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Abstract Dataflow programming consists in developing a program by describing its
sequential stages and the interactions between them. The runtime systems supporting
this kind of programming are responsible for exploiting the parallelismby concurrently
executing the different stages as soon as their dependencies are met. In this paper we
introduce a new parallel programming model and framework based on the dataflow
paradigm. It presents a new combination of features that allows to easilymap programs
to shared or distributedmemory, exploiting data locality and affinity to obtain the same
performance than optimized coarse-grain MPI programs. These features include: It
is a unique one-tier model that supports hybrid shared- and distributed-memory sys-
tems with the same abstractions; it can express activities arbitrarily linked, including
non-nested cycles; it uses internally a distributed work-stealing mechanism to allow
Multiple-Producer/Multiple-Consumer configurations; and it has a runtime mecha-
nism for the reconfiguration of the dependences and communication channels which
also allows the creation of task-to-task data affinities. We present an evaluation using
examples of different classes of applications. Experimental results show that programs
generated using this framework deliver good performance in hybrid distributed- and
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shared-memory environments, with a similar development effort as other dataflow
programming models oriented to shared-memory.

Keywords Distributed systems · Dynamic computation · Parallel programming
models · Streaming computation

1 Introduction

The most common programming tools for parallel machines are based on message
passing libraries, such as MPI [1], or shared memory APIs like OpenMP [2]. These
tools allow the exploitation of machine capabilities by explicitly defining the parallel
sections inserted in the sequential code and program inter-process synchronizations
and communications.

On the other hand, stream and dataflow libraries and languages (such as Fast-
Flow [3], CnC [4], OpenStream [5], or S-Net [6]) reduce the complexity of creating
a parallel program because the programmer only has to define the sequential stages
and its dependencies. It is the responsibility of the runtime to control the sequen-
tial stages execution and perform the data synchronizations. However, these models
do not present specific features to express some computational patterns, or to obtain
communication-efficient implementations on distributed processes.

In this work we propose a novel combination of features for dataflow program-
ming models: (a) A single one-tier representation for shared- and distributed-memory
architectures; (b) Describing a program as a reconfigurable network of activities and
typed data containers arbitrarily interconnected, with a generic system to represent dis-
tributed Multiple-Producer/Multiple-Consumer (MPMC) configurations; (c) Support
for dependence structures that involve non-nested feedback loops; (d)Amechanisms to
reconfigure dependences at runtime without creating new tasks; and (e) A mechanism
to intuitively express task-to-task affinities which would allow a better exploitation
of data locality across state-driven activities. As a proof of concept we have devised
HitFlow, a new dataflow parallel programming model and framework that extends a
previous proposal [7] to include all these features. Table 1 shows a comparison of
different dataflow solutions in terms of these features.

This combination of features allows the creation of networks of tasks that can be
mapped to message-passing processes with a fixed scheduling. The capacity of recon-

Table 1 Comparison of dataflow libraries

FastFlow CnC OpenStream S-Net HitFlow

Single tier model � � �
Reconfigure dependencies � �
Allows tasks affinities �
MPMC configurations � � � �
Feedback loops � � � �
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figuring the dependences and activities of a task allows the runtimemodification of the
communication pattern used at each computation stage, without the need of creating
or scheduling new tasks. Tasks can allocate on their local contexts buffers, or data
parts assigned with a classical data partition policy, that persist across different stages.
In this way, data can maintain the affinity with the message-passing processes and
across related tasks, avoiding costly migrations and optimizing the communications.
This scheme leads to implementations with similar performance and scalability than
programs manually developed and optimized using message-passing models, such as
MPI.

We present an evaluation of our proposal using examples of four different appli-
cation classes. We describe how they are represented in our model, showing how to
express different types of parallel paradigms including static and dynamic synchro-
nization structures. Experimental work has been carried out to prove that the programs
generated using our framework achieve good performance in comparison with manu-
ally developed implementations using bothmessage-passing libraries such asMPI, and
state-of-the-art tools for parallel dataflow programming, like FastFlow [3] or CnC [4].
These experiments show that the overheads introduced by the new abstractions do not
have a significant impact on performance. Finally, an analysis of different develop-
ment effort metrics shows that the cost of programming using our proposal, targeting
hybrid distributed- and shared-memory systems, is similar to other shared-memory
dataflow approaches, highly reducing the programming cost comparing with using
message passing directly.

The rest of the paper is organized as follows. Section 2 describes our proposal. A
discussion about its usage is given in Sect. 3 while Sect. 4 shows the implementation
details. Section 5 presents the experimentalwork carried out to test the implementation.
Section 6 describes some related work in the field. Finally, the conclusions of the paper
are in Sect. 7.

2 The HitFlow Model

In this section we present HitFlow, a new parallel programming framework imple-
mented in C++ that exploits dataflow parallelism for both shared- and distributed-
memory systems. The HitFlow programming model takes its notation from Colored
Petri nets [8]. AHitFlow program is a network composed of two kinds of nodes, called
places and transitions. The places are shared-data containers that keep tokens, while
the transitions are the sequential processing components of the system. Transitions
are connected by directed channels to places, with the direction determining the input
or output role of places for each transition (see Fig. 1). A transition takes one token
from each of its input places and performs some activity with them. It may then add
tokens to any/all of its output places. This activity is repeated while there are tokens
arriving to the input places.

We propose the computation inside the transitions to bemode-driven. Using amath-
ematical notation, a program or computation is represented by P = {p1, p2, . . . , pn}
a finite set of places, and T = {t1, t2, . . . , tm} a finite set of transitions.
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Fig. 1 Network example with modes. Transition A has two modes (A1 and A2), each mode enables a
different output channel connecting A with B or A with C

The transitions are composed of modes: ti = {m1
i ,m2

i , . . . ,mo
i }. Each mode m j

i is
a tuple 〈 f, I, O, next〉, where f is a sequential function, I ⊆ P are the input channels,
O ⊆ P are the output channels, and next ∈ {m1

i ,m2
i , . . . ,mo

i } ∪ END is the mode
that will be activated after the current mode mi ends.

Modes are used to define mutually-exclusive activities inside the transitions, and
dynamically reconfigure the network. A mode enables a subset of connections to
input places or output places. The sequential function is executed when tokens arrive
in the input places of the active mode. A transition changes its mode when all the
tokens from the active mode have been processed. To detect that there are no more
tokens remaining or pending to arrive to the input places, special signal tokens are
used to inform of a mode change (mode-change signal). The change of mode in a
transition automatically sends mode-change signals to all its output places. Thus,
signals are propagated automatically across the network, flushing tokens produced
on the previous mode, before changing further transition to the new mode. When a
transition change its mode, input and output places are reconfigured according to the
new mode specification. An example of a network with modes can be seen in Fig. 1.
The network has a transition (A) with two modes. On each mode, the transition will
send tokens to a different destination B or C.

Finally, the modes can be used to enable data locality, defining task-to-task affini-
ties. Tasks implemented as functions of different modes in the same transition are
mutually exclusive and are executed by the same thread so they can share data struc-
tures. For example, data affinity can be used in the Smith–Waterman algorithm, which
is one of the benchmarks discussed in the experimental section. This benchmark per-
forms a two-phase wavefront algorithm (see Fig. 2). In the first phase, tasks calculate
the elements of a matrix starting from the top left element. The second phase is a
backtracking search that starts from the bottom-right element, and each task works
on a part of the the matrix obtained in the first phase. As it is shown in Fig. 2, it is
possible to create a network to model this kind of problems without using the modes.
However, using the modes, we can fold that network by adding two different activities
in the transitions, one for each phase of the algorithm. Thus, each transition can per-
form the two required stages by sharing its assigned portion of the matrix, avoiding
communications of the matrix portions that would imply sending big tokens through
places.
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Fig. 2 Smith–Waterman network structure with and without modes

Fig. 3 UML diagram of the framework

3 Programming with HitFlow

We have developed a prototype of a framework to implement parallel programs in
accordance with the proposed model. The current prototype relies on POSIX Threads
Programming (Pthreads) and the standardMessage Passing Interface (MPI) to support
both shared- and distributed-memory architectures. We decided to use Pthreads in the
prototype because the C++ Standard Library threads where not fully supported at the
time the development began. Porting the current code to use native C++ threads would
be straightforward.

This section explains the key features of the programming framework. It contains
a summary of the HitFlow API, a description of how to build a program network, and
details about the mode semantics. The main HitFlow classes are shown in the UML
diagram in Fig. 3. A table with the API methods can be found in [9].

3.1 Building Transitions

To use this framework, the user has to create a class which extends the provided
Transition class with the sequential activities of the program (See example in
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1 class MyTransition: public Transition {
2 public:
3 void execute(){ // User activity method
4 double intask;
5 get(&intask); // Retrieve a token from the place
6 double outtask = process(intask);
7 put(&outtask); // Put the token into the output
8 }
9 };

Fig. 4 HitFlow example of the creation of a Transition extending the basic Transition class

Fig. 4). The init and end methods can be extended to execute starting and ending
actions before and after the execution of the program.The user classes should introduce
one or more new methods with arbitrary names to encapsulate the code for particular
mode activities. The association between modes and activity methods is established
when building the network (see Sect. 3.2).

The activity method is automatically called when there are tokens to be processed
in the input places declared for its mode. If there are no input places for a particu-
lar mode, it will be called just once. The user-defined activity methods can use the
Transition::get or Transition::put methods to retrieve tokens from, or
append tokens to the currentmode places. Thegetmethod retrieves one token for each
of the active input places. On each activity method invocation, HitFlow ensures that
the getmethod can be called once. Additional calls to getwill block until there is at
least one token in each input place. The putmethod adds a token to a specific output
place. The output place can be selected by its identifier using the second argument of
the putmethod. It can be omitted if there is only one active output place in the mode.

Amode automatically finisheswhen: (a) The producer transitions have sent amode-
end signal indicating that they have finished the activity in that mode; and (b) All the
tokens that were generated in the previous mode have been consumed from the input
places. At this moment, the transition sends end-mode signal tokens to the active
output places and automatically evolves to the next-programmed mode. The next-
programmed mode can be changed by calling the method Transition::mode at
any time. If it is not changed by the user, the default next mode is END, that is used
to finish the computation.

The example in Fig. 4 extends the Transition class by declaring a user activity
method. Themethod retrieves a token from one place, processes it, and sends the result
to an output place.

The tokens are C++ variables of any type, handled using template methods. The
marshaling and unmarshaling is done internally with MPI functions. The basic types
(char, int, float, ...) are enabled by default. User-defined types require the pro-
grammer to declare a data type invoking the HitFlow function (hitTypeCreate)
that internally generates and registers the proper MPI derived type.

3.2 Building the Network

Once the transition classes are defined, the programmer builds the network in the
main function of the C++ program. This implies creating transition and place objects,
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1 Place<double> placeA, placeB; // Declare the places
2 placeA.setMaxSize(10); // Set the place size
3

4 MyTransition transition;
5

6 // Add the method and places to modeA
7 transition.addMethod(&MyTransition::execute,"modeA");
8 transition.addInput(&placeA,"modeA");
9 transition.addOutput(&placeB,"modeA");

10 ...
11

12 Net net; // Declare the net
13 net.add(&transition); // Add the transition
14 net.run(); // Run the net

Fig. 5 HitFlow example of the network creation

associating the activity methods, input, and output places to modes on the transitions,
and finally adding the transitions to a Net object. Figure 5 shows a simple code to
build a network using the previously shown MyTransition transition.

The first step is to create the places that will be used in the application (line 1). The
Place class is a template class used to build the internal communication channels.
The size of the place defines the granularity of the internal communications: It is
an optimization parameter that represents the number of packed tokens that will be
transferred together. The user can set it in accordance with the token generation ratio
of the transition.

The next step is to set the activity method and the inputs and outputs for each mode.
The addInput, addOutput, and addMethod methods, have an optional param-
eter to specify the mode. When this parameter is not specified, a default END mode is
implicitly selected. Lines starting at 7 set the activity method, an input place, and an
output place for the default mode. Multiple calls to the addInput or addOutput
for the same transition mode, allow MPMC constructions to be built.

Finally, all the transitions are added to a Net class that controls the mapping and
the execution (lines 12 and 13). Line 14 invokes the Net::run method that starts
the computation.

3.3 Mapping

Using HitFlow, the programmer can provide a mapping policy to assign transitions
to the available MPI processes. If it is not provided, there is a default fallback policy
implementing a simple round-robin algorithm. MPI processes with more than one
mapped transition automatically spawn additional threads to concurrently execute all
the transitions. HitFlow implementation solves the potential concurrency problems
introduced by synchronization and communication when mapping transitions to the
same process (see Sect. 4.3). In the current prototype, the mapping policies should
provide an array associating indexes of transitions to MPI process identifiers.
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4 Implementation Details

This section discusses some of the implementation challenges associated with the
model, and how they have been solved in the current framework implementation.

4.1 Targeting Both Shared and Distributed Systems

One of the main goals of the framework is to support both shared- and distributed-
memory systems with a single programming level of abstraction. The user-defined
transition objects that contain the logic of the problem are mapped into the available
MPI processes. Since there may not be enough processes for all of the transitions,
threads are spawned inside the processes if needed. Only one thread is spawned for
each transition, to execute the user function and its communication activities asyn-
chronously to other transitions. The main thread on each MPI process initializes the
runtime data structures, launch the threads for the transitions mapped to it, and wait for
them to finish. Coordination between the spawned treads, to use the shared structures
of the runtime system, is done using mutexes and condition variables.

4.2 Distributed Places

The HitFlow places are not physically located in a single process. Instead, they are
distributed token containers. A place is implemented as multiple queues of tokens
located in the transitions that use that place as input. When load balance requires it,
the tokens are transmitted and rearranged between the queues on the transitions.1 This
solution builds a distributed MPMC queue mechanism that exploits data locality, and
is more scalable than a centralized scheme where a single process manages all the
tokens of a place. However, this is a solution that introduces coordination challenges
that will be discussed below.

Internally, the distributed places are implemented usingports thatmanage themove-
ment of the tokens from the source to one of the destination transitions. Input and
output ports are linked using channels. Figure 6 shows how the arcs of the model are
implemented using ports. There are five possible situations:

(a) When a place connects two transitions, a channel will be constructed to send the
tokens from the source to the destination.

(b) When there are two or more input places in a transition, the transition will have
several input ports, each of them connected to the corresponding source.

(c) When two or more transitions send tokens to a common place, the destination will
have a single port that will receive tokens, regardless of the actual source.

(d) If a place has several output transitions, any of them can consume the tokens. To
allow this behavior, when a place is shared by several destinations, the source will

1 In the current implementation, MPI communications are always used to move tokens from queue to
queue, even when the queue objects are mapped into the same MPI process. Although this simplifies the
implementation and MPI communications are highly optimized in shared-memory, this decision clearly
opens possibilities for further optimization.
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(a) (b) (c) (d) (e)

Fig. 6 Translation from the model design to its implementation. WS work-stealing

Fig. 7 Small example network
with two transitions

send tokens in a round-robin fashion to each output port. This can lead to load
unbalance if the time to consume tokens in the destinations is not compensated.
To solve this, a work-stealing mechanism is used to redistribute tokens between
the destination transitions.

(e) When a transition uses the same place as input and output, the token will flow
directly to the input port for efficiency reasons.

4.3 Ports, Buffers, and Communications

This section describes the internals of the port objects and explains the details about
the communications and buffering. Figure 7 shows an example of a two-transition
network. There is a producer that generates tokens which are sent to a consumer using
the place A. The consumer presumably performs a filter operation on the tokens and
sends some of them back to the producer using the place B. Figure 8 describes the
internal structures of the previous example.

The internal communications are handled by Port objects. The transitions have
a port for every input or output place. The ports have a buffer where the tokens are
stored. The size of the buffer is determined by the maximum number of tokens that can
be stored at the same time in the place that it represents, as defined by the user with the
Place::setMaxSizemethod. The size of the buffer also has an extra space for the
message headers and other information that must be sent along with the tokens. When
tokens are sent to a place, they are first stored in the output port buffer. The HitFlow
runtime library decides when to perform the actual communication. By default, it will
try to maximize the port buffer usage, packing as many tokens as possible to minimize
the number of MPI messages to be sent, without delaying communications.
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Fig. 8 Description of the different buffers, data structures and control elements involved in the communi-
cations. Legend: (1) MPI process. (2) User transition object. (3) Internal token queue for the transition. (4)
Input buffer port. (5) Output buffer port. (6) MPI communication buffer

In addition to the input port buffers, the transitions have queues to store the tokens
received. There is a queue for each input place. When an incoming MPI message is
received, the input port buffer associated to the channel is used to retrieve the tokens
and store them in the corresponding queuewhere they can be accessed by the transition
get method. Unlike the buffers, which have a limited memory space assigned, the
queues grow dynamically and are only limited by the host memory.

In Fig. 8, the producer transition (2) and the consumer transition (2′) are executed
in two different processes (1 and 1′, respectively). Since both transitions have only
one input place, they have only one input queue (3 and 3′). The size of the place A
is 5, thus the output port of the producer (5) and the input port of the consumer (4′)
have a buffer for 5 elements. In contrast, the size of B is 3, so its port buffers (4 and
5′) have size 3. The figure also represents the MPI communication buffers for the two
processes (6 and 6′). If there are several transitions mapped to the process, all the
elements except the MPI buffers (6 and 6′) are replicated for each transition, and they
are managed by its own thread.

The HitFlow runtime ensures a deadlock-free behavior due to port buffer exhaus-
tion, even in unbalanced networks with cycles. Consider for example the network
depicted in Fig. 8. Assuming that the producer and consumer send tokens with a very
unbalanced ratio, causing the port buffer of the two transitions to become exhausted,
it will not cause a deadlock. The runtime will keep receiving messages and storing
them in the local and unlimited transition queue. Thus, the only limitation will occur
when one of the processes depletes the host memory.

However, due to a limitation of the MPI-3 standard that only allows oneMPI buffer
per process, it is possible to produce a deadlock when several transitions aremapped to
the sameMPI process using threads. If two transitions aremapped to the same process,
they share the same MPI buffer. Thus, the messages of one transition could consume
all the buffer memory, preventing the other transition from performing its communi-
cations. This opens the possibility of producing a deadlock on the progression of the
whole network. This problem can be solved using new features that are proposed for
MPI-4, such asAllocateReceive communications [10], that allocatememory internally
for incoming messages to eliminate buffering overhead when receiving unknown-size
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messages, and Communication Endpoints [11] that allow the threads inside a process
to communicate as if they were at separate ranks.

4.4 Work-Stealing

To solve load unbalances when a place has several output transitions, HitFlow uses
a work-stealing mechanism to redistribute tokens between the consumers. The token
queues that were presented in Sect 4.3 are in fact double-ended queues. The user
function retrieves the tokens from the bottom with the Transition::getmethod,
while the work-stealing mechanism takes or adds tokens using the top end. When
a transition consumes all the tokens in one input queue, the HitFlow runtime will
try to obtain more tokens. First it will select a victim between the other transitions
in the work-stealing group, and then it will send a request message. Depending on
the number of available tokens in the victim, it can send some of its tokens back or
send a message denying the request. In order to determine when the tokens have been
consumed in all the distributed queues of a single place, and the work-stealing should
stop, a distributed voting-tree scheme is performed. It also implements a mechanism
to distinguish tokens of different modes, and manage the signals indicating both mode
changes and computation end.

5 Case Studies: HitFlow Evaluation

In this section, four benchmarks representing four case studies are discussed to show
the expressiveness of the model for different kinds of applications, and to check the
performance of the framework.

5.1 Benchmarks

The first benchmark calculates the Mandelbrot set, an embarrassingly parallel pro-
gramming application that helps us to test the basic functionalities of our proposal,
detect potential overheads, and also to compare our implementation with other solu-
tions. The next two benchmarks are two very different implementations of a real
application, the Smith–Waterman algorithm, that performs local alignments of pro-
tein sequences. The first one is swps3 [12], a highly optimized implementation that
extensively uses vector instructions whenever possible. It is a simple task-farm appli-
cation. The other one is a parallelization based on the implementation developed by
Clote [13], it represents a complex combination ofwavefront and reduction operations.
Finally, the last benchmark solves the Poisson equation in a discretized 2D space using
an iterative Jacobi solver. This kind of benchmark is a typical kernel computation in
many problems usually associated with data parallelism. It represents a static parallel
structure, not basedondataflowparallelism. The last twobenchmarks are implemented
efficiently in MPI using a coarse-grain data partition, with fixed data affinities across
computation stages, and with dependence loops. HitFlow is specifically designed to
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efficiently implement this kind of problems with a dataflow approach. We discuss
below the problems encountered to implement them with other chosen tools.

5.2 Performance Study

Experimental work has been conducted to show that the implementation of HitFlow
achieves a good performance compared with manually optimized implementations
directly programmed using a message-passing paradigm, and with other dataflow
parallel programming frameworks. We use two different experimental platforms with
different architectures: Amulticore shared-memorymachine and a heterogeneous dis-
tributed cluster of shared memory multicores. The shared-memory system, Heracles,
has 4 AMD Opteron 6376 processors with 16 cores each at 2.3GHz, and 256GB of
RAM. The distributed system is composed of 6 distributed nodes: a Intel Xeon (24
cores, 1.9GHz), another Xeon (12 cores, 2.1GHz), a Intel I7 (8 cores, 3.2GHz), and
three Quad Core Intel processors at 2.4GHz connected with Gigabit Ethernet network
technology. All the nodes in the two platforms use CentOS Linux release 7 and the
programs have been compiled using GCC version 4.8.3 with -O3 optimization flag.

5.2.1 Mandelbrot Set

For the Mandelbrot benchmark we compare the HitFlow version against a manually
developed MPI version, two versions using FastFlow [3] (one for shared-memory and
another one for distributed-memory), a version using Intel CnC [4], and another one
that usesOpenMP3.0 tasks in the shared-memory system.All the implementations use
a farm structure that processes the grid by rows. The HitFlow version uses a network
with a producer transition and several worker transitions connected by a single place.
This is a very simple benchmark used to test both the HitFlow channel implementa-
tion, and the work-stealing mechanism. The FastFlow pure shared-memory version
is the implementation included in the distribution examples. We have developed the
distributed version using the two-tier model of the extended FastFlow library that
supports both shared and distributed memory using different classes [14]. The CnC
version is the one provided in the distribution examples.

Figure 9 shows the results of theMandelbrot implementations. The programs calcu-
late the set in a grid of 214 ×213 elements. They use up to 1000 iterations to determine
if each element belongs to the set, leading to many low-cost tasks to be processed if
fine grain parallelism is used. The granularity chosen is 100× 100 elements per task.

The FastFlow, CnC, and OpenMP versions obtain the same performance in the
shared-memory architecture. HitFlow and the manual version have an overhead due
to the use of theMPI communications instead of direct use of the sharedmemorymech-
anisms. In the distributed architecture, all versions show the same scalability except
FastFlow, whose two-tier approach cannot take advantage of the heterogeneous cluster
because it uses a static task distribution. Previous experiments using a homogeneous
cluster showed that FastFlow achieved the same performance as HitFlow [15]. This
shows that HitFlow channel and work-stealing implementation have a great scalabil-
ity in distributed environments, while there is still room for improvement in shared
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Fig. 9 Mandelbrot set benchmark results

memory machines. Specific shared-memory communication mechanisms should be
used internally between transitions mapped to the sameMPI process. This can be done
without modifying the model features.

5.2.2 Smith–Waterman: Swps3

We use as reference the original version of swps3 [12], which is implemented using
pipe and fork system calls to create several processes in the same machine. We
compare it with FastFlow, CnC, andHitFlow versions. The structure of this benchmark
is a farm with an emitter. For a fair comparison, we have developed the FastFlow,
CnC, and HitFlow versions starting with the sequential code of the original swps3
benchmark to implement the tasks functions. We have not used the original example
included in FastFlow [16], since it uses some memory allocation optimizations and it
does not work for the big sequences chosen as input for our experiments, which are
needed to generate enough workload for our target systems. All the versions match
a single protein sequence to all the proteins from a database of sequences. We have
used theUniProt Knowledgebase (UniProtKB) release 2014_04, a protein information
database maintained by the Universal Protein Resource (UniProt) [17]. This database
consists of 544,996 sequences which minimum length is 2, its maximum is 35,213,
and its average is 355. Each sequence in the database is a task that will be fed to a
farm worker, so they can be matched concurrently.

Figure 10 shows the experimental results for a representative case, the sequence
named Q8WXI7, which has 22,152 proteins. Experiments with other sequences
showed similar behaviors. For the shared-memory machine, all versions except CnC
show a similar performance. Using CnC leads to a very simple implementation as there
are no dependencies among the different calculations. Results show reasonable scala-
bility but very poor performance. This behavior can also be noticed in other example
applications provided with the CnC distribution, for example the Jacobi benchmark
in Sect. 5.2.4. Like the previous benchmark, FastFlow implementation shows worse
scalability in the cluster due to the heterogeneous architecture. We can conclude that
HitFlow can be used for this kind of real applications with minimum performance
degradation thanks to the proposed implementation.
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Fig. 10 Swps3 benchmark results using the protein sequence Q8WXI7 as inputset

5.2.3 Smith–Waterman: Clote’s Algorithm

The third benchmark, CloteSW, is a different implementation of the Smith–Waterman
protein alignment that aims to compare two big sequences [13]. For this bench-
mark, we compare in the shared architecture two sequences of 100,000 elements.
They are bigger than any of the sequences used in the previous experiment. For this
case, the Smith–Waterman algorithm requires to compute the values of a matrix with
100,000 × 100,000. Due to memory limitations in some of the distributed nodes, we
use sequences of 30,000 elements in the cluster. The computation is broken down into
pieces, following a distributedwavefront structure. The benchmark has several phases:
First, it populates the alignment matrix following the wavefront structure. Then, it per-
forms a reduce operation to determine the maximum match sequence. Finally, it uses
a backtracking method to compose the sequence traversing the wavefront structure in
the reversed order. The backtracking stage can be implemented as a different mode in
the same transitions, creating data affinities that avoid extra data communications or
synchronizations (recall Fig. 2).

We have developed and executed versions for sharedmemory using FastFlow, CnC,
HitFlow. and C++ with MPI (Manual). The FastFlow version for shared memory uses
the FastFlow’s ff_mdf dataflow skeletonwhich implements themacro dataflow pattern,
responsible for scheduling, and that allows the declaration of data dependencies.

The same C++/MPI and HitFlow programs can be used in distributed memory.
However we have not been able to obtain correct programs with the other tools. The
FastFlow distributed version was not possible to be implemented due to the early stage
of development of the distributed support. Some dataflow constructions can only be
used in shared-memory environments. As it is stated in [14], more work is needed to
allow the user to use distributed versions of the different parallel skeletons.

The results are shown in Fig. 11. The CnC version obtains the worst results with a
high difference. FastFlow shows the best performance in shared-memory. The use
of message passing in the HitFlow and the Manual versions requires more time
for the low-level marshalling and movement of data buffers. However, they can be
executed in distributed memory directly, obtaining the same good performance and
scalability.
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Fig. 11 Clote’s Smith–Waterman benchmark results

5.2.4 2D Jacobi Solver

The last benchmark tested is a Jacobi solver that performs 1000 iterations of a 4-
point stencil computation in a 10,000 × 10,000 bidimensional grid. We compare
HitFlow against a manually developed version using C and MPI (Manual) in the
distributed-memory system, and we also compare against OpenMP, FastFlow, and the
version provided by CnC in the shared-memory case. FastFlow benchmark is devel-
oped using the stencil data parallel skeleton which, among other parameters, accepts
the appropriate function to update each cell. When trying to develop this benchmark
using distributed FastFlow, we encountered the same problems as in Clote’s version
of Smith–Waterman and we were unable to implement it. The Manual version is a
classical stencil implementation that divides the grid into portions and uses a neighbor
synchronization communication structure to exchange border data on each computa-
tion iteration. The HitFlow version uses the same partition policy. Each partition is
assigned to a transition that communicates with its neighbors, sending and receiving
the data of the borders using places in two different modes.

The results in Fig. 12 show that HitFlow obtains a similar performance to manual
C+MPI in distributed memory, and also similar to FastFlow, and OpenMP versions
for shared-memory. The implementation provided by CnC does not show a good
performance, and it is not prepared for running on distributed memory. As expected,
the distributed experiments show a degradation of performance when changing from
one single node to several heterogeneous nodes.However they obtain a good scalability
when more nodes are added. These results show that the HitFlow model can also be
applied to problems that are usually solved using static data parallel models.

5.3 Code Complexity

In this section, we use several code complexity and development-effortmetrics to com-
pare HitFlow codes with other proposals. For this comparison, we use three classical
development effort metrics: The number of code tokens, McCabe’s cyclomatic com-
plexity [18], and Halstead’s development effort [19]. The number of tokens detected
by the programming-language parser measures the code volume of C/C++ programs
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Fig. 12 Jacobi 2D results

Table 2 Complexity comparison

Metric Manual MPI FastFlow Dist. FF CNC HitFlow

Tokens 552 471 935 565 518

McCabe 34 33 57 24 32

Halstead 8.65E+5 4.46E+5 13.1E+5 4.16E+5 4.93E+5

better than the number of code lines. McCabe’s cyclomatic complexity is a quantita-
tive measure of the number of linearly independent paths through a program’s source
code. Finally, the Halstead’s development-effort metric is also a quantitative measure
based on the number of operators and operands in the source code. They are related to
the mental activity needed by a programmer to develop the code, and to the amount of
test cases needed to check the program correctness. Low cyclomatic complexity and
Halstead’s development effort indicate codes which are simpler to develop and debug.
These metrics are typically used in the assessment of software design complexity.

We have selected the Mandelbrot benchmark because it is a simple benchmark,
and we have more implementations using different programming tools. Table 2 shows
the measures obtained for each metric, for the different versions of the benchmark.
The metrics clearly show that dataflow abstractions allow the representation of the
target program with less development effort than using directly MPI. The shared-
memory FastFlow and CnC versions, followed by the HitFlow version are the simplest
implementations. However, the regular FastFlow version cannot be used in distributed-
memory systems, and CnC needs some tuning to run it in a distributed environment.
The version that uses the distributed-memory support of FastFlow leads to the bigger
metrics values. This is due to the use of the two-tier model, that forces to implement
separately the coordination logic for the distributed processes, and the logic used for
shared memory inside the nodes.

A full example of a simple pipeline application implemented in HitFlow, and in
FastFlow supporting only shared-memory, can be seen in Fig. 13. It can be observed
that the codes for the nodes activities and coordination are very similar, while FastFlow
present neat higher-level abstractions. It reduces the code complexity thanks to the use
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1 #include <hitflow.h>
2 using namespace hitflow;
3

4

5 class StageA: public Transition {
6 int numtasks;
7 public:
8 StageA(int t): numtasks(t){};
9

10 void create(){
11 long task;
12 for(int i=0; i<numtasks; i++){
13 task = i;
14 put(task);
15 }
16

17 }
18 };
19

20 class StageB: public Transition {
21 long sum;
22 public:
23 void init(){
24 sum = 0;
25

26 }
27 void process(){
28 long task;
29 get(&task);
30 sum += task;
31 }
32 void end(){
33 cout << "Sum " << sum << endl;
34 }
35 };
36

37 int main(int nargs, char * vargs[]){
38

39 HitFlow::init(&nargs, &vargs);
40

41 StageA st_a(10);
42 StageB st_b;
43

44 Place<long> place("long container");
45

46 st_a.addOutput(&place,"createTasks");
47 st_a.addMethod(&StageA::create,"createTasks");
48 st_b.addMethod(&StageB::process,"processTasks");
49 st_b.addInput(&place,"processTasks");
50

51 Net net;
52 net.add(&st_a); net.add(&st_b);
53 net.run();
54

55 return 0;
56 }

1 #include <ff/pipeline.hpp>
2 using namespace ff;
3

4 class StageA: public ff_node {
5 int numtasks;
6 public:
7 StageA(int t): numtasks(t){};
8

9 long * svc(void * intask){
10

11 for(int i=0; i<numtasks; i++){
12 long * task = new long(i);
13 ff_send_out(task);
14 }
15 return NULL;
16 }
17 };
18

19 class StageB: public ff_node {
20 long sum;
21 public:
22 int svc_init(){
23 sum = 0;
24 return 0;
25 }
26 long * svc(long * intask){
27 sum += *intask;
28 delete intask;
29 return GO_ON;
30 }
31 void svc_end(){
32 cout << "Sum " << sum << endl;
33 }
34 };
35

36 int main() {
37

38 ff_pipeline pipe;
39 pipe.add_stage(new StageA(10));
40 pipe.add_stage(new StageB());
41 if (pipe.run_and_wait_end()<0)
42 return -1;
43 return 0;
44 }

Fig. 13 A full pipeline example in both HitFlow (left) and shared-memory only FastFlow (right) frame-
works

of skeletons to build the network. This approach could also be used on top of HitFlow.
This is also discussed at the end of the Related Work section.

The results indicate that, using the techniques presented in this work, dataflow
abstractions in general can efficiently exploit hybrid shared- and distributed-memory

123



20 Int J Parallel Prog (2019) 47:3–23

using a one-tier programming model, and reducing the development effort comparing
with directly using message-passing interfaces.

6 Related Work

In this section we first comment the differences between our current proposal and the
previous work of our group in the same research line. Then, we discuss conceptual
similarities and differences with other dataflow or task-network oriented programming
models.We focus the discussion on features that have implications in the programming
strategies, the implementation techniques used, and the mapping of the tasks in the
context of distributed processes.

HitFlow is a complement of Hitmap, a library for automatic but static hierarchical
mapping,with support for dense and sparse data structures [20–22]. TheHitmap library
focuses on data-parallel techniques and does not have a native support for dataflow
applications. In a previous work [7], we introduced a first approach to a dataflow
model that could be used as a Hitmap extension. The model introduced in this paper
generalizes several restrictions of the previous one, introducing a complete generic
model to represent any kind of combinations of parallel structures and paradigms.
The differences with the previous Hitmap extension can be summarized as: (1) We
present a general MPMC system where consumers can consume different task types
from different producers. (2) It supports cycles in the network construction. (3) The
new model introduces a concept of mode inside the processing units to reconfigure
the network, allowing mutually exclusive functions in a transition, and to intuitively
define task-to-task affinity with an easier mapping to fixed-scheduled MPI processes.

S-Net [6] is a declarative coordination language. It defines the structure of a pro-
gram as a set of connected asynchronous components called boxes. S-Net only takes
care of the coordination: The operations done inside boxes are defined using conven-
tional languages. Boxes are stateless components with only a single input and a single
output stream. From the programmers’ perspective, the implementation of streams on
the language level by either shared memory buffers or distributed memory message
passing is entirely transparent.

HitFlow has several similarities with FastFlow [3], a structured parallel pro-
gramming framework targeting shared memory multi-core architectures. FastFlow
is structured as a stack of layers that provide different levels of abstraction, providing
the parallel programmer with a set of ready-to-use, parametric algorithmic skeletons,
modeling the most common parallelism exploitation patterns. HitFlow transition API
is similar to FastFlow. Figure 13 shows a full example of a simple pipeline application
to compare both of them. The main differences are that the HitFlow framework is
designed to support both shared- and distributed-memory with a single tier model.
It includes a transparent mechanism for the correct termination of networks even in
the presence of feedback-edges, and mode-driven control to create affinity between
transitions in distributedmemory environments. The FastFlow group has developed an
extension to FastFlow to target distributed nodes, using a two tier model [14]. How-
ever, this solution forces the programmer to implement separately the coordination
logic for the distributed processes, and the logic used for shared memory inside the
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nodes. It uses a different mechanism of external channels to communicate the tasks. In
this sense, HitFlowmakes the program design independent from themapping between
shared-memory and distributed-memory levels.

HitFlow networks are similar to CnC (Concurrent Collections [4]) graphs. CnC is
a parallel programming model where the computation is defined by serial functions
called computation steps and their semantic ordering constraints. Like HitFlow tran-
sitions, CnC steps communicate through message-passing as well as shared memory
using shared entities called item collections. One of the differences between HitFlow
and CnC is that CnC allows the programmer to give the scheduler hints about the
thread affinity. However, CnC steps only execute one activity each one with its own
memory space. Thus it is not possible to define task to task affinities in thewayHitFlow
transitions do, to better map the task networks to MPI processes without incurring in
communication cost penalties.

There are some proposals that support task parallelism introducing annotations
in the sequential source code. For example, the OpenMP 3.0 task primitives and the
dependency extensions introduced in version 4.0 of the standard [23]. The programmer
exposes data flow information using pragmas to define the stream input and output
task. The runtime ensures the coordination of the different elements. Other dataflow
proposals based on annotations are: OpenStream [5], OmpSs [24], and StarPU [25].
All these proposals simplify the development of task parallel programs in shared-
memory, and OmpSs and StarPU also support environments with accelerator devices,
and even distributed memory. These models rely in load balancing mechanisms that
dynamically map tasks with an arbitrary granularity level defined by the programmer.
On the other hand, our approach is designed to simplify the expression of task networks
with a flexible granularity, and to allow the creation of affinities between tasks and
distributed processes. The tasks can reconfigure their activity and/or communication
channels to change the computation and communication structure across different
stages. The purpose is to better exploit locality and to reduce the communication
costs.

Skeleton libraries present an approach that have a higher level of abstraction than
our dataflow model, with flexible implementations for different target architectures
and hybrid platforms (see e.g. SkePU [26] or Muesli [27]). They typically use a
two-tier model, not related to the target platform, but to the programming paradigm.
They distinguishing between two different types of skeletons (task- or data-parallel
oriented). These types cannot be composed in any form. Data-parallel skeletons can
only be the leaves of the composition tree. Data affinities across different stages, which
means different hierarchies of skeletons, are not properly defined. Finally, the amount
of included skeletons do not support all the applications classes supported by a generic
dataflow programming model that can express task or data-parallel computations with
the same abstraction, supporting arbitrarily connected transitions and places, with
dependences loops. In the context of HitFlow, skeletons could be used as higher-level
abstractions to transparently generate common tasks networks, by combining a limited
set of structures. FastFlow already exploits this approach as we discussed at the end
of the previous section.
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7 Conclusions

This paper presents a parallel programming model and framework with a novel com-
bination of features designed to easily map dataflow programs to distributed-memory
processes. It allows programs to be described as a network of communicating activities
in an abstract form. The system allows the implementation of applications from simple
static parallel structures, to complex combinations of dataflow and dynamic parallel
programs. The description is decoupled from the mapping techniques or policies,
which can be efficiently applied at runtime, automatically adapting static or dynamic
structures to different resource combinations. Our current framework transparently
targets hybrid shared- and distributed-memory platforms.

We present an evaluation with examples of different classes of dynamic and static
applications. Experimental performance results show that the overhead introduced by
our abstractions has minimal impact compared with manually developed implemen-
tations using MPI. Comparisons with other dataflow programming tools show that
HitFlow can better express some classes of programs designed for distributed environ-
ments, while its implementation can be improved for shared-memory. Comparisons
of development effort metrics indicate that HitFlow codes have a similar development
cost than other dataflow abstractions. HitFlow codes present a much lower complexity
thanmanually developedMPI codes, and obtain the same performance and scalability.

This generic framework can be used to focus new research on the best mapping
policies that can transparently target heterogeneous platforms for specific or generic
combinations of parallel paradigms, and to build powerful parallel patterns using a
common and generic framework.
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