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Abstract Nowadays, it is increasingly common to detect land cover changes using
remote sensing multispectral images captured at different time-frames over the same
area. A large part of the available change detection (CD) methods focus on pixel-
based operations. The use of spectral–spatial techniques helps to improve the accuracy
results but also implies a significant increase in processing time. In this paper, aGraphic
ProcessorUnit (GPU) framework to performobject-basedCD inmultitemporal remote
sensing hyperspectral data is presented. It is based on Change Vector Analysis with
the Spectral Angle Mapper distance and Otsu’s thresholding. Spatial information is
taken into account by considering watershed segmentation. The GPU implementation
achieves real-time execution and speedups of up to 46.5× with respect to an OpenMP
implementation.
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1 Introduction

Hyperspectral imaging is achieved by acquiring reflectance values for each pixel over a
large number (e.g., hundreds to thousands) of narrow and contiguous spectral channels
[3,35], known as spectral bands. The further sensor technology advances, increasing
the number of pixels and spectral bands, the greater the necessity for efficient tech-
niques to deal with the huge amount of data collected by hyperspectral sensors. The
detailed spectral information present in these images is exploited inmany remote sens-
ing applications that usually address problems like segmentation, classification, target
detection, or change detection (CD), among others [12,34]. The availability of mul-
titemporal hyperspectral images (i.e., images corresponding to different time-frames
over the same region) makes it possible to apply techniques to automatically recognize
the significant changes that occurred in a region through time [4,32].

One possible classification of CD techniques is based on the type of fusion of
the multitemporal data (see Table 1): at feature level or at decision level [4]. In the
former the information of both images is combined before performing the CD. The
combination is usually based on algebraic operations over both images, such as image
differencing, image ratioing, application of normalized difference vegetation index
(NDVI) [1] orChangeVectorAnalysis (CVA) [20].CVA is a technique that relies on the
computation of distances and angles between pairs of pixels (each pixel is represented
by a vector of values) corresponding to the same position in both images. The original
CVA technique [33] is based on the computation of Euclidean distances. Several papers
indicate that the Spectral Angle Mapper (SAM) is a better metric for comparing
spectra in hyperspectral datasets [10]. Its independence of the number of spectral
components allows comparing images of different spectral dimensionality. Besides,
it is invariant to scale changes making it insensitive to variations in illumination [10,
18].

Other techniques, based on the fusion of images at the feature level, perform feature
extraction over the image resulting from the fusion using, for example, Principal Com-
ponent Analysis (PCA) [6,21]. Calculating morphological profiles, such as attribute
profiles, is another very well-known method in the remote sensing field in order to
extract spatial features from the images [11].Context based approaches such asMarkov
Random Fields (MRF) [14] or Expectation-Maximization-based Level Sets (EMLS)

Table 1 Classification of CD
methods regarding the fusion
level of the multitemporal data

Fusion at the feature level

Pixel-based operations Image differencing,
ratioing, NDVI [1],
CVA [20]

Feature extraction PCA [6,21]

Morphological profiles Attribute profiles [11]

Context based approaches MRF [14], EMLS [15]

Fusion at the decision level

Post-classification [17]

Direct multidate classification [36]
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[15] are applied in some papers. Regarding the thresholding process that is necessary
in order to identify the changes, the most commonly used approaches are statistical
methods such as Expectation-Maximization (EM) [5] but these techniques are com-
putationally inefficient as they are based on slow iterative methods. Instead, Otsu’s
method [24] allows obtaining suitable thresholds with a much lower computational
complexity since it relies on histograms that can be efficiently computed on a Graphic
Processor Unit (GPU).

Regarding the approaches where the fusion of the information provided by both
images is carried out at the decision level, we can quote some post-classification based
techniques that compute the changes as the differences in the classification of the two
images [17]. Other techniques perform a direct multidate classification [36].

Remote sensing hyperspectral applications are computationally demanding and,
therefore, good candidates to be projected onto high performance computing (HPC)
infrastructures such as clusters or specialized hardware devices [9,26]. Some remote
sensing techniques have been executed in Field Programmable Gate Arrays (FPGA)
[37,38] or GPUs [19,26,28,31] to reduce their execution times. In this context, we
consider real-time operation as that which allows us to fully process one image before
the next one can be delivered by the sensor. This time depends on the sensor used. For
example, for the AVIRIS sensor used in this paper, a track line of 512 pixel vectors is
collected in 8.3 ms [27]. GPUs provide a cost-efficient solution to carry out onboard
real-time processing of remote sensing hyperspectral data. For instance, [2] shows
the advantages of performing hyperspectral unmixing on GPU, and [16] proposes a
framework for atmospheric cloud filtering in remotely sensed images. Some papers
in the literature explore the benefits of the GPU projection of CD techniques. [8]
introduces a nearest neighbor hierarchical CD framework for crop monitoring where
only the most computationally expensive step is executed in GPU. A CD technique
based on image differencing and fuzzy clustering on AMD GPUs is presented in
[39].

A framework to detect binary object-based changes in multitemporal hyperspectral
datasets is presented in this paper. The proposed framework is designed to be efficient
on both multi-core architectures and commodity GPUs. It considers fusion at the fea-
ture level while the spatial information is extracted through a segmentation process.
The segmentation is carried out independently for each image before combining the
features of the two images. CVA using the SAM distance [10] is used as an improve-
ment to the CVA presented in [33]. The use of Otsu’s method [24] to threshold the
changes is proposed as an alternative to the EM approach. Finally, an iterative spatial
regularization [19] is applied to reduce the presence of noise and unconnected pixels in
the final output. The framework presented in this paper allows the efficient integration
of these techniques as well as the real-time execution on GPU.

2 GPU Hyperspectral Framework for Change Detection

This section is devoted to the introduction of some Compute Unified Device Architec-
ture (CUDA) fundamentals (Sect. 2.1) as well as to the CUDA GPU implementation
(Sect. 2.2) of the framework.
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2.1 CUDA GPU Programming Fundamentals

GPUs provide massively parallel processing capabilities thanks to their data parallel
architecture. TheCUDAplatformallowsNVIDIAGPUs to execute programs invoking
parallel kernels that simultaneously execute in many parallel threads (one instance per
thread, following a SIMD programming model) [23]. The threads are organized into
blocks forming a grid that is mapped to a hierarchy of CUDA cores in the GPU. They
can access data frommultiplememory spaces: Private localmemory, registers, a shared
memory per blockwhose lifetime equals that of the block, and a shared global memory
for all threads that is persistent across kernel launches. The NVIDIA PASCAL GPU
architecture used in this paper [23] implements a two level cache hierarchy including a
configurable L1 cache for each streaming multiprocessor (SM) and a unified L2 cache
shared among all SMs. The architecture provides 96 KB of shared memory for each
SM with a block limit of 48 KB.

The threads run in groups of 32 called warps. The occupancy of the GPU is defined
as the number of active warps over the maximum number of warps supported per SM.
Therefore, the performance will be better when the hardware occupancy is higher.
The occupancy can be limited by three factors: the number of registers employed, the
amount of shared memory required, and the maximum number of threads per block.

In order to improve performance, some optimization techniques have been consid-
ered:

1. Minimize the use of global memory and the number of data transfers between host
and device memories The use of the global memory is minimized using in-place
computation whenever possible, i.e., using the memory reserved for the inputs to
store the outputs. All the computations are carried out in the GPU memory so that
data transfers between host (CPU) and device (GPU) are reduced to copying the
inputs and returning the outputs. It is also essential to minimize the data transfers
between global and shared memory.

2. Efficient use of libraries for common operations The cuBLAS library [22] is used
to efficiently compute matrix operations.

3. Search for the best kernel configuration The block size is tuned for each kernel
to minimize the execution time. The factors involved in the block size selection
are the number of registers and the shared memory used by the program. In our
application the selection of the block size depends on the GPU model whereas
the dimensions of the image are not relevant for the decision. Given that each
SM can have a maximum number of active blocks, larger blocks are preferable.
The selected block size is a multiple of 32 (the warp size) to avoid divergences
among threads an thus maximize parallelism. A size of 512 or 1024 threads per
block was selected for most of the kernels. This size is large enough to exploit the
memory bandwidth of the device. Additionally, if a computation involves steps
requiring different numbers of threads, it is split into consecutive kernels allowing
the optimization of the resources and, therefore, maximizing efficiency.

4. Avoid writing collisionsWhen several threads in a kernel need to atomically write
in the same structure, it is more efficient to perform independent partial results
per block and combine these results in a second kernel. This can be applied, for
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Fig. 1 Example of histogram
calculation using 9 blocks and 6
histogram levels

instance, in the calculation of a histogram, as shown in Fig. 1. In the first kernel,
each CUDA block calculates the histogram of a spatial portion of the input image.
Then, the second kernel merges all the partial results into the global histogram.

2.2 CUDA GPU Framework for Binary Change Detection

The details of the proposed spectral–spatial GPU framework for CD are provided in
this section. Some pseudocodes are introduced where each process executed in GPU is
placed between <> symbols and may involve one or more kernels. The pseudocodes
also include the GM and SM acronyms to indicate kernels executed in global memory
or shared memory, respectively.

The flowchart of the framework is displayed in Fig. 2 and its stages are detailed
in Fig 3. The inputs to the framework are two co-registered hyperspectral images
acquired on two different time-frames over the same area. Figure 4 shows the data
structures employed along with the thread activity.

2.2.1 Segmentation Stage on GPU

As shown in Figs. 2, 3, and 4, each image is independently segmented using the water-
shed transform. The segmentation stage involves a three-step processing: Calculation
of a gradient, creation of a watershed-based segmentation map, and averaging of the
pixels belonging to the same regions.

The first step consists in the calculation of themagnitude of a gradient. This gradient
reduces the hyperspectral image to one band as shown in Fig. 5. For each pixel, and for
each band of the pixel, the horizontal and vertical terms of the gradient are calculated
separately. Then, the norm of these terms is computed and the value of the gradient
for each band is accumulated to produce the final gradient value for each pixel. This
process is computed in shared memory (optimization technique 1 in Sect. 2.1) and
requires a load operation in shared memory for each band of the image.

Then, a segmentation map is calculated through a watershed technique based on
a cellular automaton [30] called CA-watershed. The watershed segmentation fits this
approach particularly well because it produces over-segmented region maps, mini-
mizing the probability of including more than one semantic object in the same region.
The input is the one-band image obtained by the previous gradient (See Fig. 6). The

123



Int J Parallel Prog (2019) 47:272–292 277

Fig. 2 Change detection
flowchart in the spectral–spatial
framework

Segmented
 image 1

Segmentation

Hyperspectral
 image 1

Hyperspectral
 image 2

Segmented
 image 2

Fusion (CVA)

Thresholding

Spatial 
regularization

Spatially regularized
change map

Change map

Difference image

(I) Segmentation.
Input: two co-registered hyperspectral images.
Output: two segmented hyperspectral images.
(1) Generate the segmented images through watershed.

(II) Fusion.
Input: two segmented hyperspectral images.
Output: difference image.
(1) Apply CVA with SAM distance to obtain a difference image.

(III) Thresholding.
Input: difference image.
Output: raw change map.
(1) Obtain the range of the data in the image.
(2) Calculate the histogram of the data.
(3) Calculate threshold through Otsu’s method.
(4) Generate binary image according to the calculated threshold.

(IV) Spatial regularization.
Input: raw change map.
Output: spatially regularized change map.
(1) Apply neighbor-based spatial regularization to the raw change map.

Fig. 3 Work-flow of the GPU-based spectral–spatial framework for change detection

CA-watershed is implemented asynchronously (exploiting optimization technique 2
in Sect. 2.1), being up to five times faster than the synchronous CUDA implementation
[29]. It includes intra-block asynchronous updates computed in shared memory and
inter-block synchronous updates computed in global memory to efficiently deal with
the fact that the CA technique needs data from the neighbors of each pixel.

This implementation presents the advantage of reusing information within a block
to efficiently exploit the shared and cache memories of the device (optimization 1 in
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Fig. 4 GPU computation diagram, showing the data structures and the activity of each thread at a given
instant of time. The data structures stored in global or shared memory are classified as hyperspectral data,
2D data and table (all the structures that do not correspond to the first two categories). In a given instant
of time, data may be computed by a thread of the current block, by a thread of another block or it may be
waiting to be processed

Gradient on GPU.
Input: hyperspectral image X.
Output: single band image. Distances step (1)

1: for each band k of X do
2: <Load band k in shared memory SM-GM
3: for each pixel i, j in band k do
4: <Compute the x term of the gradient as SM

gradx(i, j) = I(i + 1, j) − I(i − 1, j) >
5: <Compute the y term of the gradient as SM

grady(i, j) = I(i, j + 1) − I(i, j − 1) >
6: <Accumulate the gradient module as SM

grad(i, j)+ = sqrt(gradx(i, j)2 + grady(i, j)2) >
7: end for
8: < Synchronize threads within the block SM
9: end for

10: <Write grad(i, j) to global memory SM-GM
GM: Global Memory, SM: Shared Memory

Fig. 5 Pseudocode for the gradient kernel required by the watershed-based segmentation corresponding
to step (I) in Fig. 3
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Asynchronous CA-watershed on GPU.
Input: single band image from Gradient.
Output: segmentation map. Initialization step (1)

1: <Initialize CA data (labels, distances and states) GM
Updating step (2)

2: while CA is not stable do inter–block updating
3: <Asynchronous updating of the CA intra–block updating (SM)
4: <Global synchronization among blocks GM
5: end while

GM: Global Memory, SM: Shared Memory

Asynchronous updating of the CA on GPU.
Input: image CA data (labels, distances and states).
Output: updated image CA data. intra–block updating

1: <Load CA data in shared memory SM-GM
2: while CA is not stable at block level do
3: <Update labels, distances and states within the block SM
4: <Local synchronization among threads SM
5: end while
6: <Write CA data to global memory SM-GM

GM: Global Memory, SM: Shared Memory

Fig. 6 Pseudocode (main routine and detail of the asynchronous updating function) for the watershed
segmentation corresponding to step (I) in Fig. 3

Sect. 2.1). It involves two kernels, implementing the initialization and updating steps
of the CA-watershed. They are configured to work in two-dimensional thread blocks
as shown in Fig. 4, so that each thread operates over a single pixel. The updating step
is an iterative process that lasts until no modifications are made to the available data
inside the region (lines 2–5 in Fig. 6). This implementation generates a segmentation
map where the pixels are connected so that every pixel in the same region has the same
label.

Finally, in the third step of the segmentation, the process to average the spectra
of the pixels belonging to the same segmentation region starts (see Figs. 4 and 7).
It involves three consecutive kernels (optimization 4 introduced in Sect. 2.1) that are
executed in global memory because the size of the regions is unknown and there is
no data reuse. The first kernel accumulates the values of each pixel belonging to a
region. Each thread atomically adds the spectral values of a pixel to the corresponding
region values and also increments a counter for the number of pixels in the region.
The second kernel divides the accumulated pixel values for each region by the number
of pixels of the region, thus using as many threads as regions in the image. The final
kernel propagates the calculated average values to every pixel belonging to each region,
needing again as many threads as pixels in the image. In the three kernels each thread
computes all the bands of the corresponding pixel. The computation is carried out
in-place (optimization technique 1).

After the segmentation stage, the images will have no intra-region variability and
a longer inter-region variability. This allows us to detect the changes more easily and
to do it at the object level instead of at the pixel level. By assigning the same value to
all the pixels in the region, that region (i.e., corresponding to an object or a part of it)
will be considered as a whole in the thresholding step.
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Region averaging on GPU.
Input: hyperspectral image, watershed segmentation map.
Output: region-averaged hyperspectral image.

1: <Add pixel values in each watershed region GM
−Check the region of the pixel in the segmentation map.
−Atomically add 1 to the corresponding region counter.
−Atomically add each band of the pixel to the corresponding accumulator.

2: <Divide accumulated values by number of pixels in each region GM
3: <Propagate the averaged value to each pixel of each region GM

GM: Global Memory

Fig. 7 Pseudocode for the averaging process in the segmentation of step (I) in Fig. 3

Image fusion on GPU.
Input: two segmented images.
Output: difference image.

1: <Apply CVA with SAM distance GM
−Accumulate the product for each band between correspondent pixels.
−Accumulate the square of each pixel for each band for both images.
−Calculate distance as (2/π) arccos(product/(

√
firstSquare)

√
secondSquare)).

−Denormalize the distance by a scale factor.
GM: Global Memory

∗∗

Fig. 8 Pseudocode for the fusion stage corresponding to step (II) in Fig. 3

2.2.2 Fusion Stage on GPU

The following step combines the segmented images into a difference one. This is
usually handled by Change Vector Analysis (CVA) processing [33] using Euclidean
distance. Our proposal is to create this difference image by using the Spectral Angle
Mapper (SAM) distance,

αi, j = 2

π
cos−1

(
S j · Si

‖S j‖‖Si‖
)

∈ [0, 1], (1)

where αi, j is the spectral angle between the spectrum at pixel i (Si ) and the one at j
(S j ), and i , j are the two pixels under consideration.

The fusion of the two segmented hyperspectral images throughCVA is computed by
a kernel (Fig. 8) where each thread computes the SAMdistance between the two pixel-
vectors corresponding to the same spatial location in the two segmented images. This
distance is then denormalized by applying a scale factor that allows the subsequent
computation of a histogram of the difference image. The distance computation is
carried out in global memory generating the difference image in Fig. 4.

2.2.3 Thresholding Stage on GPU

A thresholding process is needed to obtain the change map of the images. In our
approach, it is performed following Otsu’s algorithm [24]. To do this, a histogram of
the previously calculated difference image is required. In order to preserve as much
detail as possible, this histogram is created with as many bins as gray levels in the
difference image.
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Thresholding on GPU.
Input: difference image.
Output: raw change map.

1: <Search data interval in the difference image SM-GM
2: <Calculate partial histograms of the data GM
3: <Merge partial histograms GM
4: <Calculate threshold by Otsu’s method GM
5: <Generate binary image regarding the calculated threshold GM

GM: Global Memory, SM: Shared Memory

Fig. 9 Pseudocode for the thresholding stage corresponding to step (III) in Fig. 3

This process (see pseudocode in Fig. 9) starts by calculating the range encompassing
the values of the difference image.This canbe achieved efficiently through the cuBLAS
library [22] (optimization strategy 3 in Sect. 2.1). After this, the histogram of the data
is efficiently calculated through two consecutive kernels (optimizations 3 and 4 in
Sect. 2.1). First, n partial histograms are obtained (being n the number of blocks of
threads) as shown in Fig. 4, in a kernel where each thread processes a pixel of the
difference image. In the second kernel, the partial histograms are combined in order
to obtain the final histogram using as many threads as bins in the histogram. This way
each thread writes in a different position of the array.

The next task is to calculate the global value of the threshold usingOtsu’s algorithm.
It assumes two classes of pixels in the histogram, and calculates, in an iterative process,
the optimal threshold as the one that provides the maximum inter-class variance. This
process is intrinsically sequential (it iterates through the possible thresholds and selects
the one resulting in a larger inter-class variance), thus it is computed by a single thread.
This is not a problem as long as it is an extremely quick step.

Finally, the CDmap is directly created through a process where all the pixels in the
difference image whose value is greater than the calculated threshold are identified
as changed pixels. The same number of threads as pixels of the difference image
are launched in this kernel. The output of the thresholding stage (the change map) is
stored over the same memory that contains the magnitude of change for each pixel
(optimization technique 1).

2.2.4 Spatial Regularization on GPU

The previous processing can produce some unconnected pixels or noise in theCDmap.
This is corrected by applying an iterative spatial regularization processing similar to
the one introduced in [19].

This stage is computed by one kernel, as shown in Fig. 10. The information of the
closest neighborhood of each pixel is exploited in an iterative process. The value of
each pixel in the CD map is computed by a thread. A global flag is activated if any
pixel is updated, indicating that the iterative process must last one more iteration. The
process is computed in-place (optimization technique 1 in Sect. 2.1) in global memory
in order to guarantee that the values of the neighbors of a pixel are always correctly
updated.
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Spatial regularization on GPU.
Input: raw change map.
Output: spatially regularized change map.

1: while Global flag > 0 do
2: <Global flag = 0 GM
3: <Apply neighborhood-based spatial regularization GM
4: if Any pixel value changes then
5: <Global flag ++ GM
6: end if
7: end while

GM: Global Memory

Fig. 10 Pseudocode for the spatial regularization stage corresponding to step (IV) in Fig. 3

2.2.5 Comparison to the Sequential and OpenMP CPU Implementations

Some stages of the method present different implementations in the CPU and GPU
versions in order to fully exploit each architecture. In particular, the region averaging
step of the segmentation stage (Fig. 7) and the fusion stage (Fig. 8) are performed in
pixel-vector order (i.e. the image is stored in memory so that the components of a pixel
are contiguous) in the CPU implementations. The GPU version works in band-vector
order. This aims to maximize the exploitation of the available cache memories in the
CPU and maximize the number of threads being executed in parallel in the GPU,
respectively. Furthermore, the histogram calculation of the thresholding stage (Fig. 9)
follows a two-step processing in GPU, as explained in Sect. 2.2.3, while this is not
necessary in the CPU version of the code, that computes it in only one step.

3 Experimental Results

In this section we provide experimental results over hyperspectral images obtained
from the AVIRIS sensor. The results will be analyzed in terms of accuracy in the
binary detection as compared to the reference detection data and in terms of compu-
tational performance of the GPU code. The datasets and the experimental conditions
are described in Sect. 3.1. The accuracies achieved and the performance results are
detailed in Sect. 3.2.

3.1 Hyperspectral Datasets and Experimental Set-Up

The proposed framework has been evaluated both in CPU andGPU. The specifications
of the hardware are detailed in Table 2. TheCPUversion of the code has been compiled
using the gcc compiler version 4.9.4 with OpenMP 3.0 support under Linux. This is,
at the moment of running the experiments presented in this paper, the most recent gcc
version compatible with CUDA. Optimization level 3 (–O3 compiler flag) is used in
every case. The CUDA code has been compiled using the nvcc compiler with version
8.0 of the toolkit under Linux.

The accuracy of the proposed framework is evaluated in terms of correctly detected
changes and total error, which represents the sum of missed alarms (MA) and false
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Table 3 Distribution of the pixels in the available reference data for the CD of the Santa Barbara and Bay
Area datasets

Santa Barbara Bay Area

Absolute Percentage Absolute Percentage

Changed pixels 52,134 7.16 38,425 12.81

Unchanged pixels 80,418 11.04 34,211 11.40

Unlabeled pixels 595,608 81.80 227,364 75.79

Total 728,160 100.00 300,000 100.00

alarms (FA) [5]. These metrics are expressed in absolute and percentage terms. The
performance results are expressed in terms of execution time (in seconds) and speedup
(the number of times the GPU implementation runs faster with respect to a baseline
implementation) compared to an optimized OpenMP version of the framework exe-
cuted on a multicore CPU using 4 threads. The performance results represent the
average of ten independent executions.

The tests were run over two airborne co-registered hyperspectral images taken by
the AVIRIS sensor:

– The Santa Barbara dataset (years 2013 and 2014) over the Santa Barbara region
(California). Its dimensions are 984 × 740 pixels × 224 spectral bands.

– The Bay Area dataset (years 2013 and 2015) in Patterson (California). Its dimen-
sions are 600 × 500 pixels × 224 spectral bands.

The imageswere co-registered usingHypeRvieW [13], a desktop tool that performs
registration based on the computation of the multilayer fractional Fourier transform
[25]. A reference map of the object-based areas that change between the two images
considered from each dataset was constructed by visual inspection. The reference
data includes areas with changes and without them, in order to avoid incorrect accu-
racy results corresponding to misclassified unchanged areas. Table 3 summarizes the
number of pixels assigned to each class over the images.1

3.2 Accuracy and Performance Results

This section presents the accuracy and performance results obtained by the proposed
framework over the experimental data.

Table 4 (for the Santa barbara dataset) and Table 5 (for the Bay Area dataset) show
the accuracies obtained using the previously introduced framework (SAM+WAT
+Otsu) with CVA based on SAM distance and Otsu’s thresholding, along with
other configurations included for comparison purposes. EUC+EM can be used as
a reference to compare the other methods, as it is frequently done in the bibliog-
raphy [5]. It includes an Euclidean distance CVA and Expectation-Maximization

1 The datasets along with the reference maps created and some experimental results can be downloaded
from: https://wiki.citius.usc.es/hiperespectral:cva.
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Table 4 Accuracy results for CD (correctly classified pixels, MA, FA, and total error), in terms of number
of pixels and percentages, for the Santa Barbara dataset

Configuration Correct MA FA Total error

EUC+EM 110,065 (83.04%) 7990 14,497 22,487 (16.96%)

EUC+Otsu 110,348 (83.25%) 9866 12,338 22,204 (16.75%)

SAM+Otsu 125,598 (94.75%) 4147 2807 6954 (5.25%)

EUC+WAT+Otsu 115,101 (86.83%) 7842 9609 17,451 (13.17%)

SAM+WAT+EM 126,389 (95.35%) 1765 4398 6163 (4.65%)

SAM+WAT+Otsu 128,523 (96.96%) 3011 1018 4029 (3.04%)

Best result for each column in bold

Table 5 Accuracy results for CD (correctly classified pixels, MA, FA, and total error), in terms of number
of pixels and percentages, for the Bay Area dataset

Configuration Correct MA FA Total error

EUC+EM 64,530 (88.84%) 4245 3861 8106 (11.16%)

EUC+Otsu 61,745 (85.01%) 8940 1951 10,891 (14.99%)

SAM+Otsu 68,952 (94.93%) 2272 1412 3684 (5.07%)

EUC+WAT+Otsu 62,944 (86.66%) 8476 1216 9692 (13.34%)

SAM+WAT+EM 68,548 (94.37%) 868 3220 4088 (5.63%)

SAM+WAT+Otsu 70,411 (96.94%) 2011 214 2225 (3.06%)

Best result for each column in bold

thresholding. EUC+Otsu includes CVA with Euclidean distance and Otsu based
thresholding. SAM+Otsu substitutes the Euclidean distance by the SAM dis-
tance. EUC+WAT+Otsu adds the spatial processing based on watershed seg-
mentation plus region averaging and spatial regularization. SAM+WAT+EM and
SAM+WAT+Otsu add the same spatial processing to the configuration that uses
SAM distance.

The proposed framework provides very good CD results, achieving up to 96.96
and 96.94% of correctly classified pixels for the Santa Barbara and Bay Area datasets,
respectively (See Tables 4 and 5). It can be seen that, in general, the configurations
based on SAM distance (SAM+Otsu, SAM+WAT+Otsu, SAM+WAT+EM)
greatly improve the accuracies obtained by those using Euclidean distance based CVA
(all the remaining configurations), achieving up to 11more percentage points. It is also
observed that the spatial information included improves the results in both the EUC
and SAM cases. The configurations replacing Otsu’s threshold with the Expectation-
Maximization (EM) technique (EUC+EM, SAM+WAT+EM) show that Otsu’s
approximation provides a better thresholding of the difference data and, therefore, a
better change map.

The change maps achieved by the different configurations are shown in Figs. 11e–g
and 12e–g. The figures also include a color composition of the input images (a, b),
the reference data of the changes (c) and the hit map of changes obtained by the best
configuration (SAM+WAT+Otsu) in terms of accuracy with respect to the reference
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Fig. 11 Color composition of the input images (a, b), reference data of changes {white = no change, gray
= change} (c), hit map for SAM+WAT+Otsu {white = miss, gray = hit} (d), EUC+Otsu CD map (e),
SAM+Otsu CD map (f), SAM+WAT+Otsu CD map (g) for the Santa Barbara dataset

data (d). As it can be seen in Figs. 11c and 12c, the reference data cover regions with
different sizes and shapes throughout the image. Figures 11d and 12d show that the
framework correctly detects the presence or absence of changes in a large percentage
of the reference data (96.96 and 96.94%, respectively). Figures 11g and 12g show that
the spatial information removes most of the noisy pixels present in Figs. 11e, f and
12e, f, improving the final accuracy.

The execution time results obtained in the sequential CPU, the OpenMPCPU using
4 threads, and the CUDA GPU versions of the framework are detailed in Table 6. The
OpenMP CPU version of the framework achieves a reasonable speedup when com-
pared to the sequential one, taking account of the number of threads employed. A
speedup of up to 46.5× is achieved with the GPU implementation as compared to
the fastest CPU version (the one with OpenMP). It can be seen that all the GPU
algorithms in the framework achieve high speedups. The stages involving a heavier
computational load, i.e., the gradient calculation, the region averaging step, and the
spatial regularization stage achieve large speedups (65.4×, 32.4×, and 65.6×, respec-
tively, for the largest dataset). The smallest speedups correspond to the fusion and
thresholding stages (17.3× and 7.0× for the Santa Barbara dataset and 16.7× and
3.0× for the Bay Area dataset) but they are stages involving low computational load
and, therefore, do not significantly affect the total speedup. Finally, it is worth con-
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Fig. 12 Color composition of the input images (a, b), reference data of changes {white = no change, gray
= change} (c), hit map for SAM+WAT+Otsu {white = miss, gray = hit} (d), EUC+Otsu CD map (e),
SAM+Otsu CD map (f), SAM+WAT+Otsu CD map (g) for the Bay Area dataset

sidering that the CPU-GPU transfer time is 0.917 s for the Santa Barbara dataset and
0.353 s for the Bay Area dataset. This means that even if the images have to be loaded
into the GPU memory only for this calculation, which is not usually the case in real
applications, the total execution time of the GPU version would be faster than the best
CPU version. In order to visualize the computational requirements of the framework,
it is worth noting that the maximummemory required in GPU at a given instant of time
is approximately 2 times the size of one of the images of the dataset. This situation
corresponds to the step when the regions are averaged and to the fusion stage.

The hardware occupancy in GPU achieved for the most relevant kernels was ana-
lyzed using the nvprof tool and it is shown for the Santa Barbara dataset in Table 7
together with the GFLOPS achieved by each stage of the algorithm. The most costly
kernels in terms of execution time are those involved in the calculation of the region
averaging process (See Fig. 7). These are executed in 512-thread blocks. The second
kernel, that divides the accumulated values, achieves 41.2% occupancy because the
computational load is too small to hide the operation latency. The kernel for the gradi-
ent calculation (See Fig. 5) uses bi-dimensional blocks of threads of size 32 × 4 and
achieves an occupancy of 49.4%, limited by the amount of shared memory available
(this information is provided by nvprof ). The next most relevant kernel is the one
devoted to the regularization of the change map (Fig. 10) because it is an iterative
kernel executed 46 times for the Santa Barbara dataset in this example. This kernel
uses blocks of 512 threads achieving an occupancy of 82%. The limiting factor for
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Table 6 Performance results in terms of execution time (in seconds) and speedups of the GPU framework
for CD with the SAM+WAT+Otsu configuration

Dataset Santa Barbara Bay Area

Stage CPU OpenMP GPU Speedup CPU OpenMP GPU Speedup

Gradients 4.838 1.441 0.022 65.4× 1.887 0.587 0.010 58.7×
Watershed 0.311 0.136 0.004 34.0× 0.229 0.095 0.003 31.6×
Average regions 2.651 0.937 0.029 32.3× 1.068 0.384 0.014 27.4×
Fusion 0.224 0.121 0.007 17.3× 0.094 0.050 0.003 16.7×
Thresholding 0.007 0.007 0.001 7.0× 0.003 0.003 0.001 3.0×
Regularization 1.352 0.984 0.015 65.6× 0.287 0.222 0.004 55.5×
Total 9.383 3.626 0.077 46.5× 3.568 1.341 0.034 38.3×
CPU sequential implementation, OpenMP optimized parallel implementation using 4 threads
Speedup represents the factor by which the GPU version is faster than the OpenMP one

Table 7 Performance results in terms of execution time (in seconds), achieved GFLOPS, memory uti-
lization, and occupancy of the GPU framework for CD with the SAM+WAT+Otsu configuration for the
Santa Barbara dataset

Stage Sub-stage Time GFLOPS Memory
utilization (%)

Achieved
occupancy (%)

Theoretical
occupancy (%)

Gradients 0.022 89 35 49.4 50

Watershed 0.004 – 35 95.8 100

Average regions Addition 0.017 – 85 98.5 100

Division 0.002 187 25 41.2 50

Propagation 0.010 – 65 99.5 100

Fusion 0.007 148 85 97.9 100

Thresholding 0.001 – 75 65.9 100

Regularization 0.015 7 95 82.0 100

this kernel, obtained by nvprof, is the memory bandwidth of the L2 cache memory.
The kernel devoted to the fusion (See Fig. 8) achieves an occupancy of 97.9%.

As it can be seen inTable 7,most of the kernels are limited by thememory utilization
(memory utilization above 75% in the table), which prevents the full exploitation of
the computing resources. The kernels with enough computational load and not limited
by the memory utilization are the ones that achieve more GFLOPS (the division kernel
in the region averaging and the fusion kernel). It is important to note that some of the
kernels execute only integer or single precision operations.

3.3 Multi-GPU Projection

The framework presented includes several steps performed independently over each
one of the input images. This makes it a good candidate to be projected into a multi-
GPU system in order to achieve better execution times.
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Fig. 13 Multi-GPU change detection flowchart

Table 8 Single and dual GPU
performance results in terms of
execution time (in seconds) and
speedups of the GPU framework
for CD with the
SAM+WAT+Otsu
configuration

Stage 1 GPU 2 GPUs Speedup

Gradients 0.076 0.038 2.0×
Watershed 0.014 0.007 2.0×
Average regions 0.053 0.030 1.8×
Memory Movements – 0.004 –

Fusion 0.014 0.014 1.0×
Thresholding 0.002 0.002 1.0×
Regularization 0.022 0.022 1.0×
Total 0.181 0.117 1.5×

We have developed a version of the framework following the flowchart of Fig. 13.
The gradient calculation, watershed segmentation and region averaging processes for
both images are executed in parallel in two independent GPUs, whereas the fusion,
thresholding and spatial regularization steps are performed in a single GPU. This
flowchart was designed aiming to minimize the data movements among GPUs. Once
the region averaged images are generated, the fusion process dramatically reduces the
data size, decreasing the computational cost of the last stages of the algorithm. As
a consequence, if the code were executed using both GPUs, the GPU computational
load would not be enough to hide the access latency to the data. For this reason, the
last 3 processes of the CD are performed in a single GPU.

To carry out the experiments in a multi-GPU system we have used the FT2 cluster
at CESGA [7]. In this cluster, each computing node includes an Intel Xeon E5-2680
v3 processor at 2.50 GHz with 128 GB of RAM. A three-level cache hierarchy is
available, with 30 MB of shared L3. Four of the nodes also include a NVIDIA Tesla
K80 device. The K80 has a dual-GPU design with Kepler architecture including 2496
cores at 0.82 GHz and 12 GB of memory per GPU. Each GPU also incorporates a L1 /
L2 cache hierarchy of 1.5 MB. The L1 cache is available only for the threads running
in the same SM, the L2 cache is shared among all the threads. The code was compiled
using the nvcc version 8.0, and OpenMP is used to manage the two GPUs in parallel.
The experiments were run over the Santa Barbara dataset.

Table 8 shows the comparisonbetween the execution times corresponding to a single
GPU execution versus a dual GPU execution in the previously presented system. The
single GPU version is slower than the one presented in Table 6 because the NVIDIA
Tesla K80 cores achieve 0.82 GHz whereas the TITAN X cores achieve 1.4 GHz.
We obtain a speedup of 1.5× using two GPUs. The steps that have been parallelized
represent 80% of the computation time in the single GPU version. Furthermore, the
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data loads are also 1.5× faster when two GPUs are employed because each input
image can be loaded in parallel into the GPU memory.

4 Conclusions

An efficient GPU framework for CD in remote sensing multitemporal hyperspec-
tral images is presented in this paper. In the framework, the fusion of multitemporal
data is carried out at the feature level through CVA based on SAM distance. The
decision on the changes is based on Otsu’s thresholding, which improves on the
Expectation-Maximization technique in terms of computational burden. The frame-
work also involves spatial processing based on averaging the pixels of the input images
belonging to the same spatial region in awatershed-based segmentationmap. Finally, a
spatial regularization of the change map is applied to remove disconnected pixels. The
proposed framework achieves accuracies of up to 96.96% in hyperspectral datasets
from the AVIRIS sensor. The GPU projection of the method reaches a speedup of
46.5× as compared to the OpenMP CPU version, requiring less than 0.08 s for 984 ×
740 pixel images including 224 spectral bands. A multiple GPU version of the frame-
work has also been implemented and tested offering good speedups of up to 1.5×
for the same images. As future work, the GPU framework will be extended with new
algorithms for object-based CD.

Acknowledgements Thiswork has received financial support from theMinistry of Science and Innovation,
Government of Spain, co-funded by the FEDER funds of the European Union, under Contracts TIN2013-
41129-P and TIN2016-76373-P; Xunta de Galicia, Programme for Consolidation of Competitive Research
Groups Ref. 2014/008; the Consellería de Cultura, Educación e Ordenación Universitaria (Accreditation
2016-2019, ED431G/08); and the European Regional Development Fund (ERDF).

References

1. Bannari, A.,Morin, D., Bonn, F., Huete, A.: A review of vegetation indices. Remote Sens. Rev. 13(1–2),
95–120 (1995)

2. Bernabé, S., Sánchez, S., Plaza, A., López, S., Benediktsson, J.A., Sarmiento, R.: Hyperspectral unmix-
ing on GPUs and multi-core processors: a comparison. IEEE J. Sel. Top. Appl. Earth Obs. Remote
Sens. 6(3), 1386–1398 (2013)

3. Bioucas-Dias, J., Plaza, A., Camps-Valls, G., Scheunders, P., Nasrabadi, N., Chanussot, J.: Hyperspec-
tral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 1(2), 6–36
(2013)

4. Bovolo, F., Bruzzone, L.: The time variable in data fusion: a change detection perspective. IEEEGeosci.
Remote Sens. Mag. 3(3), 8–26 (2015)

5. Bruzzone, L., Prieto, D.F.: Automatic analysis of the difference image for unsupervised change detec-
tion. IEEE Trans. Geosci. Remote Sens. 38(3), 1171–1182 (2000)

6. Celik, T.: Unsupervised change detection in satellite images using principal component analysis and-
means clustering. IEEE Geosci. Remote Sens. Lett. 6(4), 772–776 (2009)

7. CESGA: Finis Terrae II Quick start guide (2017). https://cesga.es/en/paginas/descargaDocumento/id/
231

8. Chen, Z., Vatsavai, R.R., Ramachandra, B., Zhang, Q., Singh, N., Sukumar, S.: Scalable nearest neigh-
bor based hierarchical change detection framework for crop monitoring. In: 2016 IEEE International
Conference on Big Data (Big Data), pp. 1309–1314. IEEE (2016)

9. Christophe, E., Michel, J., Inglada, J.: Remote sensing processing: from multicore to GPU. IEEE J.
Sel. Top. Appl. Earth Obs. Remote Sens. 4(3), 643–652 (2011)

123

https://cesga.es/en/paginas/descargaDocumento/id/231
https://cesga.es/en/paginas/descargaDocumento/id/231


Int J Parallel Prog (2019) 47:272–292 291

10. Dennison, P.E., Halligan, K.Q., Roberts, D.A.: A comparison of error metrics and constraints for
multiple endmember spectral mixture analysis and spectral angle mapper. Remote Sens. Environ.
93(3), 359–367 (2004)

11. Falco, N., Mura, M.D., Bovolo, F., Benediktsson, J.A., Bruzzone, L.: Change detection in VHR images
based on morphological attribute profiles. Geosci. Remote Sens. Lett. IEEE 10(3), 636–640 (2013)

12. Fauvel, M., Tarabalka, Y., Benediktsson, J.A., Chanussot, J., Tilton, J.C.: Advances in spectral–spatial
classification of hyperspectral images. Proc. IEEE 101(3), 652–675 (2013)

13. Garea, A.S., Ordóñez, A., Heras, D.B., Argüello, F.: HypeRvieW: an open source desktop application
for hyperspectral remote-sensing data processing. Int. J. Remote Sens. 37(23), 5533–5550 (2016)

14. Ghosh, A., Subudhi, B.N., Bruzzone, L.: Integration of Gibbs Markov random field and Hopfield-type
neural networks for unsupervised change detection in remotely sensed multitemporal images. IEEE
Trans. Image Process. 22(8), 3087–3096 (2013)

15. Hao, M., Shi, W., Zhang, H., Li, C.: Unsupervised change detection with expectation-maximization-
based level set. IEEE Geosci. Remote Sens. Lett. 11(1), 210–214 (2014)

16. Ke, J., Sowmya, A., Guo, Y., Bednarz, T., Buckley, M.: Efficient GPU computing framework of cloud
filtering in remotely sensed image processing. In: 2016 International Conference on Digital Image
Computing: Techniques and Applications (DICTA), pp. 1–8. IEEE (2016)

17. Kempeneers, P., Sedano, F., Strobl, P., McInerney, D.O., San-Miguel-Ayanz, J.: Increasing robustness
of postclassification change detection using time series of land cover maps. IEEE Trans. Geosci.
Remote Sens. 50(9), 3327–3339 (2012)

18. Keshava, N.: Distance metrics and band selection in hyperspectral processing with applications to
material identification and spectral libraries. IEEE Trans. Geosci. Remote Sens. 42(7), 1552–1565
(2004)

19. López-Fandiño, J., Quesada-Barriuso, P., Heras, D.B., Argüello, F.: Efficient ELM-based techniques
for the classification of hyperspectral remote sensing images on commodity GPUs. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sen. 8(6), 2884–2893 (2015)

20. Malila, W.A.: Change vector analysis: an approach for detecting forest changes with landsat. In: LARS
Symposia, p. 385 (1980)

21. Nielsen, A.A.: Kernel based orthogonalization for change detection in hyperspectral image data. In:
6th EARSeL Workshop on Imaging Spectroscopy (2013)

22. Nvidia: CUBLAS Library User Guide (2013)
23. Nvidia: NVIDIATesla P100. TheMostAdvancedDataCenterAccelerator Ever Built. Featuring Pascal

P100, the Worlds Fastest GPU (2016)
24. Otsu, N.: A threshold selection method from gray-level histograms. Automatica 11(285–296), 23–27

(1975)
25. Pan, W., Qin, K., Chen, Y.: An adaptable-multilayer fractional Fourier transform approach for image

registration. IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 400–414 (2009)
26. Plaza, A., Du, Q., Chang, Y.L., King, R.L.: High performance computing for hyperspectral remote

sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 4(3), 528–544 (2011)
27. Plaza, A., Plaza, J., Paz, A., Sanchez, S.: Parallel hyperspectral image and signal processing. IEEE

Signal Process. Mag. 28(3), 119–126 (2011)
28. Quesada-Barriuso, P., Argüello, F., Heras, D.B.: Computing efficiently spectral–spatial classification

of hyperspectral images on commodity GPUs. In: Tweedale, J., Jain, L. (eds.) Recent Advances in
Knowledge-Based Paradigms and Applications, pp. 19–42. Springer, Berlin (2014)

29. Quesada-Barriuso, P., Heras, D.B., Argüello, F.: Efficient 2D and 3Dwatershed on graphics processing
unit: block-asynchronous approaches based on cellular automata. Comput. Electr. Eng. 39(8), 2638–
2655 (2013)

30. Quesada-Barriuso, P., Heras, D.B., Argüello, F.: Efficient GPU asynchronous implementation of a
watershed algorithm based on cellular automata. In: 2012 IEEE 10th International Symposium on
Parallel and Distributed Processing with Applications (ISPA), pp. 79–86. IEEE (2012)

31. Sánchez, S., Ramalho, R., Sousa, L., Plaza, A.: Real-time implementation of remotely sensed hyper-
spectral image unmixing on GPUs. J. Real Time Image Proc. 10(3), 469–483 (2015)

32. Singh,A.: Review article digital change detection techniques using remotely-sensed data. Int. J. Remote
Sens. 10(6), 989–1003 (1989)

33. Singh, S., Talwar, R.: Review on different change vector analysis algorithms based change detection
techniques. In: 2013 IEEE Second International Conference on Image Information Processing (ICIIP),
pp. 136–141. IEEE (2013)

123



292 Int J Parallel Prog (2019) 47:272–292

34. Tarabalka, Y., Benediktsson, J.A., Chanussot, J., Tilton, J.C.: Multiple spectral–spatial classification
approach for hyperspectral data. IEEE Trans. Geosci. Remote Sens. 48(11), 4122–4132 (2010)

35. Van der Meer, F.D., van der Werff, H., van Ruitenbeek, F.J., Hecker, C.A., Bakker, W.H., Noomen,
M.F., van der Meijde, M., Carranza, E.J.M., Smeth, J., Woldai, T.: Multi-and hyperspectral geologic
remote sensing: a review. Int. J. Appl. Earth Obs. Geoinf. 14(1), 112–128 (2012)

36. Volpi, M., Tuia, D., Bovolo, F., Kanevski, M., Bruzzone, L.: Supervised change detection in vhr images
using contextual information and support vector machines. Int. J. Appl. Earth Obs. Geoinf. 20, 77–85
(2013)

37. Yang, B., Yang, M., Plaza, A., Gao, L., Zhang, B.: Dual-mode FPGA implementation of target and
anomaly detection algorithms for real-time hyperspectral imaging. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 8(6), 2950–2961 (2015)

38. Zhang, W., Luo, G., Shen, L., Page, T., Li, P., Jiang, M., Maass, P., Cong, J.: FPGA acceleration by
asynchronous parallelization for simultaneous image reconstruction and segmentation based on the
Mumford–Shah regularization. In: SPIE Optical Engineering + Applications, p. 96000H. International
Society for Optics and Photonics (2015)

39. Zhu, H., Cao, Y., Zhou, Z., Gong, M.: Parallel multi-temporal remote sensing image change detection
on GPU. In: 2012 IEEE 26th International Parallel and Distributed Processing SymposiumWorkshops
& PhD Forum (IPDPSW), pp. 1898–1904. IEEE (2012)

123


	GPU Framework for Change Detection in Multitemporal Hyperspectral Images
	Abstract
	1 Introduction
	2 GPU Hyperspectral Framework for Change Detection 
	2.1 CUDA GPU Programming Fundamentals
	2.2 CUDA GPU Framework for Binary Change Detection
	2.2.1 Segmentation Stage on GPU
	2.2.2 Fusion Stage on GPU
	2.2.3 Thresholding Stage on GPU
	2.2.4 Spatial Regularization on GPU
	2.2.5 Comparison to the Sequential and OpenMP CPU Implementations


	3 Experimental Results
	3.1 Hyperspectral Datasets and Experimental Set-Up
	3.2 Accuracy and Performance Results
	3.3 Multi-GPU Projection

	4 Conclusions
	Acknowledgements
	References




