Int J Parallel Prog (2019) 47:272-292 @ CrossMark
https://doi.org/10.1007/s10766-017-0547-5

GPU Framework for Change Detection in
Multitemporal Hyperspectral Images

Javier Lopez-Fandifio'!® - Dora B. Heras! -
Francisco Argiiello! - Mauro Dalla Mura?

Received: 15 September 2017 / Accepted: 6 December 2017 / Published online: 16 December 2017
© Springer Science+Business Media, LLC, part of Springer Nature 2017

Abstract Nowadays, it is increasingly common to detect land cover changes using
remote sensing multispectral images captured at different time-frames over the same
area. A large part of the available change detection (CD) methods focus on pixel-
based operations. The use of spectral—spatial techniques helps to improve the accuracy
results but also implies a significant increase in processing time. In this paper, a Graphic
Processor Unit (GPU) framework to perform object-based CD in multitemporal remote
sensing hyperspectral data is presented. It is based on Change Vector Analysis with
the Spectral Angle Mapper distance and Otsu’s thresholding. Spatial information is
taken into account by considering watershed segmentation. The GPU implementation
achieves real-time execution and speedups of up to 46.5x with respect to an OpenMP
implementation.

Keywords Hyperspectral change detection - Segmentation - Spectral Angle Mapper -
Change Vector Analysis - GPU - CUDA

B Javier Lopez-Fandifio
javier.lopez.fandino @usc.es

Dora B. Heras
dora.blanco@usc.es

Francisco Argiiello
francisco.arguello@usc.es

Mauro Dalla Mura

mauro.dalla-mura@gipsa-lab.grenoble-inp.fr

Centro Singular de Investigacién en Tecnoloxias da Informacién (CiTIUS), Universidade de
Santiago de Compostela, Santiago de Compostela, Spain

2 GIPSA-lab, Institute of Engineering, CNRS, Grenoble INP, Université Grenoble Alpes, 38000
Grenoble, France

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-017-0547-5&domain=pdf
http://orcid.org/0000-0001-5725-0885

Int J Parallel Prog (2019) 47:272-292 273

1 Introduction

Hyperspectral imaging is achieved by acquiring reflectance values for each pixel over a
large number (e.g., hundreds to thousands) of narrow and contiguous spectral channels
[3,35], known as spectral bands. The further sensor technology advances, increasing
the number of pixels and spectral bands, the greater the necessity for efficient tech-
niques to deal with the huge amount of data collected by hyperspectral sensors. The
detailed spectral information present in these images is exploited in many remote sens-
ing applications that usually address problems like segmentation, classification, target
detection, or change detection (CD), among others [12,34]. The availability of mul-
titemporal hyperspectral images (i.e., images corresponding to different time-frames
over the same region) makes it possible to apply techniques to automatically recognize
the significant changes that occurred in a region through time [4,32].

One possible classification of CD techniques is based on the type of fusion of
the multitemporal data (see Table 1): at feature level or at decision level [4]. In the
former the information of both images is combined before performing the CD. The
combination is usually based on algebraic operations over both images, such as image
differencing, image ratioing, application of normalized difference vegetation index
(NDVI) [1] or Change Vector Analysis (CVA) [20]. CVA is atechnique that relies on the
computation of distances and angles between pairs of pixels (each pixel is represented
by a vector of values) corresponding to the same position in both images. The original
CVA technique [33] is based on the computation of Euclidean distances. Several papers
indicate that the Spectral Angle Mapper (SAM) is a better metric for comparing
spectra in hyperspectral datasets [10]. Its independence of the number of spectral
components allows comparing images of different spectral dimensionality. Besides,
it is invariant to scale changes making it insensitive to variations in illumination [10,
18].

Other techniques, based on the fusion of images at the feature level, perform feature
extraction over the image resulting from the fusion using, for example, Principal Com-
ponent Analysis (PCA) [6,21]. Calculating morphological profiles, such as attribute
profiles, is another very well-known method in the remote sensing field in order to
extract spatial features from the images [1 1]. Context based approaches such as Markov
Random Fields (MRF) [14] or Expectation-Maximization-based Level Sets (EMLS)

Table 1 Classification of CD

methods regarding the fusion Fusion at the feature level

level of the multitemporal data Pixel-based operations Image differencing,

ratioing, NDVI [1],
CVA [20]

Feature extraction PCA [6,21]

Morphological profiles Attribute profiles [11]

Context based approaches MRF [14], EMLS [15]

Fusion at the decision level
Post-classification [17]
Direct multidate classification [36]

@ Springer

274 Int J Parallel Prog (2019) 47:272-292

[15] are applied in some papers. Regarding the thresholding process that is necessary
in order to identify the changes, the most commonly used approaches are statistical
methods such as Expectation-Maximization (EM) [5] but these techniques are com-
putationally inefficient as they are based on slow iterative methods. Instead, Otsu’s
method [24] allows obtaining suitable thresholds with a much lower computational
complexity since it relies on histograms that can be efficiently computed on a Graphic
Processor Unit (GPU).

Regarding the approaches where the fusion of the information provided by both
images is carried out at the decision level, we can quote some post-classification based
techniques that compute the changes as the differences in the classification of the two
images [17]. Other techniques perform a direct multidate classification [36].

Remote sensing hyperspectral applications are computationally demanding and,
therefore, good candidates to be projected onto high performance computing (HPC)
infrastructures such as clusters or specialized hardware devices [9,26]. Some remote
sensing techniques have been executed in Field Programmable Gate Arrays (FPGA)
[37,38] or GPUs [19,26,28,31] to reduce their execution times. In this context, we
consider real-time operation as that which allows us to fully process one image before
the next one can be delivered by the sensor. This time depends on the sensor used. For
example, for the AVIRIS sensor used in this paper, a track line of 512 pixel vectors is
collected in 8.3 ms [27]. GPUs provide a cost-efficient solution to carry out onboard
real-time processing of remote sensing hyperspectral data. For instance, [2] shows
the advantages of performing hyperspectral unmixing on GPU, and [16] proposes a
framework for atmospheric cloud filtering in remotely sensed images. Some papers
in the literature explore the benefits of the GPU projection of CD techniques. [8]
introduces a nearest neighbor hierarchical CD framework for crop monitoring where
only the most computationally expensive step is executed in GPU. A CD technique
based on image differencing and fuzzy clustering on AMD GPUs is presented in
[39].

A framework to detect binary object-based changes in multitemporal hyperspectral
datasets is presented in this paper. The proposed framework is designed to be efficient
on both multi-core architectures and commodity GPUs. It considers fusion at the fea-
ture level while the spatial information is extracted through a segmentation process.
The segmentation is carried out independently for each image before combining the
features of the two images. CVA using the SAM distance [10] is used as an improve-
ment to the CVA presented in [33]. The use of Otsu’s method [24] to threshold the
changes is proposed as an alternative to the EM approach. Finally, an iterative spatial
regularization [19] is applied to reduce the presence of noise and unconnected pixels in
the final output. The framework presented in this paper allows the efficient integration
of these techniques as well as the real-time execution on GPU.

2 GPU Hyperspectral Framework for Change Detection
This section is devoted to the introduction of some Compute Unified Device Architec-

ture (CUDA) fundamentals (Sect. 2.1) as well as to the CUDA GPU implementation
(Sect. 2.2) of the framework.

@ Springer

Int J Parallel Prog (2019) 47:272-292 275

2.1 CUDA GPU Programming Fundamentals

GPUs provide massively parallel processing capabilities thanks to their data parallel
architecture. The CUDA platform allows NVIDIA GPUs to execute programs invoking
parallel kernels that simultaneously execute in many parallel threads (one instance per
thread, following a SIMD programming model) [23]. The threads are organized into
blocks forming a grid that is mapped to a hierarchy of CUDA cores in the GPU. They
can access data from multiple memory spaces: Private local memory, registers, a shared
memory per block whose lifetime equals that of the block, and a shared global memory
for all threads that is persistent across kernel launches. The NVIDIA PASCAL GPU
architecture used in this paper [23] implements a two level cache hierarchy including a
configurable L1 cache for each streaming multiprocessor (SM) and a unified L2 cache
shared among all SMs. The architecture provides 96 KB of shared memory for each
SM with a block limit of 48 KB.

The threads run in groups of 32 called warps. The occupancy of the GPU is defined
as the number of active warps over the maximum number of warps supported per SM.
Therefore, the performance will be better when the hardware occupancy is higher.
The occupancy can be limited by three factors: the number of registers employed, the
amount of shared memory required, and the maximum number of threads per block.

In order to improve performance, some optimization techniques have been consid-
ered:

1. Minimize the use of global memory and the number of data transfers between host
and device memories The use of the global memory is minimized using in-place
computation whenever possible, i.e., using the memory reserved for the inputs to
store the outputs. All the computations are carried out in the GPU memory so that
data transfers between host (CPU) and device (GPU) are reduced to copying the
inputs and returning the outputs. It is also essential to minimize the data transfers
between global and shared memory.

2. Efficient use of libraries for common operations The cuBLAS library [22] is used
to efficiently compute matrix operations.

3. Search for the best kernel configuration The block size is tuned for each kernel
to minimize the execution time. The factors involved in the block size selection
are the number of registers and the shared memory used by the program. In our
application the selection of the block size depends on the GPU model whereas
the dimensions of the image are not relevant for the decision. Given that each
SM can have a maximum number of active blocks, larger blocks are preferable.
The selected block size is a multiple of 32 (the warp size) to avoid divergences
among threads an thus maximize parallelism. A size of 512 or 1024 threads per
block was selected for most of the kernels. This size is large enough to exploit the
memory bandwidth of the device. Additionally, if a computation involves steps
requiring different numbers of threads, it is split into consecutive kernels allowing
the optimization of the resources and, therefore, maximizing efficiency.

4. Avoid writing collisions When several threads in a kernel need to atomically write
in the same structure, it is more efficient to perform independent partial results
per block and combine these results in a second kernel. This can be applied, for

@ Springer

276 Int J Parallel Prog (2019) 47:272-292

Fig. 1 Example of histogram Compute local histograms
calculation using 9 blocks and 6 Input image using atomics
histogram levels CUDA 3l1lal210]l1

CUDA | CUDA | CUDA | block 0
block 0]block 1 [block 2| cypa

block 1

015]3|1|2]0

CUDA | CUDA | CUDA : :
block 3| block 4 |block 5| CUDA
block8|2|1|1 6|1|0|

cupa | cupa | cupba Merge local histograms
block 6| block 7 [block 8 |5|7|8|9|3|1|

instance, in the calculation of a histogram, as shown in Fig. 1. In the first kernel,
each CUDA block calculates the histogram of a spatial portion of the input image.
Then, the second kernel merges all the partial results into the global histogram.

2.2 CUDA GPU Framework for Binary Change Detection

The details of the proposed spectral-spatial GPU framework for CD are provided in
this section. Some pseudocodes are introduced where each process executed in GPU is
placed between <> symbols and may involve one or more kernels. The pseudocodes
also include the GM and SM acronyms to indicate kernels executed in global memory
or shared memory, respectively.

The flowchart of the framework is displayed in Fig. 2 and its stages are detailed
in Fig 3. The inputs to the framework are two co-registered hyperspectral images
acquired on two different time-frames over the same area. Figure 4 shows the data
structures employed along with the thread activity.

2.2.1 Segmentation Stage on GPU

As shown in Figs. 2, 3, and 4, each image is independently segmented using the water-
shed transform. The segmentation stage involves a three-step processing: Calculation
of a gradient, creation of a watershed-based segmentation map, and averaging of the
pixels belonging to the same regions.

The first step consists in the calculation of the magnitude of a gradient. This gradient
reduces the hyperspectral image to one band as shown in Fig. 5. For each pixel, and for
each band of the pixel, the horizontal and vertical terms of the gradient are calculated
separately. Then, the norm of these terms is computed and the value of the gradient
for each band is accumulated to produce the final gradient value for each pixel. This
process is computed in shared memory (optimization technique 1 in Sect. 2.1) and
requires a load operation in shared memory for each band of the image.

Then, a segmentation map is calculated through a watershed technique based on
a cellular automaton [30] called CA-watershed. The watershed segmentation fits this
approach particularly well because it produces over-segmented region maps, mini-
mizing the probability of including more than one semantic object in the same region.
The input is the one-band image obtained by the previous gradient (See Fig. 6). The

@ Springer

Int J Parallel Prog (2019) 47:272-292 277

Fig. 2 Change detection
flowchart in the spectral-spatial
framework

Hypéfspectral Hypéispectral
image 1 image 2

¢ Segmentation ¢

Segmented Segmented
image 1 image 2

\ Fusion (CVA) /

| Difference image |

¢Thresholding

| Change map |

Spatial
regularization

Spatially regularized
change map

™

(1D

(111)

Iv)

Segmentation.

Input: two co-registered hyperspectral images.

Output: two segmented hyperspectral images.

(1) Generate the segmented images through watershed.

Fusion.

Input: two segmented hyperspectral images.

Output: difference image.

(1) Apply CVA with SAM distance to obtain a difference image.
Thresholding.

Input: difference image.

Output: raw change map.

(1) Obtain the range of the data in the image.

(2) Calculate the histogram of the data.

(3) Calculate threshold through Otsu’s method.

(4) Generate binary image according to the calculated threshold.
Spatial regularization.

Input: raw change map.

Output: spatially regularized change map.

(1) Apply neighbor-based spatial regularization to the raw change map.

Fig. 3 Work-flow of the GPU-based spectral-spatial framework for change detection

CA-watershed is implemented asynchronously (exploiting optimization technique 2
in Sect. 2.1), being up to five times faster than the synchronous CUDA implementation
[29]. It includes intra-block asynchronous updates computed in shared memory and
inter-block synchronous updates computed in global memory to efficiently deal with
the fact that the CA technique needs data from the neighbors of each pixel.

This implementation presents the advantage of reusing information within a block
to efficiently exploit the shared and cache memories of the device (optimization 1 in

@ Springer

278

Int J Parallel Prog (2019) 47:272-292

rows,

Hyperspectral
Colum

I image 1
ns

Uj

(distances,
labels, states))

pdate

Segmented image 1

Bands o/*/5/5, o /o/5/5
e/e/0/0, e /e /0/0O
Compute ©/o/o/o Compute © /o /o /o
hyperspectral gradient 's/o/o/0o, watershed /o /o /o /o/ " Region
'Ji’a ’ T efofofe] iaveragng;
>
7 2D pixel >
. table celd
Hyperspectral image 2 Update Segmented image 2
EI data being Column ‘; (distances,
processed rows labels, slalsls)
I:I data waiting to Bands hAIATAS /*/°/5 -
be processed e /e /0/0, e /e /0/0, g
Compute 3 0 /0/0/0, Compute 'o/0/0/0, S
‘;:;:et:s:g by gradient o/o/o/o watershed /o 767070/ &
other blocks ICAC/S/Y ofo/o/e/ iAVErA
Regularized Thresholding
change map Change map _ Difference image
(777 R < R < e o/
pute Compute
Y ol I el (/7
Otsu na partial
- WH. histogram EEEEEE histograms /0/0/0/0/
/o/o/o/c/ b(_Senerate [o////
Lolo/ofo/ inary map [o/o/>/>/

i Region Averaging detail

Hyperspectral image Segmentation map Segmented image;

Fig. 4 GPU computation diagram, showing the data structures and the activity of each thread at a given
instant of time. The data structures stored in global or shared memory are classified as hyperspectral data,
2D data and table (all the structures that do not correspond to the first two categories). In a given instant
of time, data may be computed by a thread of the current block, by a thread of another block or it may be
waiting to be processed

Propagate
averaged
values

Number of regions

Divide
accumulated
values by

region size
—_—

Add pixel values and
count region size

Gradient on GPU.
Input: hyperspectral image X.
Output: single band image. > Distances step (1)
1: for each band k of X do
2: <Load band k in shared memory> > SM-GM
3: for each pixel i,j in band k do
4: <Compute the x term of the gradient as > SM
grade(i,j) = I(i + 1,j) — I(i - 1,5) >
5: <Compute the y term of the gradient as > SM
grady(i, j) = I(i,5+1) = I(i,j — 1) >
6: <Accumulate the gradient module as > SM
grad(i, j)+ = sqrt(grade(i, §)* + grady(i,)*) >
T end for
8: < Synchronize threads within the block> > SM
9: end for
10: <Write grad(i, j) to global memory> > SM-GM
> GM: Global Memory, SM: Shared Memory

Fig. 5 Pseudocode for the gradient kernel required by the watershed-based segmentation corresponding
to step (I) in Fig. 3

@ Springer

Int J Parallel Prog (2019) 47:272-292 279

Asynchronous CA-watershed on GPU.
Input: single band image from Gradient.
Output: segmentation map. > Initialization step (1)
1: <Initialize CA data (labels, distances and states)> > GM
> Updating step (2)
2: while CA is not stable do > inter—block updating
3: <Asynchronous updating of the CA> > intra-block updating (SM)
4: < Global synchronization among blocks> > GM
5: end while
> GM: Global Memory, SM: Shared Memory
Asynchronous updating of the CA on GPU.
Input: image CA data (labels, distances and states).
Output: updated image CA data. > intra—block updating
1: <Load CA data in shared memory> > SM-GM
2: while CA is not stable at block level do
3: <Update labels, distances and states within the block> > SM
4: <Local synchronization among threads> > SM
5: end while
6: <Write CA data to global memory > > SM-GM
> GM: Global Memory, SM: Shared Memory

Fig. 6 Pseudocode (main routine and detail of the asynchronous updating function) for the watershed
segmentation corresponding to step (I) in Fig. 3

Sect. 2.1). It involves two kernels, implementing the initialization and updating steps
of the CA-watershed. They are configured to work in two-dimensional thread blocks
as shown in Fig. 4, so that each thread operates over a single pixel. The updating step
is an iterative process that lasts until no modifications are made to the available data
inside the region (lines 2-5 in Fig. 6). This implementation generates a segmentation
map where the pixels are connected so that every pixel in the same region has the same
label.

Finally, in the third step of the segmentation, the process to average the spectra
of the pixels belonging to the same segmentation region starts (see Figs. 4 and 7).
It involves three consecutive kernels (optimization 4 introduced in Sect. 2.1) that are
executed in global memory because the size of the regions is unknown and there is
no data reuse. The first kernel accumulates the values of each pixel belonging to a
region. Each thread atomically adds the spectral values of a pixel to the corresponding
region values and also increments a counter for the number of pixels in the region.
The second kernel divides the accumulated pixel values for each region by the number
of pixels of the region, thus using as many threads as regions in the image. The final
kernel propagates the calculated average values to every pixel belonging to each region,
needing again as many threads as pixels in the image. In the three kernels each thread
computes all the bands of the corresponding pixel. The computation is carried out
in-place (optimization technique 1).

After the segmentation stage, the images will have no intra-region variability and
a longer inter-region variability. This allows us to detect the changes more easily and
to do it at the object level instead of at the pixel level. By assigning the same value to
all the pixels in the region, that region (i.e., corresponding to an object or a part of it)
will be considered as a whole in the thresholding step.

@ Springer

280 Int J Parallel Prog (2019) 47:272-292

Region averaging on GPU.
Input: hyperspectral image, watershed segmentation map.
Output: region-averaged hyperspectral image.
1: <Add pixel values in each watershed region> > GM
—Check the region of the pixel in the segmentation map.
—Atomically add 1 to the corresponding region counter.
—Atomically add each band of the pixel to the corresponding accumulator.
2: <Divide accumulated values by number of pixels in each region> > GM
3: <Propagate the averaged value to each pixel of each region> > GM
> GM: Global Memory

Fig. 7 Pseudocode for the averaging process in the segmentation of step (I) in Fig. 3

Image fusion on GPU.
Input: two segmented images.
Output: difference image.
1: <Apply CVA with SAM distance> > GM
—Accumulate the product for each band between correspondent pixels.
—Accumulate the square of each pixel for each band for both images.
—Calculate distance as (2/7) % arccos(product/(\/firstSquare) % +/secondSquare)).
—Denormalize the distance by a scale factor.

> GM: Global Memory

Fig. 8 Pseudocode for the fusion stage corresponding to step (II) in Fig. 3

2.2.2 Fusion Stage on GPU

The following step combines the segmented images into a difference one. This is
usually handled by Change Vector Analysis (CVA) processing [33] using Euclidean
distance. Our proposal is to create this difference image by using the Spectral Angle
Mapper (SAM) distance,

2 —1<Sf"S")e[Ol] (1)
o i = — COS —_— , 1],
Y 11811118 1

where «o; ; is the spectral angle between the spectrum at pixel i (S;) and the one at j
(S8j), and i, j are the two pixels under consideration.

The fusion of the two segmented hyperspectral images through CVA is computed by
akernel (Fig. 8) where each thread computes the SAM distance between the two pixel-
vectors corresponding to the same spatial location in the two segmented images. This
distance is then denormalized by applying a scale factor that allows the subsequent
computation of a histogram of the difference image. The distance computation is
carried out in global memory generating the difference image in Fig. 4.

2.2.3 Thresholding Stage on GPU

A thresholding process is needed to obtain the change map of the images. In our
approach, it is performed following Otsu’s algorithm [24]. To do this, a histogram of
the previously calculated difference image is required. In order to preserve as much
detail as possible, this histogram is created with as many bins as gray levels in the
difference image.

@ Springer

Int J Parallel Prog (2019) 47:272-292 281

Thresholding on GPU.
Input: difference image.
Output: raw change map.

1: <Search data interval in the difference image> > SM-GM
2: <Calculate partial histograms of the data> > GM
3: <Merge partial histograms> > GM
4: <Calculate threshold by Otsu’s method> > GM
5: <Generate binary image regarding the calculated threshold > > GM

> GM: Global Memory, SM: Shared Memory

Fig. 9 Pseudocode for the thresholding stage corresponding to step (III) in Fig. 3

This process (see pseudocode in Fig. 9) starts by calculating the range encompassing
the values of the difference image. This can be achieved efficiently through the cuBLAS
library [22] (optimization strategy 3 in Sect. 2.1). After this, the histogram of the data
is efficiently calculated through two consecutive kernels (optimizations 3 and 4 in
Sect. 2.1). First, n partial histograms are obtained (being n the number of blocks of
threads) as shown in Fig. 4, in a kernel where each thread processes a pixel of the
difference image. In the second kernel, the partial histograms are combined in order
to obtain the final histogram using as many threads as bins in the histogram. This way
each thread writes in a different position of the array.

The next task is to calculate the global value of the threshold using Otsu’s algorithm.
It assumes two classes of pixels in the histogram, and calculates, in an iterative process,
the optimal threshold as the one that provides the maximum inter-class variance. This
process is intrinsically sequential (it iterates through the possible thresholds and selects
the one resulting in a larger inter-class variance), thus it is computed by a single thread.
This is not a problem as long as it is an extremely quick step.

Finally, the CD map is directly created through a process where all the pixels in the
difference image whose value is greater than the calculated threshold are identified
as changed pixels. The same number of threads as pixels of the difference image
are launched in this kernel. The output of the thresholding stage (the change map) is
stored over the same memory that contains the magnitude of change for each pixel
(optimization technique 1).

2.2.4 Spatial Regularization on GPU

The previous processing can produce some unconnected pixels or noise in the CD map.
This is corrected by applying an iterative spatial regularization processing similar to
the one introduced in [19].

This stage is computed by one kernel, as shown in Fig. 10. The information of the
closest neighborhood of each pixel is exploited in an iterative process. The value of
each pixel in the CD map is computed by a thread. A global flag is activated if any
pixel is updated, indicating that the iterative process must last one more iteration. The
process is computed in-place (optimization technique 1 in Sect. 2.1) in global memory
in order to guarantee that the values of the neighbors of a pixel are always correctly
updated.

@ Springer

282 Int J Parallel Prog (2019) 47:272-292

Spatial regularization on GPU.

Input: raw change map.

Output: spatially regularized change map.

while Global flag > 0 do
<Global flag =0 > > GM
<Apply neighborhood-based spatial regularization > > GM
if Any pixel value changes then

<Global flag ++ > > GM

end if

end while

> GM: Global Memory

Fig. 10 Pseudocode for the spatial regularization stage corresponding to step (IV) in Fig. 3

2.2.5 Comparison to the Sequential and OpenMP CPU Implementations

Some stages of the method present different implementations in the CPU and GPU
versions in order to fully exploit each architecture. In particular, the region averaging
step of the segmentation stage (Fig. 7) and the fusion stage (Fig. 8) are performed in
pixel-vector order (i.e. the image is stored in memory so that the components of a pixel
are contiguous) in the CPU implementations. The GPU version works in band-vector
order. This aims to maximize the exploitation of the available cache memories in the
CPU and maximize the number of threads being executed in parallel in the GPU,
respectively. Furthermore, the histogram calculation of the thresholding stage (Fig. 9)
follows a two-step processing in GPU, as explained in Sect. 2.2.3, while this is not
necessary in the CPU version of the code, that computes it in only one step.

3 Experimental Results

In this section we provide experimental results over hyperspectral images obtained
from the AVIRIS sensor. The results will be analyzed in terms of accuracy in the
binary detection as compared to the reference detection data and in terms of compu-
tational performance of the GPU code. The datasets and the experimental conditions
are described in Sect. 3.1. The accuracies achieved and the performance results are
detailed in Sect. 3.2.

3.1 Hyperspectral Datasets and Experimental Set-Up

The proposed framework has been evaluated both in CPU and GPU. The specifications
of the hardware are detailed in Table 2. The CPU version of the code has been compiled
using the gcc compiler version 4.9.4 with OpenMP 3.0 support under Linux. This is,
at the moment of running the experiments presented in this paper, the most recent gcc
version compatible with CUDA. Optimization level 3 (-O3 compiler flag) is used in
every case. The CUDA code has been compiled using the nvcc compiler with version
8.0 of the toolkit under Linux.

The accuracy of the proposed framework is evaluated in terms of correctly detected
changes and total error, which represents the sum of missed alarms (MA) and false

@ Springer

283

Int J Parallel Prog (2019) 47:272-292

A[oAnoadsar ‘sojsuen 21Aap 01 2TAGP PUE ISOY 03 AIIAIP “@IIAIP 01 1S0H
A[2A1103dsai “a1im [enuanbas pue pear enuanbag,

qerere/e YLIE - TLOE 8t 4! L1 ¥85¢ X NVLIL

29T/TS 201 9 962 ¥9 ¥C 00T€ 1% 0LtE-G1 210D [apu]
(s/94D) (a1qno(q) (ZHN)

qpmpueqg SdOTID (am) ¢1 (@D 1 (@D 11 (4D) WV 2012 210D SQI0D JO # QrempIeH

suoneoyoads arempiey NdO pue NdD ¢ dAqEL

pringer

As

284 Int J Parallel Prog (2019) 47:272-292

Table 3 Distribution of the pixels in the available reference data for the CD of the Santa Barbara and Bay
Area datasets

Santa Barbara Bay Area

Absolute Percentage Absolute Percentage
Changed pixels 52,134 7.16 38,425 12.81
Unchanged pixels 80,418 11.04 34,211 11.40
Unlabeled pixels 595,608 81.80 227,364 75.79
Total 728,160 100.00 300,000 100.00

alarms (FA) [5]. These metrics are expressed in absolute and percentage terms. The
performance results are expressed in terms of execution time (in seconds) and speedup
(the number of times the GPU implementation runs faster with respect to a baseline
implementation) compared to an optimized OpenMP version of the framework exe-
cuted on a multicore CPU using 4 threads. The performance results represent the
average of ten independent executions.

The tests were run over two airborne co-registered hyperspectral images taken by
the AVIRIS sensor:

— The Santa Barbara dataset (years 2013 and 2014) over the Santa Barbara region
(California). Its dimensions are 984 x 740 pixels x 224 spectral bands.

— The Bay Area dataset (years 2013 and 2015) in Patterson (California). Its dimen-
sions are 600 x 500 pixels x 224 spectral bands.

The images were co-registered using HypeRvieW [13], a desktop tool that performs
registration based on the computation of the multilayer fractional Fourier transform
[25]. A reference map of the object-based areas that change between the two images
considered from each dataset was constructed by visual inspection. The reference
data includes areas with changes and without them, in order to avoid incorrect accu-
racy results corresponding to misclassified unchanged areas. Table 3 summarizes the
number of pixels assigned to each class over the images.'

3.2 Accuracy and Performance Results

This section presents the accuracy and performance results obtained by the proposed
framework over the experimental data.

Table 4 (for the Santa barbara dataset) and Table 5 (for the Bay Area dataset) show
the accuracies obtained using the previously introduced framework (SAM + WAT
+Otsu) with CVA based on SAM distance and Otsu’s thresholding, along with
other configurations included for comparison purposes. EUC +EM can be used as
a reference to compare the other methods, as it is frequently done in the bibliog-
raphy [5]. It includes an Euclidean distance CVA and Expectation-Maximization

! The datasets along with