([el . . . eu]). Non-deterministic updates are used in Sect. 4 to sequentialize parallel
programs.

The semantics of arithmetic and Boolean expressions in aexp and bexp is
standard [26] and given by the functions A�·� : aexp × Σ → N, and
B�·� : bexp × Σ → {tt,ff} respectively.

The semantics of seq operates on environments σ ∈ Σ = X → N, which are
mappings from variables to numerical values, and is instrumented to collect work
traces. A work trace w ∈ W = (N × U)∗ is a sequence that contains the value and
cost unit of each evaluated work annotation in an execution. The empty sequence is
denoted ε.

The operational big-step semantics of seq is given by the relation →:

→ : (seq × Σ) × (Σ × W)

The rules defining this relation are given in Fig. 2. The rule (s–work) defines how the
evaluation of a work annotation adds an element to the work trace, by evaluating the
expression of the annotation and adding it to the trace with the unit of the annotation.
The effects of multiple annotations to the same underlying statement are accumulated.
A sequence of statements (s–sequence) simply concatenates the traces from the exe-
cution of each subprogram. Here ++ is concatenation of sequences. The semantics
of non-deterministic assignments is given by the rules (s–havoc) and (s–havocr) and
assigns a non-deterministic value (from a restricted range for the latter) to the variable
on the left-hand side, i.e. havocking it. This renders the language non-deterministic.
The rules for conditional statements (s–ift and s–iff) and loops (s–whf and s–wht) are
standard.

Our semantics does not assign meaning to nonterminating programs. We restrict
our focus to terminating programs, as typical BSP programs are algorithms that are
intended to finish in finite time. Indeed, the BSP model does not assign cost for pro-

123

190 Int J Parallel Prog (2019) 47:184–212

[skip] , σ
(s−skip)

[x := e] , σ σ[x ← A e σ]
(s−assign)

c, σ σ , w

e u} c, σ σ , [e σ, u] ++ w
(s−work)

c1, σ σ , w1 c2, σ σ , w2

c1; c2, σ σ , w1 ++ w2
(s−sequence)

n ∈ N

[x := any] , σ σ[x ← n]
(s−havoc)

nl = A el σ nu = A eu σ n ∈ [nl..nu]

[x := [el .. eu]] , σ σ[x ← n]
(s−havocr)

B b σ = tt c1, σ t

if [b] then c1 else c2 end, σ t
(s−ift)

B b σ = ff c2, σ t

if [b] then c1 else c2 end, σ t
(s−iff)

B b σ = tt c; while [b] do c end, σ t

while [b] do c end, σ t
(s−wht)

B b σ = ff

while [b] do c end, σ
(s−whf)

Fig. 2 The big-step semantics of seq

grams that do not finish. Some programs, such as reactive programs, repeat infinitely
a finite calculation. These can be treated by identifying manually and analyzing sep-
arately their finite part, typically the body of an event loop.

Sequential cost Given the work trace of an execution, we can obtain its cost. The cost
is a mapping from units to numerical values:

Costseq : W → (U → N) (1)

Costseq(w) = λu.

#(w)−1∑

i=0

{
ni if w[i] = 〈ni , vi 〉 and vi = u

0 else
(2)

123

Int J Parallel Prog (2019) 47:184–212 191

Fig. 3 The program cfact
computes the factorial of the
initial value of n. The work
annotation at label 3 signifies
that the assignment has a cost
equal to the value of log n when
executed. The unit in this
annotation is a, signifying
additions

cfact =
[f := 1]1;
while [n > 0]2 do

{log n a} [f := f ∗ n]3;
[n := n − 1]4

end

Sequential cost analysis There are sound static analyses automatically deriving con-
servative upper bounds on the cost of executing sequential, imperative programs [3].
We let sca denote a sound sequential cost analysis for seq. Given a program it returns
an upper bound on the cost of executing that program. The bound is given as a cost
expression from cexp that is parametric in the program’s input-parameters. Cost
expressions cexp are arithmetic expressions extended with the symbol ω denoting
unbounded cost.

sca : seq → (U → cexp)
cexp = aexp ∪ {ω}

The semantics of cost expressions is given by the function C�·� : cexp × Σ → Nω

which is a natural extension of A�·� with Nω = N ∪ {ω}.
Since the halting problem is undecidable in general, sca returns conservative upper

bounds. Consequently, it might return ω for a program that actually terminates with
any initial environment. However, since sca is sound, we have the following for any
unit u and program c:

– If c terminates in any initial environment and the cost of its execution in unit u is
at most n, then n ≤ sca(c)(u).

– If c is nonterminating in some initial environment, then sca(c)(u) = ω.

Example 2 The sequential program cfact in Fig. 3 computes the factorial of the param-
eter n and stores it in the variable f . For the sake of providing a non-trivial example,
assume that n is of arbitrary precision so that multiplication by n consists of log n
additions, and that we are interested in the number of such additions performed in any
execution. We add a work annotation to the assignment at label 3 of value log n with
unit a (for addition). With our implementation of sca, based on [3], we have

sca(cfact) = λu.

{
n log n if u = a
0 else

This is an upper bound on the cost of executing cfact, parameterized by the input
variable n, expressing that it performs at most n log n additions when calculating the
factorial of n.

123

192 Int J Parallel Prog (2019) 47:184–212

3.2 Parallel Language

We now extend the sequential language with primitives for Bulk Synchronous Parallel
computation, modeling BSPlib. A BSP computation is divided into S > 0 supersteps
and consists of a fixed number p > 0 of processes executing in parallel. The set of
process identifiers is P = {0, . . . , p− 1}. We add the sync, put and get primitives
which are used for synchronization and buffered communication between processes.
The parallel language par is defined by the following grammar:

par � s ::= [skip]� | [x :=e]� | if [b]� then s else s end
| while [b]� do s end | s; s | {e u} s
| [sync]� | put�(e, e, x) | get�(e, y, x)

where e ∈ aexp, b ∈ bexp x, y ∈ X and u ∈ U. We also reserve the variables pid
and nprocs.

The operational semantics for par programs is defined by local and global rules
operating on environment vectors. The local rules extend the semantics of seq. Intu-
itively, they compute the new state of one component in the environment vector,
corresponding to one process.

The global rules compute the superstep sequence of the BSP computation. They
compute the new state of a complete environment vector by applying the local rules to
each component, then handle communication and synchronization between processes
as detailed below. The global rules are instrumented to compute p × S matrices of
work traces and communication traces that are used to obtain the parallel cost of the
execution.

The semantics of local computation is given by the relation ⇓ (Fig. 4):

⇓ : (par × Σ) × (T × Σ × W × R)

T = {Ok} ∪ {Wait(s) | s ∈ par}
R = (〈n@i

put−→ x@i ′〉 | 〈x@i ′ get←− y@i〉)∗ with n ∈ N, i, i ′ ∈ P, x, y ∈ X

where T is the set of termination states, with Ok denoting end of computation
and Wait(s) a remaining computation to execute in the following superstep. Work
traces have the same meaning as in the sequential language. Communication requests
are generated by the put and get primitives. The rule (p–put) appends the form

〈n@i
put−→ x@i ′〉 to the communication request trace, signifying process i requesting

that the value n be put into variable x at process i ′. The rule (p–get) appends the form
〈x@i ′ get←− y@i〉 to the communication request trace, signifying process i ′ requesting
that the value the contents of variable y at process i be retrieved into its variable x .
In both forms, we say that the source is i and the destination is i ′. Communication
request traces are used both to perform communication at the end of supersteps in the
global rules and in the calculation of communication costs.

123

Int J Parallel Prog (2019) 47:184–212 193

[skip] , σ Ok
(p−skip)

[x := e] , σ Ok , σ[x ← A e σ]
(p−assign)

[sync] , σ Wait([skip])
(p−sync)

s1, σ Ok , σ , w1, r1 s2, σ t, σ , w2, r2

s1; s2, σ t, σ , w1 ++ w2, r1 ++ r2
(p−seq−ok)

s1, σ Wait(s1), σ , w, r

s1; s2, σ Wait(s1; s2), σ , w, r
(p−seq−wait)

n = A e2 σ i = σ(pid) i = (A e1 σ)

put (e1, e2, x), σ Ok [n@i
put−→ x@i]

(p−put)

i = σ(pid) i = A e σ

get (e, y, x), σ Ok [x@i
get←− y@i]

(p−get)

B b σ = tt s1, σ t

if [b] then s1 else s2 end, σ t
(p−ift)

B b σ = ff s2, σ t

if [b] then s1 else s2 end, σ t
(p−iff)

B b σ = tt s; while [b] do s end, σ t

while [b] do s end, σ t
(p−wht)

B b σ = ff

while [b] do s end, σ Ok
(p−whf)

Fig. 4 Rules of the local big-step semantics of par

The global level of the operational semantics of par programs is given by the
relation ⇓S which is indexed by the number S ≥ 1 of supersteps in the derivation:

⇓S : (parp × Σ p) × (Σ p × W
p×S × R

p×S)

where Ap denotes a column vector of height p and Ap×S denotes a p× S matrix. This
relation is defined by the rules of Fig. 5. In the rule (p–glb–all–wait), all processes
request synchronization: they all calculate a continuation, a new environment, a work
trace, and a communication request trace, forming p-vectors of each. After synchro-
nization, global computation continues with the vector of continuations, and the trace
vectors of the first superstep are concatenated to the trace matrices computed by exe-

123

194 Int J Parallel Prog (2019) 47:184–212

∀i ∈ P, C[i], E[i] Wait(C [i]), E [i], W [i],R[i]
Comm(E , R, E) C , E S−1 E , W , R S > 1

C, E S E , W : W , R : R
(p−glb−all−wait)

∀i ∈ P, C[i], E[i] Ok , E [i], W [i],R[i]

C, E 1 E , W, []i∈P

(p−glb−all−ok)

Fig. 5 The rules of the global big-step semantics of par

cuting the remaining supersteps. Concatenation of vectors to matrices is given by the
operator (:) : Ap × Ap×S → Ap×(S+1). The Comm : Σ p × R × Σ p relation defines
communication by executing the communication request traces in an implementation
specificmanner. For instance,Comm can handle concurrent writes, occurringwhen the
trace contains two put requests to the same variable on the same process, by taking
either value of the requests non-deterministically or deterministically by imposing a
priority on origin processes, by combining the values, or disabling such writes com-
pletely. Thus, different BSPlib implementations can be modeled precisely by varying
Comm.

In the rule (p–glb–all–ok), all processes terminate. If neither of the global rules are
applicable, as when the termination states of two processes differ, then computation
is stuck and the program has no meaning in the semantics.

par programs are executed in SPMD-fashion: one initial program s is replicated
over all processes. Furthermore, we require that the initial environment is the same
on all processes in the first superstep, except for the reserved pid variable, which
contains the process identifier of each process. We also give processes access to the
total number of processes p with the nprocs variable. We let σ i,p denote the local
process environment defined by σ [pid ← i,nprocs ← p]. The semantics of a par
program s with the initial environment σ is thus

〈[s]i∈P, [σ i,p]i∈P〉 ⇓S 〈E,W, R〉

Parallel cost Theparallel cost of a parprogram follows theBSPmodel, and so is given
in terms of local computation, communication and synchronization. The units g,l ∈
U, assumed not to appear in user-provided work annotations, denote communication
and synchronization costs respectively. Remaining units denote local computation and
are normalized by the function w.

The BSP cost of an execution is normally given as a sum of computation, com-
munication and synchronization costs, but we shall give it in the form of a function
f : U → N. The classic BSP cost expressed by f is given by

∑
u /∈{g,l} f (u)w(u)r +

f (g)g + f (l)l.
To define the cost of local computation we use the concept of global work traces.

A global work trace is a vector of traces corresponding to the selection of one trace
from each column of the work trace matrix of one execution. The set of global work
traces of a work trace matrix is defined:

G : Wp×S → P(WS)

123

Int J Parallel Prog (2019) 47:184–212 195

G(W) = {[W [i0, 0],W [i1, 1], . . . ,W [iS−1, S − 1]] | [i0, . . . , iS−1] ∈ P
S}

The cost of communication is defined in terms of H-relations. The H-relation of a
superstep is defined as the maximum fan-in or fan-out of any process in that superstep,
and can be calculated from the communication traces of all processes in that superstep.

We define the H+
i ,H−

i : R → N functions, for i ∈ P, giving the fan-out respec-
tively fan-in of process i resulting from the execution of a communication request
trace. Using these, we define H : R → N to give the maximum fan-out or fan-in of
any process for a given request trace.

H+
i (r) =∑#(r)−1

k=0

{
1 if the source of r [k] is i
0 else

H−
i (r) = ∑#(r)−1

k=0

{
1 if the destination of r [k] is i
0 else

H(r) = maxi∈P(max(H+
i (r),H−

i (r)))

The communication relation Comm that parameterizes the global semantics affects
expressibility. Given a problem, different choices of Comm may permit solutions of
different costs, but the program text of each solution would be different. The anal-
ysis (Sect. 4), being defined on the program text, would reflect the new cost. A
program might generate a request whose effect is not defined by some choice of
Comm. However, our analysis returns an upper bound on the communication cost
under the assumption that all communication requests are executed, and is therefore
independent of Comm.

Using theH-function and the concept of global traces, we define the parallel cost of
an execution from the generated work trace matrix and communication request trace
matrix:

Costpar : Wp×S × R
p×S → (U → N)

Costpar(W, R) = λu.

⎧
⎪⎨

⎪⎩

max{Costseq(++T, u) | T ∈ G(W)} if u /∈ {g,l}∑
0≤k<S H(++R[∗, k]) if u = g

S if u = l

where ++ gives the concatenation of each trace in a vector and R[∗, k] is the kth
column of R. The parallel cost of local computation for some unit u /∈ {g,l} is equal
to the cost of the global work trace with the highest sequential cost in that unit. The
cost of communication (u = g) is the sum of the H-relation of each column in the
communication trace matrix. The cost of synchronization (u = l) is equal to the
number of supersteps S in the execution.

Example 3 The program sscan (adopted from [19]) for calculating prefix sum is given
in Fig. 1a. The input of the program is a p-vector, where the i th component is stored
in the variable x at process i . The assignment at label 7 is annotated with a work
annotation 1 of unit w.

The execution of this program over 4 processes consists of 3 supersteps, and is
illustrated in Fig. 6. We write σ i,p,y to denote σ i,p[x ← y]. In this example, the
initial value of x in all processes is 1. The values of the other variables are omitted for
brevity. The cost of this execution is

123

196 Int J Parallel Prog (2019) 47:184–212

Fig. 6 The resulting work trace and communication request trace matrix from the execution of sscan with
4 processes in 3 supersteps. In both matrices, rows correspond to processes, and columns to supersteps

λu.

⎧
⎪⎨

⎪⎩

0 + 1 + 1 = 2 if u = w

1 + 1 + 0 = 2 if u = g

1 + 1 + 1 = 3 if u = l

where the local computation cost is given by the global work trace [ε, [〈1,w〉], [〈1,w〉]]
and communication cost is given by the fact that the H-relation is 1 in each superstep
but the last.

The cost of sscan as a function of the number of processes can be obtained manually
by rewriting the program as a recurrence relation. This relation is then solved to obtain
a closed-form cost. When executed with p processes, the loop is executed �log2 p�
times, resulting in �log2 p�+1 supersteps. The largest local computation is performed
by the process p − 1, which performs the work 1 w at the j th iteration of the loop.
The H-relation of each superstep but the last (which has no communication) is 1, since
each process receives at most one value and sends at most one value. Thus, the cost
of sscan is given by the function

λu.

⎧
⎪⎨

⎪⎩

�log2 p� if u = w

�log2 p� if u = g

�log2 p� + 1 if u = l

which is parametric in the number of processes. The next section describes how to
obtain such bounds automatically.

4 Cost Analysis

This section describes our main contribution: a method for transforming a parallel
program to a sequential program amenable to the pre-existing sequential cost analysis.
The transformation ensures that the worst-case parallel cost of the original program
is retained. The transformation consists of 3 steps:

1. First, we verify that the input program s is textually aligned [14]. Intuitively, this
ensures that processes always make the same choice at each control flow branch
which affect whether they synchronize or not. Consequently, if they synchronize,
they are all at the same source code location and in the same iteration of each loop.
This property allows us to sequentialize s into the “sequential simulator” Sw(s).

2. Knowing the communication distribution of the program is key to obtaining precise
bounds on communication costs. The second step analyzes each communication

123

Int J Parallel Prog (2019) 47:184–212 197

Parallel
program s

(1) Sequentialize program Textual alignment analysis

(2) Insert communication cost annotations

(3) Insert synchronization cost annotations

Polyhedral analysis

Sequential cost analysis Parametric cost
f : U → cexp

Textually aligned statements and
pid-independent variables

of s

Sw(s)

H-relations

Sg(s)
Sl(s)

Fig. 7 Parallel cost analysis pipeline. Green boxes are new contributions, blue is our previous work and
red are external dependencies (Color figure online)

primitive and surrounding control structures in the polyhedral model [9]. This
allows us to obtain a precise bound on communication costs that are inserted as
work annotations into the sequential simulator, obtaining Sg(s).

3. In the third step we insert annotations for counting the number of synchronizations
into the sequential simulator, obtaining Sl(s).

Finally, the sequential cost analysis analyzes the resulting sequential program Sl(s)
and returns the parametric parallel cost. This analysis pipeline is summarized by Fig. 7.

4.1 Sequential Simulator

This section describes the transformation of a parallel program with textually aligned
synchronization s ∈ par into a “sequential simulator” Sw(s) ∈ seq of s, such that
all global work traces of s can be produced by Sw(s). To do this, we replace parallel
primitives with skip and assign non-deterministic values to all variables affected by
the parallelism. This will allow us to use the sequential cost analysis to get an upper
bound on the local computation cost on the parallel program.

Sequentialization The sequentialization transforms the parallel program so that it
non-deterministically chooses the identity and state of one local process before the
execution of each superstep. The underlying cost analysis will return the cost of the
worst-case choice, coinciding with the definition of the local computation cost of one
superstep.

This relies on all processes starting execution at the same source code location in the
beginning of each superstep. If they also synchronize at the same source code location
at the end of the superstep, then we can do the same non-deterministic identity change
for the next superstep, and so on. Parallel programs that synchronize in this way have
textually aligned synchronization.

A statement is textually aligned if for all control flow branches that affect whether
the statement is executed, all processes choose the same branch. This ensure that
either all processes execute the statement, or none of them. By extension, textually
aligned statements are executed the same number of times by all processes in any exe-
cution. The program has textually aligned synchronization when all synchronization
primitives of the program are textually aligned.

123

198 Int J Parallel Prog (2019) 47:184–212

The non-deterministic identity switch may switch to an identity that does not corre-
spond to any feasible state of a local process. To restrict the non-determinism, we also
identify variables whose value is the same in all processes at the end of the superstep.
These variables, called pid-independent, are unaffected by the identity switch.

Textual alignment analysis In the first step, we statically under approximate the set of
pid-independent variables. These are then used to obtain the set of textually aligned
statements and to verify that synchronization is textually aligned.

Since the pid variable is the one thing that is not replicated in the initial configura-
tion of a par-execution, a sound underapproximation of the set of pid-independent
variables can be obtained by tracking data and control dependencies on pid. Com-
munication may introduce additional local variations in the state for the destination
variables. The analysis conservatively excludes all destination variables from the set
of pid-independent variables.

The set of statements that are textually aligned are now those that are control
dependent only on control flow branches that exclusively contain pid-independent
variables.

In our previous work [14], we have designed such an analysis for imperative BSP
programs. We shall refer to this analysis as rs, of the following functionality:

rs : par → ({�} ∪ (P(L) × (L → P(X))))

If a program s can be statically verified to have textually aligned synchronization
then rs(s) = (τ, π) where τ and π are under approximations of textually aligned
statements and the set of pid-independent variables at each statement, respectively.

Variables that are pid-independent go through the same series of values on each
process at the textually aligned statements where they are pid-independent. Consider
any fixed execution and process, let x be a pid-independent variable at some textually
aligned statement and let n j be the value of x at the j th execution of this statement.
Then this series of values will be the same for each process in this execution.

If the program does not have textually aligned synchronization, then RS(s) = �.
In this case, the parallel cost analysis cannot move forward and returns λu.ω. In the
rest of this article we assume that programs have textually aligned synchronization.

Example 4 Consider the program sscan in Fig. 1a. The textual alignment analysis gives:

RS(sscan) = (τscan, πscan)

τscan = {1, 2, 3, 5, 6, 8}

πscan(�) =
{

{i, x, xin} if � = 1

{i} else

The program has textually aligned synchronization, since all statements in this
program are textually aligned except the statements labeled 4 and 7, corresponding to
the body of the conditionals in the loop. The body of these conditionals will not be
executed by all processes and this is statically detected since the value of the guard

123

Int J Parallel Prog (2019) 47:184–212 199

conditions depends on the pid variable. The variables assigned at these statements
and the variables affected by communication, namely x and xin , will not be pid-
independent at any statement reachable by these assignments and communications.
However, i has no dependency on pid and so is pid-independent throughout the
program.

Sequential simulator The sequential simulator Sw(s) of a parallel program s with
textually aligned synchronization is obtained by assigning a non-deterministic value
to all variables that are not pid-independent after each sync-primitive, and then
replacing all parallel primitives (sync, get and put) by a skip with the same
label.

We first define the function havoc that creates a program that assigns a non-
deterministic value to each variable given as argument:

havoc : P(X) → seq

havoc(V) = (;) {[x :=any]�′ | x ∈ V }

where (;) gives a sequential composition of a set of statements and �′ is a fresh label
for each assignment.

Now assume RS(s) = (τ, π), that Xs contains the set of variables used in s and
again let �′ be a fresh label. Then Sw(s) is defined:

Sw, S′ : par → seq

Sw(s) = [pid:=[0 ..nprocs − 1]]�′ ; S′(s)

S′(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[skip]� if s ∈ {put�(e1, e2, x),get
�(e1, y, x)}

[skip]�; havoc(Xs \ π(�)) if s = [sync]�
S′(s1); S′(s2) if s = s1; s2
if [b]� then S′(s1) else S′(s2) end if s = if [b]� then s1 else s2 end

while [b]� do S′(s1) end if s = while [b]� do s1 end

{e u} S′(s1) if s = {e u} s1
s if s ∈ {[x :=e]�, [skip]�}

Intuitively, the sequential simulator will act as any process of the parallel program
and will have the same series of values for pid-independent variables. For variables
that are not pid-independent, it switches to any value after each synchronization using
a non-deterministic assignment. In this way, the sequential simulator can assume the
identity of any process at the beginning of each superstep and produce any global
trace. This is formalized by the following conjecture:

Conjecture 1 For any s ∈ par such that rs(s) = (τ, π), and σ ∈ Σ , if
〈[s]i∈P, [σ i,p]i∈P〉 ⇓S 〈E,W, R〉 then for all w ∈ {++T | T ∈ G(W)},
∃σ ′, 〈Sw(s), σ 〉 → 〈σ ′, w〉.

Note that the parallel program and its sequential simulator execute the same
sequence of textually aligned statements. That is, when executed with the same initial

123

200 Int J Parallel Prog (2019) 47:184–212

Fig. 8 Sequential simulator
Sw(sscan)

Sw(sscan) =
[pid := [0 .. nprocs − 1]]10;
[i := 1]1;
while [i < nprocs]2 do

if [pid ≥ i]3 then
[skip]4

end;
[skip]5;
[pid := any]11; [x := any]12; [xin := any]13;
if [pid ≥ i]6 then

{1 w} [x := x + xin]7

end;
[i := i × 2]8

end

environment, the sequences of executed labels of both programs will coincide after
removing all labels that are not in τ .

Obtaining the local computation cost As an immediate consequence of the previous
conjecture the simulator also produces the maximum global work trace. Thus, we can
now obtain an upper bound on the parallel cost of the computation of a program s by
applying sca to its sequential simulator:

Conjecture 2 For any s ∈ par such that rs(s) = (τ, π), and σ ∈ Σ , if
〈[s]i∈P, [σ i,p]i∈P〉 ⇓S 〈E,W, R〉 then for all u ∈ U we have Costpar(W, R)(u) ≤
C�sca(Sw(s))(u)� σ [p ← nprocs].

The non-determinism introduced by the sequential simulator has the potential to
render the obtained upper bound imprecise. However, we conjecture that the variables
that have most influence on cost, namely those affecting control flow, are also those
that are pid-independent and thus this imprecision should have limited influence on
the upper bound. Indeed, this is true for data-oblivious programs as our evaluation in
Sect. 5 shows.

Example 5 SeeFig. 8 for the sequential simulator Sw(sscan).Note thenon-deterministic
assignments to pid, x and xin after the former synchronization at label 5, and how
the sync and get at labels 4 and 5 have been replaced by skip. The effect of the
former get is simulated by the non-deterministic update of xin after the former sync
at label 5.

4.2 Analyzing Communication Costs

The second transformation inserts an annotation {e g} for each communication prim-
itive s in the simulator. This makes the underlying sequential cost analysis account
for communication cost. The expression e must be an upper bound on the addition to
the total communication cost of any processes executing s. Without further semantic
analysis of the parallel control flow, we must assume that all processes execute the

123

Int J Parallel Prog (2019) 47:184–212 201

primitive, even if only a subset of them actually do so, and without knowing the exact
value in all processes of the first (destination) expression of the put or get, we must
also assume that the communication is unbalanced, and thus more costly.

For instance, see the communication primitive at line 4 in the program sscan guarded
by the conditional at line 3. Without any semantic knowledge about the destination
expression pid− i and the guarding condition pid ≥ i , one must assume the worst-
case addition of p g to the programs total communication cost, obtained when all
processes execute the get with the same destination (for instance, when i = pid).
However, by knowing that i has the same value on all processes in each execution of
this get, one can deduce that the destination expression refers to one distinct process
for each process executing the get, and thus a tighter bound of 1 g can be obtained.

Polyhedral communicating sections This reasoning is automated by representing the
communication primitive and surrounding code, called the communicating section, in
the polyhedral model [4]. In this model, each execution of a statement that is nested
in a set of loops and conditionals is represented as an integer point in a k-polyhedron,
where k is the number of loops. A k-polyhedron is a set of points in Z

k vector space
that is bounded by affine inequalities:

D = {x ∈ Z
k | Ax + a ≥ 0}

The vector x corresponds to the loop iterators. Thus each point in the polyhedron
corresponds to one valuation of the loop iterators. A is a constant matrix. The constant
vector a can contain program variables not in x that are constant in the section, called
parameters. This model requires that all loop bounds, iterator updates as well as
conditionals in the section can be represented as affine combinations of loop iterators
and parameters.

For the communication section, the analysis adds two additional variables s and
t to x, corresponding to the pid of the source and destination process. The analysis
requires that the entry point of the section is textually aligned, that all parameters
are pid-independent, that the destination expression is an affine combination of loop
iterators and that the section does not contain a sync.

Finding the polyhedral representation for a section is the subject of “polyhedral
extraction” [22], a subject which is outside the scope of this work. In our prototype,
simple pattern matching is used to find the largest communication section around each
communication primitive, but the method used is orthogonal to our contribution and
should not be seen as a limitation.

Interaction sets From a polyhedral communicating section the analysis obtains the
exact set of communication requests generated when it is executed by all processes,
called the interaction set [9].

From a communication primitive put�(e1, e2, x), whose communication section
consists of k loops with the loop iterators x0, . . . , xk−1, each with lower and upper
bounds l0, . . . , lk−1 and u0, . . . , uk−1, and a set of guard expressions C ⊆ bexp from
the conditionals, the analysis constructs the interaction set:

123

202 Int J Parallel Prog (2019) 47:184–212

D = {[s, t, x0, . . . , xk−1] ∈ Z
k+2 | 0 ≤ s < p ∧ t

= e1 ∧
∧

l∈0...(k−1)

ll ≤ xl ≤ ul ∧
∧

C}

For get�(e1, y, x) with the same surrounding code the analysis constructs the inter-
action set:

D = {[s, t, x0, . . . , xk−1] ∈ Z
k+2 | s = e1 ∧ 0 ≤ t < p∧

∧

l∈0...(k−1)

ll ≤ xl ≤ ul ∧
∧

C}

In both cases, [s, t, i0, . . . , ik−1] ∈ D means that process s will send data to t
at the end of the superstep and that the loop iterators x0, . . . , xk−1 have the values
i0, . . . , ik−1 when the communication primitive is executed.

The constraints here are given as a conjunction, the transformation to the matrix
inequalities representation is standard [4].

Example 6 The analysis automatically extracts the polyhedron DS representing the
interaction set generated by the communicating section from lines 3-5 of sscan (see
Fig. 1a). The boundaries of DS are shown first as inequalities, then as the equivalent
Boolean formula.

…
3: if [pid ≥ i]3 then
4: get4(pid −

i, x, xin)
5: end if

…

DS =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
s
t

) (
s
t

)
∈ Z

2,

⎡

⎢⎢⎢⎣

−1 1
1 −1
1 0

−1 0
1 0

⎤

⎥⎥⎥⎦

(
s
t

)
+

⎛

⎜⎜⎜⎝

i
−i
0

p − 1
−i

⎞

⎟⎟⎟⎠ ≥ 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= {[s, t] ∈ Z
2 | t = s − i ∧ 0 ≤ s < p ∧ s ≥ i}

The two variables s and t ofDS respectively correspond to the identifier of the source
and destination process of each request. This set is parameterized by the variable i
that is constant in the section and the BSP parameter p. The constraints are given by
the destination expression (t = s − i), the domain of the pid variable (s ≥ 0 and
p − 1 ≥ s), and the condition on line 3 (s ≥ i).

Example 7 Figure 9 contains some common communication patterns and the interac-
tion sets obtained by the analysis.

H-relations from Interaction Sets From the interaction set, the analysis extracts a
tighter bound on the section’s addition to the total communication cost of the execution,
which is inserted as an annotation at the section’s entry. This is done by creating two
relations from the interaction setD: frompid to the set of outbound (D+) respectively
inbound (D−) communication requests. The H-relation of this section is the largest of
the upper bounds on the cardinality of the image of these relations. This is expressed
byH, where # gives the cardinality of a set:

123

Int J Parallel Prog (2019) 47:184–212 203

One-to-one One-to-all All-to-one All-to-all

if [pid = src]1 then
put2(dest, e, x)

end

if [pid = src]1 then
[i := 0]2;
while [i < nprocs]3 do

put4(i, e, x);
[i := i + 1]5

end
end

put1(dest, e, x)

[i := 0]1;
while [i < nprocs]2 do

put3(i, e, x);
[i := i + 1]4

end

Pattern Interaction set H-relation
One-to-one D = {[s, t] ∈ Z2 | 0 ≤ s < p ∧ t = dest ∧ s = src} 1
One-to-all D = {[s, t, i] ∈ Z

3 | 0 ≤ s < p ∧ t = dest ∧ 0 ≤ i < p ∧ s = src} p
All-to-one D = {[s, t] ∈ Z

2 | 0 ≤ s < p ∧ t = dest} p
All-to-all D = {[s, t, i] ∈ Z3 | 0 ≤ s < p ∧ t = i ∧ 0 ≤ i < p} p

Fig. 9 Common communication patterns, their interaction sets and H-relations

D+(pid)={[s, t, . . .] ∈ D | s = pid} D−(pid) = {[s, t, . . .] ∈ D | t = pid}
H = max(maxp−1

pid=0 #D+(pid),maxp−1
pid=0 #D−(pid))

Implementation of communication analysis The analysis uses isl [21] to explicitly
create the interaction set D as described earlier and the two relations D+ and D−
using isl’s operations for creating relations and sets. It then asks isl to compute
the expression corresponding toH, which it does using integer volume counting tech-
niques [23].

Example 8 For the interaction set DS from the example sscan, this technique obtains
the H-relation 1. The analysis inserts this bound before the if statement at line 5 in the
sequential simulator of sscan (see Fig. 10). Figure 9 contains common communication
patterns and upper bounds extracted from their interaction sets using isl.

Discussion This method requires no pattern matching, except for the polyhedral
extraction, and automatically extracts a precise upper bound on the communication
cost of any communication section that can be represented in polyhedral model. When
this is not the case, we fall back on the conservative but sound upper bound cost of
p g, which is added as an annotation in the simulator to the communication primitive.

Soundness The following conjecture states that the simulator with communication
bounds soundly upper bounds the cost of the parallel program:

Conjecture 3 Let s ∈ par be a program such that rs(s) = (τ, π) with polyhedral
communications, any environment σ ∈ Σ and 〈[s]i∈P, [σ i,p]i∈P〉 ⇓S 〈E,W, R〉 then

Costpar(W, R)(g) ≤ C�sca(Sg(s))(g)� σ [nprocs ← p].

4.3 Analyzing Synchronization Costs

Since we require that synchronization primitives be textually aligned in s, it suffices
to annotate each instruction which was sync in the original program with {1 l} in the
sequential simulator Sg(s) to obtain Sl(s). We also add an annotated dummy skip

123

204 Int J Parallel Prog (2019) 47:184–212

Fig. 10 Sequential simulator
Sl(sscan), with annotations for
communication bounds and
synchronization costs

Sl(sscan) =
[pid := [0 .. nprocs − 1]]11;
[i := 1]1

while [i < nprocs]2 do
{1 g}
if [pid ≥ i]3 then

[skip]4

end
{1 l} [skip]5

[pid := any]12; [x := any]13; [xin := any]14;
if [i < nprocs]6 then

{1 w} [x := x + xin]7

end
[i := i × 2]8

end
{1 l} [skip]15

instruction to the end of the program to account for the implicit synchronization barrier
at the end of all executions.

Any execution of the parallel program evaluates the same sequence of textually
aligned statements as the sequential simulator does on the same initial environment.
Thus, the simulator will evaluate exactly as many annotations of unit l as there are
synchronizations in the execution of the parallel program. This intuition is formalized
by the following conjecture:

Conjecture 4 Let s ∈ par be a program such that rs(s) = (τ, π), σ ∈ Σ any
environment, and 〈[s]i∈P, [σ i,p]i∈P〉 ⇓S 〈E,W, R〉. Then

Costpar(W, R)(l) ≤ C�sca(Sl(s))(l)� σ [nprocs ← p].
Example 9 The sequential simulator Sl(sscan) in Fig. 10 is obtained by adding the
communication bounds found in Sect. 4.2 to the conditional at label 3, and annotating
the sync at label 5, as well as adding the dummy skip at label 13 to account for the
synchronization barrier terminating the execution.

We can now submit the simulator Sl(sscan) to the sequential cost analyzer. We use
the solver PUBS [2]. The obtained cost is exactly the one obtained earlier by manual
analysis, i.e.:

λu.

⎧
⎪⎨

⎪⎩

�log2 p� if u = w

�log2 p� if u = g

�log2 p� + 1 if u = l

4.4 Time Complexity of Analysis

We treat the time for sequentialization and communication analysis (Tseq) separately
from the final sequential cost analysis (Tsca):

123

Int J Parallel Prog (2019) 47:184–212 205

Tanalysis(e, v) = Tseq(e, v) + Tsca(e, v)

Here, e is the number of edges of the program’s control flow graph (which is propor-
tional to its size) and v the number of distinct variables of the program.

Sequentialization is done in linear time but uses the result of a data-flowanalysis that
is computed in time bounded byO(e·v) [18]. The analysis time of each communication
primitive is polynomial in the size of the polytope representing it [23], which in turn
is bounded by the maximum nesting level of the program. The latter is often assumed
to be bounded by some constant for realistic programs. Hence, Tseq is bounded by
some polynomial.

The time of analyzing the sequentialized program, Tsca, depends on the details
of the implementation of sca. Our implementation translates the input program into
“cost relations” [2]. This step involves a data-flow analysis bounded by O(e · v) and
an abstract interpretation in the domain of convex polyhedra that is linear in e but
exponential in the maximum number of variables in any scope [8].

Finally, the cost relations are solved into a closed form upper bound by PUBS [2]
that is done in a time exponential in their bit size (Genaim, personal communication,
2017).

In summary, Tanalysis grows exponentially with the size of the program. This is
due to our specific implementation of sca that uses PUBS: another sound sca with
lower complexity could be used. Note that the analysis complexity only depends on
the size of the analyzed program and is independent on run-time parameters such as
the number of processors executing the program.

5 Implementation and Evaluation

A prototype of the analysis has been implemented in 3 KLOCs of Haskell. The under-
lying sequential cost analysis is implemented as described in [3] and uses APRON
[15] for abstract interpretation, PUBS [2] for solving cost equations, and isl [21] for
polyhedral analysis.

We have performed two evaluations of the static upper bounds of the parallel cost
given by the implementation on 8 benchmarks. The first evaluates that they are indeed
upper bounds and by what margin. The second evaluates the quality of their power to
predict actual run times in seconds. While finding exactWorst-Case Execution Times
[25] is not our goal, we demonstrate how BSP costs relate to concrete run times.

Benchmarks Table 1 summarizes the benchmarks, their static bounds and analysis
running times. The second column indicates whether the program’s control flow
is independent of the contents of the input arrays. We call such programs “data-
oblivious”, and when it is not the case, “data-dependent”. Note that no attempt has
been made to optimize the running time of the prototype. The benchmarks are written
in a variant of par (Sect. 3.2), extended with arrays. Array contents are treated as
non-deterministic values by the implementation. The benchmarks are inner product
(BspIp); parallel prefix in logarithmic and constant number of supersteps (Scan2
and ScanCst2); parallel reduction (BspFold); array compression (Compress);

123

206 Int J Parallel Prog (2019) 47:184–212

Ta
bl
e
1

Su
m
m
ar
y
of

be
nc
hm

ar
ks
,s
ta
tic

up
pe
r
bo

un
ds

of
th
ei
r
pa
ra
lle

lc
os
ts
an
d
an
al
ys
is
tim

es

B
en
ch
m
ar
k

D
at
a-
in
de
pe
nd

en
t

St
at
ic
al
ly

in
fe
rr
ed

up
pe
r
bo

un
d
on

pa
ra
lle

lc
os
t

A
na
ly
si
s

(L
O
C
)

co
nt
ro
lfl

ow
W

(N

)
H

(N

)
S

(N
)

tim
e
(s
)

B
s
p
I
p
(9
)

Y
es

(2
N

/
p

+
p)
w

pg
2l

1.
09

S
c
a
n
2
(1
6)

Y
es

(5
N

/
p

+
lo
g 2

p
−

3)
w

(l
og

2
p)
g

(l
og

2
p

+
1)
l

0.
92

S
c
a
n
C
s
t
2
(1
1)

Y
es

(5
N

/
p

+
p)
w

(
p

−
1)
g

2l
1.
25

B
s
p
F
o
l
d
(9
)

Y
es

(N
/
p

+
p

−
2)
w

pg
2l

0.
82

C
o
m
p
r
e
s
s
(1
9)

N
o

(3
×

N
/
p

+
p

−
2)
w

N
g

3l
2.
13

B
c
a
s
t
1
(5
)

Y
es

(
p

−
1)

×
N
g

2l
0.
63

B
c
a
s
t
L
o
g
(8
)

Y
es

(l
og

2
p)
N
g

(l
og

2
p

+
1)
l

0.
61

B
c
a
s
t
2
p
h
(1
1)

Y
es

2(
p

−
1)
N

/
pg

3l
1.
16

123

Int J Parallel Prog (2019) 47:184–212 207

broadcast in one and logarithmic number of supersteps (Bcast1) and (BcastLog);
and 2-phase broadcast (Bcast2ph).

Local computation is defined by work annotations added to costly array operations
in loops. For simplicity, we only use the unitw and thus omit the normalization function
w. The static bounds on local computation, communication and synchronization are
given in the columns W
, H
, and S
 of Table 1 respectively. Benchmarks and static
bounds are parameterized by BSP parameters and input sizes N .

Symbolic evaluation We test that the static bounds are indeed bounds, and evaluate
their precision by executing each benchmark in an interpreter simulating p = 16. The
interpreter is instrumented to return the parallel cost (as defined in Sect. 3.2) of each
execution.

We found that the static bound is equal to the cost of each execution, except for the
communication cost of the program Compress, which is overestimated by a factor of
p.As a consequence of its data-dependent control flow, the communication distribution
of Compress depends on the values in the input array. The implementation treats
these as non-deterministic values, and thus returns the pessimistic static bound Ng on
communication instead of the tighter bound N/pg which can be found by analyzing
the program manually.

Concrete evaluation To evaluate the quality of the static bounds’ capacity to predict
actual run times in seconds, we translate the benchmarks to C, compile them, and com-
pare their running times on two different parallel environments with those predicted
by the static bounds in the BSP model.

Making such predictions is inherently difficult, especially when several translations
are involved. For instance, our model supposes that the execution of one individual
operation takes a fixed amount of time. In reality, the time taken may depend on the
state of caches, pipelines, and other hardware features. It also depends on optimizations
applied by the compiler. Another issue in the model is the network. BSP assumes
that the communication bottleneck will be at the end points and, thus, that the time to
deliver an h-relation will scale linearly. However, this is not true for current multi-core
architectures, which usually have tree-based network topologies, where bottlenecks
can occur near the root. All considering, we can hope at best to obtain predictions on
the running time that are not too far from the actual run time, but they may still be
several factors off.

The first evaluation environment is a desktop computer with an 8-core, 3.20 GHz,
Intel Xeon CPU E5-1660 processor, 32GB RAM, and running Ubuntu 16.04. We use
gcc 5.4.0. The second environment is an 8-node Intel Sandy Bridge cluster connected
by FDR InfiniBand network cards. Each node has 2 Intel E5-2650 2GHz CPUs with
8 cores each, 384 GB RAM and is running CentOS 7.2. Here we use gcc 6.1.0. We
use a Huawei-internal BSPlib implementation in both environments.

The same method is used to obtain the BSP parameters of both environments. We
modify bspbench to measure r as memory speed, which is the bottleneck in all the
benchmarks. To obtain g and l wemeasure theminimum time taken to deliver all-to-all
h-relations of size p, 2p, and hmax ∗ p over a large set of samples, where hmax is the
size of the largest h-relation performed in the benchmarks. Then the y-intercept of the

123

208 Int J Parallel Prog (2019) 47:184–212

Fig. 11 BcastLog on cluster
with p = 8

 0

 0.005

 0.01

 0.015

 0.02

 20000 22000 24000 26000 28000 30000 32000

R
un

 ti
m

e
in

 s
ec

on
ds

Input size in doubles

r=3.6e+02 Mflop/s, g=3e-08 s/b, l=0.00012 s

Measured
Predicted

Fig. 12 BspFold on desktop
with p = 8

 0.002
 0.003
 0.004
 0.005
 0.006
 0.007
 0.008
 0.009

 0.01

 6x106 9.5x106 1.3x107 1.65x107 2x107

R
un

 ti
m

e
in

 s
ec

on
ds

Input size in doubles

r=5e+02 Mflop/s, g=1.7e-08 s/b, l=8e-06 s

Measured
Predicted

Fig. 13 Bcast1 on cluster
with p = 128

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07

 100 200 300 400 500 600 700

R
un

 ti
m

e
in

 s
ec

on
ds

Input size in doubles

r=2.8e+02 Mflop/s, g=1e-07 s/b, l=0.00091 s

Measured
Predicted

line passing through the first two data-points is taken as l, and the slope of the line
passing through the last two is taken as g. Example BSP parameters are given above
Figs. 11, 12 and 13.

We find that the running times of all benchmarks grow linearly with the input size
as predicted by the static bounds. See e.g. Fig. 11. However, the static bounds do not
always accurately predict the running times. See e.g. Fig. 13.

We calculate the error in prediction using the formula | Tmeasured − Tpredicted |
/min(Tmeasured , Tpredicted). In this formulation, an overestimation of running time
by a factor 2 as well as an underestimation by a factor 2 will correspond to an error of
100% [16]. The largest error factors for each environment-benchmark combination are
summarized in Table 2. The large errors in predictions for Compress are explained
by the inaccuracy of its statically found bound. For the remaining benchmarks, error

123

Int J Parallel Prog (2019) 47:184–212 209

Table 2 Maximal error in predictions per environment and benchmark

Benchmark Desktop (%) Cluster (%) Worst prediction for cluster, p = 8

p = 2 p = 4 p = 8 p = 8 p = 128 N Predicted (s) Actual (s)

BspIp 14.09 7.98 33.78 15.49 41.14 1.68 × 108 0.12 0.10

Scan2 10.64 16.79 47.70 34.63 25.26 1.68 × 108 0.29 0.22

ScanCst2 10.72 16.85 47.77 35.36 42.38 1.26 × 108 0.22 0.16

BspFold 11.86 4.46 39.72 12.84 48.76 1.68 × 108 0.12 0.10

Compress 396.78 984.88 2449.87 1311.37 15,388.60 4.8 × 105 0.12 0.01

Bcast1 44.11 90.83 153.11 47.75 372.52 1.6 × 105 0.03 0.02

BcastLog 35.41 59.50 101.04 13.03 31.71 1.6 × 105 0.01 0.01

Bcast2ph 32.84 65.04 97.08 23.30 48.58 1.92 × 105 0.01 0.01

Sample times and predictions are for the cluster, p = 8

factors range from 4.46% for BspFold on the desktop with 4 processes to 372.5%
for Bcast1 on the cluster with 128 processes.

Indeed, Bcast1 has the worst predictions. This shows that in the considered envi-
ronments, the communication pattern of this benchmark (one-to-all) is faster than the
one used to estimate g (all-to-all). The discrepancy is even greater in the cluster with
p = 128 as a consequence of the cluster’s hierarchical topology. The 128 processes
correspond to 8 cluster nodes with 16 cores each, but the InfiniBand network is not 16
times faster than the internal node communication. Thus when only one process com-
municates with all other processes, it has much more bandwidth at its disposal then
when all processes communicate outside the node. The former case corresponds to the
communication pattern of Bcast1, and the latter to how the parameter g (which is
an estimation of the full bisection bandwidth) is measured, explaining the difference
between measured and predicted running time. The discrepancy of the other broadcast
benchmarks, BcastLog and Bcast2ph, can also be explained by considering the
topology of the network and the communication patterns involved.

Conclusion of evaluation We find that (1) the static bounds of the implementation are
indeed upper bounds of the parallel cost of all evaluated executions; (2) they are exact
for data-oblivious benchmarks, but pessimistic for the one benchmark considered with
data-dependent communication distribution; (3) the static bounds predict asymptotic
behavior, and when tight static bounds are found, they accurately predict actual run
times: the error is <50% for networks with full bisection bandwidth and for the
others the error is never more than the ratio between the fastest link and the bisection
bandwidth.

6 Related Work

To the best of our knowledge, no previous work exists on the automatic cost analysis
of imperative BSP programs. Consequently, this survey will focus on cost analysis for

123

210 Int J Parallel Prog (2019) 47:184–212

other forms of BSP programming and other forms of parallel programming. We then
treat sequential cost analysis and conclude with notes on the usage of the polyhedral
model in the context of communication analysis.

Closest to our work is Hayashi’s [10] cost analysis for shapely skeletal BSP pro-
grams. Shapely programs are written so that the size of data structures is always known
statically. Skeletons are ready-made parallel constructs which the programmer uses
as building blocks for their program. The cost function of each skeleton and the input
data size are a priori known and so the matter of computing the cost function for a
program is obtained by composing the cost functions of each skeleton, which is done
statically.

For other parallel paradigms, we mention Resource Aware ML [13], which
implements a type-based approach to amortized cost analysis for ML with parallel
extensions. Albert et al. have extended classic cost analysis to handle concurrent and
distributed programs with dynamic task spawning [1]. Their work is preceded by that
of Zimmermann [27], which uses classic cost analysis for treating functional programs
with parallelism restricted to divide-and-conquer algorithms.

A large body of work exists around Cost Analysis of sequential programs. Broadly,
it can be divided into Cost Analysis and Worst-Case Execution Time [25] analysis,
but the overlap is considerable. The former aims to find asymptotic bounds in a more
abstract setting, while the latter has a more concrete view of hardware, taking into
account architecture-specific features such as caches and pipelines.

As we take a more algorithmic view on programs, we position ourselves in the
vein of Cost Analysis. Cost analysis is pioneered by Wegbreit [24], who translated
functional programs into recursive cost-relations, which can be treated by off-the-shelf
solvers. This method has been used successfully for the analysis of Java bytecode [3].

The polyhedral model has seen widespread usage in areas such as automatic par-
allelization [17] verification [6] and communication analysis [5,7,11]. Chatarasi et
al. [6] uses an extension of this model to represent OpenMP sections and uses SMT
solvers to detect data races. Our work is in the same vein as Clauss’ [7], who uses poly-
hedra to model load distribution in communicating parallel programs. The polyhedral
model has also been used for automatically evaluating the data volumes produced by
loops and evaluating their different transformations by this measure [5].

7 Conclusion

The cost model is one of the key advantages of the Bulk Synchronous Parallel model.
In this model, parallel computers are simplified to four abstract parameters and the
cost of algorithms is expressed as a function of these parameters. By knowing the
parameters of a specific computer, the implementer can choose the algorithm whose
cost function best suits it.

This article presents a method for automatic cost analysis of imperative BSP pro-
grams. The method relies on rewriting parallel programs to sequential programs and
inserting annotations to handle book-keeping of communication and synchronization.
Communicating sections are represented in the polyhedralmodel to obtain tight bounds

123

Int J Parallel Prog (2019) 47:184–212 211

on H-relations. The rewritten programs can then be treated by existing methods for
cost analysis, obtaining the BSP cost of the original program.

Our evaluation shows that the analysis obtains tight bounds on the cost of data-
oblivious BSP programs that accurately predicts their actual run time in two different
parallel environments. One possibility opened up by this development is on-line task
scheduling in a system with evolving BSP parameters. Parallel straight-line programs
present another promising use case of the analysis in its current form. Such programs
are common in signal processing and are characterized by simple control flow. How-
ever, they can scale to large sizes for which manual analysis is intractable.

The next step of our research includes the full implementation of the proposed
method and evaluation on larger programs. Our method puts specific requirements on
the parallel control flow of the analyzed program, namely that all barriers are textually
aligned. One axis of future development is relaxing these constraints as well as treating
a larger fragment of C with BSPlib. Our analysis gives imprecise costs for programs
with data-dependent control flow. Treating such programs is an interesting venue of
future research. Lastly, we would like to treat other measures on BSP costs (lower
bound, average case, etc.) as well as treating costs of resources outside the BSP cost
model, such as memory usage.

Acknowledgements I thank Wijnand Suijlen for his help with the evaluation and his comments on the
article, as well as Frédéric Loulergue for his insightful comments that greatly improved this article. I also
thank the anonymous reviewers for their remarks on earlier drafts.

References

1. Albert, E., Arenas, P., Correas, J., Genaim, S., Gómez-Zamalloa, M., Martin-Martin, E., Puebla, G.,
Román-Díez, G.: Resource analysis: from sequential to concurrent and distributed programs. In: Pro-
ceedings on FM 2015: Formal Methods: 20th International Symposium, Oslo, Norway, 24–26 June
2015, pp. 3–17. Springer (2015). https://doi.org/10.1007/978-3-319-19249-9_1

2. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-form upper bounds in static cost analysis. J.
Autom. Reason. 46(2), 161–203 (2011)

3. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of Java bytecode. In:
European Symposium on Programming, pp. 157–172. Springer (2007)

4. Benabderrahmane, M.W., Pouchet, L.N., Cohen, A., Bastoul, C.: The polyhedral model is more widely
applicable than you think. In: International Conference on Compiler Construction, pp. 283–303.
Springer (2010)

5. Boulet, P., Redon, X.: Communication pre-evaluation in HPF. In: Proceedings of the 4th International
Euro-Par Conference on Parallel Processing, Euro-Par ’98, pp. 263–272. Springer, London (1998)

6. Chatarasi, P., Shirako, J., Kong,M., Sarkar, V.: An extended polyhedral model for SPMD programs and
its use in static data race detection. In: Ding, C., Criswell, J.,Wu, P. (eds.) Languages and Compilers for
Parallel Computing, pp. 106–120. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-52709-
3_10

7. Clauss, P.: Counting solutions to linear and nonlinear constraints through Ehrhart polynomials: applica-
tions to analyze and transform scientific programs. In: Proceedings of the 10th International Conference
on Supercomputing, ICS ’96, pp. 278–285. ACM, New York (1996). https://doi.org/10.1145/237578.
237617

8. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program.
In: Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Lan-
guages, pp. 84–96. ACM (1978)

9. Di Martino, B., Mazzeo, A., Mazzocca, N., Villano, U.: Parallel program analysis and restructuring
by detection of point-to-point interaction patterns and their transformation into collective communi-

123

https://doi.org/10.1007/978-3-319-19249-9_1
https://doi.org/10.1007/978-3-319-52709-3_10
https://doi.org/10.1007/978-3-319-52709-3_10
https://doi.org/10.1145/237578.237617
https://doi.org/10.1145/237578.237617

212 Int J Parallel Prog (2019) 47:184–212

cation constructs. Sci. Comput. Program. 40(2–3), 235–263 (2001). https://doi.org/10.1016/S0167-
6423(01)00017-X

10. Hayashi, Y., Cole, M.: Static performance prediction of skeletal parallel programs. Parallel Algorithms
Appl. 17(1), 59–84 (2002)

11. Heine, F., Slowik, A.: Volume driven data distribution for NUMA-machines. In: Euro-Par 2000 Parallel
Processing, pp. 415–424. Springer, Berlin (2000). https://doi.org/10.1007/3-540-44520-X_53

12. Hill, J.M.D., McColl, B., Stefanescu, D.C., Goudreau, M.W., Lang, K., Rao, S.B., Suel, T., Tsantilas,
T., Bisseling, R.H.: BSPlib: theBSP programming library. Parallel Comput. 24(14), 1947–1980 (1998).
https://doi.org/10.1016/S0167-8191(98)00093-3

13. Hoffmann, J., Shao, Z.: Automatic static cost analysis for parallel programs. In: European Symposium
on Programming Languages and Systems, pp. 132–157. Springer (2015)

14. Jakobsson, A., Dabrowski, F., Bousdira, W., Loulergue, F., Hains, G.: Replicated synchronization for
imperative BSP programs. In: International Conference on Computational Science (ICCS), Procedia
Computer Science. Elsevier., Zürich (2017)

15. Jeannet,B.,Miné,A.:Apron: a library of numerical abstract domains for static analysis. In: International
Conference on Computer Aided Verification, pp. 661–667. Springer (2009)

16. Juurlink, B.H.H., Wijshoff, H.A.G.: A quantitative comparison of parallel computation models. In:
Proceedings of the Eighth Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA
’96, pp. 13–24. ACM, New York (1996). https://doi.org/10.1145/237502.241604

17. Lengauer, C.: Loop parallelization in the polytopemodel. In: International Conference on Concurrency
Theory, pp. 398–416. Springer (1993)

18. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, Berlin (2004)
19. Tesson, J., Loulergue, F.: Formal semantics of DRMA-style programming in BSPlib. In:Wyrzykowski,

R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) Parallel Processing and Applied Mathematics,
vol. 4967, pp. 1122–1129. Springer, Berlin (2008)

20. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8), 103–111 (1990).
https://doi.org/10.1145/79173.79181

21. Verdoolaege, S.: isl: An integer set library for the polyhedral model. In: International Congress on
Mathematical Software, pp. 299–302. Springer (2010)

22. Verdoolaege, S., Grosser, T.: Polyhedral extraction tool. In: Second International Workshop on Poly-
hedral Compilation Techniques (IMPACT’12), Paris (2012)

23. Verdoolaege, S., Seghir, R., Beyls, K., Loechner, V., Bruynooghe, M.: Counting integer points in
parametric polytopes using Barvinok’s rational functions. Algorithmica 48(1), 37–66 (2007)

24. Wegbreit, B.: Mechanical program analysis. Commun. ACM 18(9), 528–539 (1975). https://doi.org/
10.1145/361002.361016

25. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D., Bernat, G., Ferdinand,
C., Heckmann, R., Mitra, T., et al.: The worst-case execution-time problem—overview of methods and
survey of tools. ACM Trans. Embedded Comput. Syst. (TECS) 7(3), 36 (2008)

26. Winskel, G.: The Formal Semantics of Programming Languages: An Introduction. MIT Press, Cam-
bridge (1993)

27. Zimmermann, W.: Automatic Worst Case Complexity Analysis of Parallel Programs. International
Computer Science Institute, California (1990)

123

https://doi.org/10.1016/S0167-6423(01)00017-X
https://doi.org/10.1016/S0167-6423(01)00017-X
https://doi.org/10.1007/3-540-44520-X_53
https://doi.org/10.1016/S0167-8191(98)00093-3
https://doi.org/10.1145/237502.241604
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/361002.361016
https://doi.org/10.1145/361002.361016

	Automatic Cost Analysis for Imperative BSP Programs
	Abstract
	1 Introduction
	2 The BSP Model and Its Cost Model
	3 Sequential Language and Parallel Extensions
	3.1 Sequential Language
	3.2 Parallel Language

	4 Cost Analysis
	4.1 Sequential Simulator
	4.2 Analyzing Communication Costs
	4.3 Analyzing Synchronization Costs
	4.4 Time Complexity of Analysis

	5 Implementation and Evaluation
	6 Related Work
	7 Conclusion
	Acknowledgements
	References

